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Abstract. The US Northern Great Plains and the Canadian
Prairies are known as the world’s breadbaskets for their large
spring wheat production and exports to the world. It is es-
sential to accurately represent spring wheat growing dynam-
ics and final yield and improve our ability to predict food
production under climate change. This study attempts to in-
corporate spring wheat growth dynamics into the Noah-MP
crop model for a long time period (13 years) and fine spatial
scale (4 km). The study focuses on three aspects: (1) devel-
oping and calibrating the spring wheat model at a point scale,
(2) applying a dynamic planting and harvest date to facilitate
large-scale simulations, and (3) applying a temperature stress
function to assess crop responses to heat stress amid extreme
heat. Model results are evaluated using field observations,
satellite leaf area index (LAI), and census data from Statis-
tics Canada and the United States Department of Agriculture
(USDA). Results suggest that incorporating a dynamic plant-
ing and harvest threshold can better constrain the growing
season, especially the peak timing and magnitude of wheat
LAI, as well as obtain realistic yield compared to prescribing
a static province/state-level map. Results also demonstrate
an evident control of heat stress upon wheat yield in three
Canadian Prairies Provinces, which are reasonably captured
in the new temperature stress function. This study has im-
portant implications in terms of estimating crop yields, mod-
eling the land–atmosphere interactions in agricultural areas,

and predicting crop growth responses to increasing tempera-
tures amidst climate change.

1 Introduction

Wheat is a widely grown temperate cereal and a major staple
crop for global food security, ranked fourth among commod-
ity crops, with a global production of 711×106 t. The Prairie
Provinces in Canada (Alberta, Saskatchewan, Manitoba) and
the US Northern Great Plains are known as the breadbas-
ket of North America, producing spring wheat, which is the
first and third largest commodity crop in Canada and the US,
respectively. At the same time, Canada and the US account
for approximately 20 % of the global wheat export market,
according to the Economic Research Service (ERS) of the
US Department of Agriculture and Agriculture and Agri-
Food Canada (AAFC) (ERS USDA report, 2022; Statistics
Canada; and AAFC).

Spring wheat is planted in late spring after snowmelt and
soils have drained sufficiently to allow fieldwork and is har-
vested in late summer to avoid early fall frost. The spatial
and temporal variability of climate across the entirety of the
spring wheat production area of the Northern Great Plains
means planting typically starts in early April in the southern
portions and concludes by late May in the northern portions.
Within the growing season, four major growing stages are
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identified for spring wheat, including seedling, emergence,
anthesis, and grain filling, largely aligned with the spring and
summer weather. Thus, weather variations, especially tem-
perature, play an important role in the environmental control
at each growing stage. Accumulated heat, calculated though
growing degree day (GDD) accumulation, is an effective
proxy to quantify crop stage.

Wheat is sensitive to high-temperature stress, whose neg-
ative impacts have been reported, particularly under the
higher-end emission scenario (Lobell et al., 2011a; IPCC,
2014; Qian et al., 2019; Agyeman et al., 2021). When the
temperature exceeds the optimal range, it can have three main
effects: (1) the high temperature can lead to the closure of
leaf stomata, reducing CO2 absorption and transpiration and
increasing photorespiration competition, which lowers pho-
tosynthetic efficiency; (2) the high temperature can impair
the activity of enzymes in leaf chloroplasts; (3) and the high
temperature can shorten phenological developments, partic-
ularly during the grain-filling stage, affecting biomass accu-
mulation. These processes will reduce crop photosynthesis at
the physiological level and affect crop phenological develop-
ment.

As such, it is important to understand and accurately repre-
sent growing dynamics and responses to heat stress for spring
wheat, from plant physiology to its parameterization in Earth
system model applications. Previous studies have utilized
statistical regression models to connect agricultural produc-
tion with weather inputs. Usually, the spatial region for each
regression model is large and there is a lack of detailed
process understanding in these statistical studies (Qian et
al., 2009; Carew et al., 2017). Ensemble process-based crop
model studies (e.g., AgMIP study, Rosenzweig et al., 2013;
Jägermeyr et al., 2021) have applied statistical downscaled
forcing from ensemble general circulation models (GCMs)
to demonstrate the impacts of climate change on crop pro-
duction (Semenov and Shewry, 2011). Although studies pro-
vided important quantification of the uncertainty range orig-
inating from GCM forcing, RCP scenarios, and crop model
parameterizations, this approach has simplified processes for
complex energy, water, and carbon interactions occurring on
the surface during crop growing seasons, including their po-
tential feedback to the atmosphere.

There is an emerging trend for physical process-based crop
models integrated within Earth system models (ESMs) to
specifically investigate dynamic crop growth and heat re-
sponse under climate change (Levis, 2014; McDermid et
al., 2017). In particular, the Noah-MP crop model (Liu et
al., 2016) integrates dynamic crop growth processes of two
major crops, corn and soybean, into simulation of surface
energy, water, and carbon fluxes (Niu et al., 2011; Yang
et al., 2011) and can be further coupled with the Weather
Research and Forecasting model (WRF, Skamarock et al.,
2008) for regional climate simulations. In addition, Xu et
al. (2019) incorporated an irrigation scheme based on soil
moisture deficit, and these two schemes were jointly tested

in Zhang et al. (2020b) for the US Midwest Corn Belt and
Mississippi River valley with reasonable performance. As the
third largest crop planted in the US and Canada, the dynamic
growing process of wheat is not yet developed in the Noah-
MP land surface model (LSM), calling for better representa-
tion of wheat growing processes.

This study has three goals: (1) develop a dynamic wheat
growth model in the Noah-MP crop from the Kenaston site
in Saskatchewan, (2) conduct large regional wheat simula-
tions for the Northern Great Plains and Canadian Prairies,
and (3) address the temperature response function and inves-
tigate the impact of heat stress on crop yield in this region.
The structure of this paper is as follows: Sect. 2, “Model and
data”, will introduce the Noah-MP crop model and the neces-
sary data used in this study. Section 3, “Results”, will present
the results from three designed simulations – a single-point
model, large regional simulations, and accounting for heat
stress function. Section 4 provides a broad discussion of dis-
crepancies between model results and evaluation datasets,
planting/harvest practice in real agricultural management,
and the temperature stress function. The final conclusions are
discussed in Sect. 5.

2 Model and data

2.1 Noah-MP crop model

In this study, we mainly used the inherent model structure in
the Noah-MP crop model; added a new crop species, spring
wheat; and developed new features, such as a dynamic plant-
ing/harvest date for regional application, as well as investi-
gating the crop responses to high temperature. The Noah-MP
LSM is widely used for modeling land surface processes,
energy and water balance, and the land surface component
coupled with regional weather and climate model (WRF).
The crop model in Noah-MP was initially developed in Liu
et al. (2016) to accommodate corn and soybean, two major
crops grown in the US. Zhang et al. (2020b) performed a joint
crop and irrigation simulation for these two crop species in
the US for large regional-scale application.

The Noah-MP crop model has three main components, the
photosynthesis–stomata component, the growing degree day
(GDD) component, and the carbohydrate allocation compo-
nent. The photosynthesis (PSN)–stomata component calcu-
lates the CO2 assimilation and stomatal conductance, given
environmental conditions, such as radiation, CO2 level, tem-
perature, moisture stress, and plant leaf area index (LAI).
This photosynthesis–stomata component contains the key
processes in which the crops are actively impacted by and
respond to environmental conditions. The GDD component
accumulates the daily GDD (Eq. 1) and determines the crop
growing stages, according to temperature and GDD thresh-
olds for each stage set in the parameter table. The carbo-
hydrate allocation component partitions assimilated carbo-
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Figure 1. Province/state-level planting and harvest map for DOY
(day of year) in the Canadian Prairies and Northern Great Plains
region.

hydrates (converted from assimilated CO2 from photosyn-
thesis) to different parts (leaf, stem, root, and grain) of the
plant structure, depending on the growing-stage function,
with feedback between LAI and photosynthesis. These three
components together constitute complete plant growing pro-
cesses in phenology, physiology, biogeophysics, and biogeo-
chemistry. Please see Appendix A for the full parameter table
adjusted for spring wheat growth.

GDD=

 25; (T > GDDTCUT)
T −GDDTBASE;

0; (T < GDDTBASE)
(1)

GDDTBASE (5 ◦C) and GDDTCUT (30 ◦C) are the com-
monly used base and cutoff temperature parameters for
wheat GDD accumulation (Saiyed et al., 2009).

ACGDD=
∑

GDD (2)

ACGDD is the accumulated daily GDD within the grow-
ing season. When ACGDD passes through growing-stage
thresholds, the crop enters different stages, including emer-
gence, the initial vegetative stage, the reproductive stage,
maturation, and harvest. The threshold parameters determin-
ing these stages are presented in Appendix A.

2.2 Dynamic planting and harvest dates

The model spring wheat growing season is determined by
the planting and harvest dates. For a starting point, they
can be prescribed from field records in single-point sim-
ulations. For large-scale simulations, two approaches are
adopted in this study. The first approach is to use the spa-
tially varying values from the most common planting/har-
vest date for each state and province in US and Canada,
respectively (USDA National Agricultural Statistics Service
(NASS), 2010, province/state-level static map). This static
map is shown in Fig. 1.

The second approach is introducing dynamic planting and
harvest, based on meteorological input, most importantly
temperature. Sacks et al. (2010) provided a global synthe-
sis of planting and harvest dates across the globe and indi-
cated that the mostly likely planting temperature in the Cana-
dian Prairies is around 10 ◦C and the accumulated GDD for

harvest is about 1500. Sensitivity tests on these two param-
eters are conducted for the year 2007 and compared with
the USDA weekly crop progress report; please see the Sup-
plement for details. Iizumi et al. (2018) attempted to model
the planting and harvest window for major global crops and
demonstrated that environmental factors controlled by tem-
perature and precipitation, as well as by soil moisture and
snowpack, play important roles in determining the planting
and harvest timing.

Similar environmental thresholds are applied in this study
for both planting and harvest.

TAVE(5) > 10 (3)

Planting is triggered by 5 d running average temperature
(TAVE(5)) greater than 10 ◦C.

ACGDD> 1500 (4)

Harvest is triggered when accumulated GDD (ACGDD)
passes 1500.

2.3 Temperature stress function

Regarding the plant physiological response to temperature,
a stress function has been applied in the photosynthesis–
stomata subroutine in the Noah-MP crop, originally from
Collatz et al. (1991):

f (TV)= (1.0+ exp
(
(−2.2.× 105

+ 710 · (TV+ 273.16))/

(8.314 · (TV+ 273.16))) )−1, (5)

V (TV)= f (TV) ·Vcmax25 · (2.4)
TV−25

10 . (6)

Equation (5) represents the temperature stress function itself;
vegetation canopy temperature (TV) is used in this equation,
plotted as the black dotted line in Fig. 2a. Equation (6) shows
the combined temperature stress function with the temper-
ature increase for the Vcmax25, a parameter describing the
rubisco capacity enzyme at a temperature of 25 ◦C, which
increases exponentially (base at 2.4) with every 10 ◦C tem-
perature increase. This exponential increase function is also
known as the Q10 function ((2.4)

T−25
10 ). The combined ef-

fect of the Q10 exponential increase and temperature stress
f (TV) is plotted in Fig. 2b. This combined effect of temper-
ature on rubisco capacity shows a one-peak function which
is optimal at about 33 ◦C.

However, this temperature is much higher than the actual
optimal temperature for wheat growth (25–30 ◦C), due to the
exponential increase from the Q10 function in Eq. (6). It is
suggested that the rubisco parameter Vcmax25 displays a de-
crease at higher temperatures (Harley and Tenhunen, 1991;
Bernacchi et al., 2013) and that Eqs. (5) and (6) can be in-
tegrated together, therefore omitting the Q10 function from
Eq. (6). Wang and Engel proposed an alternative tempera-
ture stress function from a synthesis of 29 widely used wheat
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models, also known as the Wang–Engel temperature function
(Wang et al., 2017) (Eq. 7). This new equation is visualized
as the blue line in Fig. 2a and b and has a peak near 27 ◦C,
a more reasonable range compared to Eq. (6) (Collatz et al.,
1991). This heat stress function is adopted in the third exper-
iment in this study (Sect. 2.6).

f (TV)=(
2(TV− Tmin)

α(Topt− Tmin)
α
− (TV− Tmin)

2α

(Topt− Tmin)2α

)β
(7)

α =
ln2

ln
(
Tmax−Tmin
Topt−Tmin

) , β = 0∼ 1 (8)

V (TV)= f (TV) ·Vcmax25 (9)

2.4 Kenaston site

Observational data come from sites in the Brightwater Creek
watershed located 80 km south of Saskatoon, Saskatchewan,
Canada. The Agricultural Water Futures project of the
Global Water Futures program (https://gwf.usask.ca/
projects-facilities/all-projects/p3-ag-water-futures.php, last
access: October 2022) since 2016 has collected agricultural
water use and energy fluxes data for several crop species,
including wheat, barley, canola, lentils, peas, and forages.
These sites exhibit characteristics consistent with dryland
agricultural production in the Canadian Prairies. Three site
years of data for wheat specifically were collected in 2016
and 2019 at the SE13 site (51.389◦, −106.437◦) and in
2019 at the SW30 site (51.420◦, −106.422◦). Soils range
between silt loam at SE13 and clay loam at SW30, and
limited topography and runoff tends to restrict surface water
redistribution to local depressions. Observations are focused
on quantifying land–atmosphere water and energy exchange,
soil moisture dynamics, and crop growth metrics.

Data included in this study include turbulent fluxes, sen-
sible heat (SH), and latent heat (LH), as observed with eddy
covariance. Campbell Scientific CSAT3 sonic anemometers
and EC150 gas analyzers or Irgason (an integrated CSAT and
EC150) systems collected high-frequency observations with
data processing and QA /QC completed with default settings
in Li-Cor EddyPro software. Gap filling and energy balance
closure were completed with the REddyProc packages (Wut-
zler et al., 2018) in R to generate a continuous 30 min time
series of SH and LH observations. Soil moisture observations
at two depths (5 and 20 cm) were collected with Stevens Hy-
draProbe instruments. Due to salinity interactions, especially
at the SE13 site, absolute values need to be treated with cau-
tion, while relative dynamics are more meaningful to validate
model dynamics. Crop growth metrics, aboveground biomass
and LAI, were collected during site visits every 2 weeks.
The biomass sampling protocol provides an average value

for each date from the removal of all aboveground biomass,
subsequent oven drying, and weighing of between 6 and 12
samples with each sample having a 0.25 m2 ground surface
extent. LAI was sampled with a Decagon AccuPAR LP-80
ceptometer. The reported value comes from the average of
20 samples taken perpendicular and parallel to crop rows ev-
ery 3 m over a 30 m transect adjacent to the eddy covariance
station. Care was taken to ensure stable sky conditions over
the course of observations within 2 h of solar noon.

2.5 Regional data for agricultural management and
model evaluation

We further expanded the single-point model to cover a large
wheat-planting region across the US and Canada, accord-
ing to the latest planting area data acquired from crop in-
ventory data. The George Mason University (GMU) Crop-
Scape dataset (USDA NASS CropScape, 2022) and the An-
nual Crop Inventory (AAFC ACI, 2022) from AAFC to-
gether provide a high-resolution (30 m) crop frequency map
for the past 10 years (Fig. 2a). Statistics Canada and the
United States Department of Agriculture (USDA) also col-
lect the planting/harvest areas at the census agricultural re-
gion (CAR) and county level, respectively (Fig. 3b). Due to
their different units and the sizes of census regions, the re-
sults are presented at 1000 ha, and two color scales are used
for Canada and the US to accommodate the wide ranges of
values from these two data sources.

Yearly spring wheat yield data are collected from USDA
NASS and Statistics Canada, which are used for evaluation
of the modeled grain biomass. A unit conversion is neces-
sary, considering the standard 15 % of moisture content, from
census yield data (bu ac−1, bushels per acre, in the US and
kg ha−1 in Canada) to dry grain biomass (g m−2) in model
output, according to the test weight conversion charts for
Canadian grains (Canada Grain Commission).

To evaluate the wheat leaf phenology, the Moderate Res-
olution Imaging Spectroradiometer LAI product (MOD15A,
Myneni et al., 2015) is used, which provides regional LAI de-
tection at 8 d temporal intervals and 1 km spatial resolution,
starting from 2001. This product provides the peak timing
and spatial coverage of leaf dynamics within growing sea-
sons, which are useful for evaluating model crop phenology.
The 8 d time slices from 1 May to 29 August are selected (16
time slices) to reveal the wheat growing season in this study.

2.6 Experiment design

In this study, three individual and progressing experiments
are designed. This section provides a brief description of
these experiments, and a summary table is presented (Ta-
ble 1). Rainfed wheat is grown for most of the study region,
except for isolated irrigated areas in southern Alberta and
central Saskatchewan. Irrigation impacts on crop dynamics
and yield will be the focus of future studies.
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Figure 2. (a) Temperature response of the default Noah-MP PSN–stomata scheme (Collatz et al., 1991) and a new temperature response
function (Wang et al., 2017) revised equation; (b) rubisco capacity (Vcmax25) parameter responses to vegetation canopy temperature (TV).

Figure 3. Wheat-planting fraction in the study area from the combined dataset from (a) GMU CropScape and AAFC ACI (AAFC Annual
Crop Inventory, 2022) and (b) planting area in 1000 ha in the US Northern Great Plains and Canadian Prairies; two color scales are used to
accommodate the wide ranges of values from these two data sources.

– Point-scale simulation. The model is driven by the me-
teorological forcing collected at the Kenaston site, with
prescribed planting and harvest dates. The purpose of
this experiment is to obtain a set of wheat-specific pa-
rameters against the Kenaston site for 3 available site
years of observations. Site observations, including tur-
bulent fluxes (sensible heat (SH) and latent heat (LH)),
soil moisture, LAI, and aboveground biomass, are used
to evaluate model performance. (See Table A1 in Ap-
pendix A for the full details of spring wheat growth pa-
rameters used in this study.)

Regional simulations. To facilitate regional simula-
tions, the meteorological forcing data were from the
convection-permitting downscale WRF model simu-
lation in the contiguous US (CONUS) and southern
Canada (Liu et al., 2017), spanning from 2000 to
2013. The advantages of this dataset are that the high-

resolution grid spacing (4 km) provides detailed repre-
sentation of the heterogeneous surface properties and it
allows direction simulation of convective precipitation
without using parameterization schemes, both of which
are important to agricultural study (Prein et al., 2016; Li
et al., 2019). The CONUS dataset has been widely used
to study regional climate (Prein et al., 2016; Zhang et
al., 2018) and hydrology (Zhang et al., 2020a) in North
America.

Two regional planting and harvest simulations are con-
ducted using (1) the province/state-level map for the
most typical planting/harvest dates in Canada and US
(USDA NASS, 2010) or (2) dynamic dates for planting
and harvest based on temperature in the growing season.
These two simulations are compared to reflect dynamic
agricultural management and interannual weather vari-
ability.
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Temperature stress function simulation. The purpose of
the third simulation is to test the wheat response to high
temperature and to demonstrate its variation among re-
gional and interannual scales. This is done by replacing
the default function from Eq. (6), Collatz et al. (1991),
with a more realistic temperature stress function (Eq. 7)
from Wang et al. (2017) (Fig. 2b).

3 Results

3.1 Point-scale simulation

Figure 4 shows the growing season GDD, LAI, and above-
ground biomass from the field observations and model re-
sults as compared to the default (MODIS monthly climatol-
ogy LAI) results. The growing-stage GDD parameters used
in the new wheat model are adopted from a reference paper
by Saiyed et al. (2009) for wheat growing in the Canadian
Prairies, and the carbon allocation parameters for each grow-
ing stage are adopted from the WOFOST model wheat sec-
tion (Wit and Boogaard, 2021). These parameters are sum-
marized in Appendix A.

It is obvious that the new wheat model has better LAI dy-
namics compared to the default MODIS monthly LAI, espe-
cially for the timing and peak value of LAI. The wheat grow-
ing season can be roughly divided into two stages, the vege-
tative stage and the reproductive stage (grain filling). These
two stages are separated by the time of peak LAI within the
growing season, before which most of the assimilated carbon
is allocated to leaf mass and after which to grain. Therefore,
the grain biomass starts to accumulate after the time of peak
LAI, shown as the orange lines.

The Kenaston site only recorded the total aboveground
biomass in 2019, without differentiation of biomass into in-
dividual plant organs. In the Noah-MP crop, total above-
ground biomass includes leaf, stem, and grain and is sim-
ulated reasonably well for the two 2019 sites (data for
2016 were missing). The yields for 2019 were 2908 and
1635 kg ha−1 for SW30 and SE13, where the model pre-
dicted 405 and 247 g m2, respectively. Therefore, the model
provides a higher biomass estimate compared to the site-
recorded yield in 2019, and these higher yield estimates are
discussed in Sect. 3.3.

The turbulent fluxes (latent and sensible heat) and soil
moisture, as daily time series, for the three growing seasons
are provided in Fig. 5. The simulated dynamic LAI from the
wheat model presented higher latent heat fluxes compared
to default LAI, especially in 3 summer months (JJA). The
soil moisture times series show that the Noah-MP crop con-
sumes more soil moisture, especially from the second layer in
late growing season since August, as it produces higher latent
heat fluxes, suggesting more efficient turbulent exchange of
water fluxes between soil and the atmosphere. This has great
implications for the vast agricultural regions in the North

American Great Plains, as the previous default model may
have profoundly underestimated agricultural control of wa-
ter feedback to regional weather and climate.

The Noah-MP crop model demonstrated reasonable sim-
ulations of soil moisture, crop growth, and turbulent
fluxes transported to the atmosphere, facilitating the land–
atmosphere coupling in croplands on the land surface branch.
There is potential for further extending to coupled studies
with WRF to assess crop growth’s feedback to regional cli-
mate.

3.2 Regional dynamics of LAI and yield

Figure 6 shows the spatial distribution of 8 d LAI time slices
for the 2007 growing season, 1 May to 29 August (16 slices
for 120 d, roughly 4 months), as an example. The time slices
show that the regional LAI starts to green up in late May, due
to emergence, and reaches its peak around late July, enter-
ing the grain-filling stage. After that, the LAI declines until
crops mature. Finally, the crops senesce prior to harvest, at
which time LAI drops to 0. Spatially, the US portion of the
growing region starts emergence and harvest generally ear-
lier than the northwest portion in Canada, and its growing
season is shorter – due to warmer average temperatures and
faster heat accumulation.

As in the model, the province/state-level planting/harvest
uses an arbitrary planting/harvest date for the most usual
time windows, regardless of interannual weather variability
and spatial heterogeneity within each state. Another obvi-
ous deficiency of this approach is the obvious state/province
boundaries in LAI values as shown in the figure. Even though
two fields might be very closely located geographically, al-
though they are in different states/provinces, they show very
different phenology as controlled by the state/province-level
planting/harvest season. This is even more so for the crop
LAI across US and Canada border. Such province/state-level
planting and harvest date treatment leads to the simulated
spatial LAI homogenous within but substantially discontin-
ued across a state or province.

The dynamic planting/harvest simulation substantially im-
proves the regional LAI time slices within the growing sea-
son. The TAVE threshold triggers planting earlier in the
south, as temperature warms up earlier, and the GDD ac-
cumulation triggers earlier harvest as well, accounting for
the higher/faster heat accumulation. The growing season in
the northern region in Canada starts later and also extends
longer. Considering these two dynamic thresholds accounts
for the south-to-north transition in crop phenology.

The large discrepancies between static and dynamic plant-
ing/harvest date simulation demonstrate its essential control
of growing seasons on accumulated biomass. Figure 7 shows
the spatial distribution of yields, planting and harvest date,
and the scatter plot between the grain-filling stage duration
(days) and the final yield. The province/state-level grain-
filling stage durations are much longer than in the dynamic
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Table 1. Experimental design for three sets of crop model simulations.

Experiment design Location Period Purpose Note

(1) Single-point simu-
lation

Kenaston, SK 2016, 2019 Establish the single-point
model and calibrate parameters

Model calibration and results
evaluation

(2) Regional simulation Northern Great Plains 2001–2013 (1) Province/state-level plant-
ing/harvest
(2) Dynamic planting/harvest

TAVE> 10 for planting
and ACGDD> 1500 for har-
vest

(3) Temperature stress
function

Northern Great Plains 2001–2013 Apply the temperature stress
function for spring wheat

Figure 4. Three-site-year growing season GDD, LAI, and aboveground biomass for spring wheat from the field observation and the Noah-MP
crop model.

simulation, thus leading to substantially overestimated yields
compared to the dynamic planting/harvest simulation and
census data. The color scale in the scatter plot indicates the
planting date, which also suggests the earlier the planting, the
longer the grain-filling stage and hence higher yield.

3.3 Temperature stress function

Figure 8 presents the spatial difference pattern between two
simulations and the census data. The crop yield estimates
from the default temperature function show much overes-
timation, especially in Saskatchewan and North and South
Dakota (Fig. 8a). Applying the temperature stress function in

Wang et al. (2017) shows an obvious yield reduction around
10 % from default simulations (Fig. 8b), hence improving the
crop yield results. The spatial distribution of this reduction
is more evident in the southeast domain in North Dakota,
Minnesota, and Manitoba, where the average temperature is
higher and heat stresses are more likely. The yields in cooler
provinces, Alberta and Saskatchewan, are less affected.

The P90 threshold, derived from the 90th percentile of
the 30-year daily maximum temperature climatology, can
be used to characterize extreme temperatures. When the
daily maximum temperature exceeds this threshold, it can
be counted as a hot day (Zhang et al., 2011; Perkins and
Alexsander, 2013). Counting the number of hot days (NHD)
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Figure 5. Turbulent fluxes (sensible and latent heat, SH and LH) and soil moisture (two layers from 0–10 cm and 10–40 cm) results from the
3-site-year simulation.

within a growing season is a good indicator for the frequency
of extreme heat events (Zhang et al., 2011, 2018). Figure 9
below shows the scatter plot relationship between the NHD
within the growing season (May to September) and final
yield in three Canadian Prairie Provinces.

Although presumably negative impacts of high-
temperature stress on wheat yield are expected, discrepancies
among these three provinces are obvious in both census
data and model results. For Alberta (AB) and Saskatchewan
(SK), the negative impacts of extreme hot days on grain
biomass are most evident, and the model has captured this
relationship reasonably well, suggesting that the temperature
stress plays a profound role in final crop yield. The tempera-
ture stress simulation shows a further reduction on the final
yield, especially with higher NHD, which contributes to less
overestimated biases (about 10 % reduction) compared to
the default configuration.

For Manitoba (MB), the higher quantile yield decreases
with NHD, while the lower quantile yields actually increase
amid higher NHD. These two distinct features suggest that

temperature stress is not the only factor limiting the final
yield in this province. In some part of MB summertime pre-
cipitation is significantly higher than that in AB and SK, so
that low NHD may suggest more precipitation and low expo-
sure to sunlight, which in turns limits the photosynthesis and
biomass accumulation. In other words, the wheat productiv-
ity in MB is less water limited than that in AB and SK. The
Noah-MP crop model adequately captures these two distinct
responses to NHD conditions. Additionally, the temperature
stress modification limits the final yield reduction to 10 % as
well.

From 2001 to 2013, an increasing trend of yield is appar-
ent in each province, from both census data and model sim-
ulations (Fig. 10). In addition, strong interannual variability
exists in these trends, and the model’s performance varies in
each province. For MB, the model produces the best results
in terms of trend and interannual variability. The tempera-
ture stress simulation further produces stressed yield results
corresponding to heatwave events in 2002 and 2006, which
largely agrees with the observations. As for 2012, both the
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Figure 6. Eight-day LAI time slices from (a) MODIS product
(MOD15A), (b) province/state-level planting/harvest, and (c) the
dynamic planting/harvest simulation.

Table 2. Summary of the yield for different simulations over three
regions. ND represents North Dakota.

Simulations (g m2) AB SK MB and ND

Census data 246.89 172.19 240.33
State-level planting/harvest 298.38 209.81 262.69
Dynamic planting/harvest 243.45 195.90 253.54
Temperature stress 243.89 192.46 231.18

default simulation and the temperature stress simulation un-
derestimate the crop yields, which suggests there might be
other factors missing in the simulation.

However, as for SK and AB, to capture the interannual
variability is challenging, especially in AB, where the model
shows a high yield peak while the census data show a lower
value. A possible speculation for this discrepancy would be
that there are larger extents of irrigated croplands in AB than
in other provinces and thus have less water limitation in those
warmer years. Presumably, these irrigated high yields could
bias the observed Statistics Canada yield, i.e., yield not con-
nected to environmental conditions that the model is limited
to. This suggests that although the model presents reasonable
estimates of mean yield results, it is very difficult to capture
interannual variability, due to the weather variations within
each growing season. Applying irrigation in Noah-MP crop
could potentially improve the crop yield simulated in AB,
yet we currently lack the spatial distribution and irrigation
amount data. These data are essential to improve our under-
standing of crop yield responses to heat and water stress and
the model performance to reasonably capture such responses.

The statistics of yield from the census data and various
simulations are presented in Table 2. As compared to the
census data, the province/state-level simulation shows the
highest yield among all simulations due to unadjusted grow-
ing season length and higher optimal temperature. The dy-
namic planting/harvest substantially restricts the yield in the
northern part of the domain, as the province/state-level plant-
ing/harvest fails to represent the growing season dynamics in
this region. Finally, the temperature stress function cuts about
10 % of the yield in Manitoba and North Dakota, while it has
little effect in AB, where temperature stress is not as strong
as other provinces.

4 Discussion

4.1 Discrepancies in using MODIS to evaluate growing
season phenology

The MODIS 8 d LAI product provides the first remote sens-
ing comparison for regional-scale modeled LAI for spring
wheat in the Northern Great Plains. However, large uncer-
tainties remain over its inadequacy in detecting different
crop species and spatial resolution in representing the het-
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Figure 7. Model results of (a) yield, (b) planting date, (c) harvest date, and (d) scatter plot between yield (g m−2, y axis) and duration of the
grain-filling stage (day, x axis) from default province/state-level (top) and dynamic (bottom) planting/harvest and dynamic simulation.

Figure 8. Simulated grain yield compared to the census data from Statistics Canada and USDA NASS from the (a) default and (b) the new
temperature stress simulation.

erogeneity at field scales. For example, there are three ma-
jor crop types in Saskatchewan: cereals (mainly wheat and
some barley), pulses (chickpea, lentils), and canola. How-
ever, with crop rotation between these types at scales within
the MODIS LAI product, we cannot differentiate the LAI for
specific crop types. For example, with a point-to-pixel com-
parison of the LAI time series from the Kenaston site with
the MODIS LAI, higher values are shown from MODIS data,
which could be related to canola in surrounding fields.

On the other hand, the original annual crop inventory data
from AAFC and CropScape (at 30 m) only represents the
temporal frequency of these crops – however, it is often used
as spatial fraction. It may be the case that for some places
wheat may be frequently planted but not at significant extent
compared to other crops types in the region. For the US por-
tion, corn and soybeans are also popularly planted in the Red
River valley between Minnesota and North Dakota.

Due to the reasons above, previous regional crop model
simulations reliant on large-scale LAI remote sensing prod-
ucts in North America have challenges in modeling crop-
specific phenology and LAI dynamics. Thus, one should con-
sider products like the MODIS LAI valuable to assess the
qualitative evolution of LAI in growing seasons, while quan-
titative comparisons should be treated with caution and with
an expectation of bias that relates to the relative extent of the
crop type of interest in the local crop rotation.

4.2 Uncertainty in planting and harvest date

This study attempts to adopt the dynamic planting/harvest
date as a more advanced approach to the province/state-
level date. Yet there are much more complex dimensions in-
volved in practice in reality. An aspect not captured by tem-
perature/GDD thresholding is that there are differences in
day length (and therefore incident shortwave radiation that
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Figure 9. Scatter plot of NHD (x axis) vs. yield (y axis) at three Canadian Provinces, from Statistics Canada (a–c) and model results (d–f).

Figure 10. Time series plot for these three provinces from 2001 to
2013.

drives photosynthesis/photoperiods) across this range in lat-
itude that do moderate some of the GDD differences. Some
crop models have already considered characterizing the day
length (Setiyono et al., 2007) and can become common prac-
tice in an also integrated ESM crop model approach.

In the Canadian Prairies, the major restriction for planting
and harvest is temperature, usually planting from late April
to early May after sufficient time since snowfall and melt-
ing while harvesting from late August to early September to
avoid the first frost in fall.

Agronomic and logistical considerations determine the ac-
tual planting and harvesting dates to accommodate reality
and non-optimal conditions. In cool/wet springs planting op-
erations will be delayed until fields are dry enough to al-
low machine access, and seed placement will be shallow to
take advantage of near-surface soil moisture and facilitate
faster emergence. In contrast, in warm–dry conditions, plant-
ing will occur earlier with deeper seed placement to increase
germination potential and to limit the period of soil evapora-
tion losses and maximize crop water use efficiency. Harvest
operations can also be disconnected from physiological ma-
turity as storage implications of grain moisture are critical to
avoid post-harvest losses. Except for early frost events, prior
to maturity, quality losses after senescence are limited and
so timing of harvest operations is determined by the interac-
tions between grain moisture and precipitation and humidity
conditions. Then comes a critical question: given that farm-
ers keep planting/harvest in a quite stable time period while
the year-to-year weather is fluctuating, should these in-depth
wisdoms be incorporated into the modeling process or not?
This question is still remains uncertain and unanswered in
current stage of crop model research.
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4.3 Temperature stress function

In current crop models, heat stress impacts on crop growth
and final yield in two ways: (1) the temperature stress func-
tion is applied in the photosynthesis–stomata subroutine,
with high temperature regulating/limiting the plant physio-
logical function; (2) heat accumulation, calculated as GDD,
is utilized to advance into various growing stages, defined
by GDD thresholds. Higher temperatures accelerate heat ac-
cumulation and result in shorter phenological developments,
which ultimately lead to lower crop yield. Multiple studies
have been dedicated to address the first way – heat stress
impacts on crop photosynthesis behaviors (Bernacchi et al.,
2013; Siebert et al., 2014; Levis, 2014). Siebert et al. (2014)
claimed there is a substantial difference between applying
air temperature and canopy temperature in crop model stud-
ies during heatwaves – the latter can be 7 ◦C warmer than the
former, depending on soil moisture. This highlights one of
the advantages of integrated ESM- or LSM-based crop mod-
els, such as the Noah-MP crop model, for using canopy tem-
perature, calculated from energy balance, rather than air tem-
perature for photosynthesis process.

Moreover, high-temperature stress has co-occurred along
with water stress – rising temperature increases evaporation
demand, depleting soil moisture with dry conditions – and
leads to a compound heat–water stress (Lesk et al., 2022).
As a result, previous large-scale statistical studies (Lobell et
al., 2011b) have revealed crop yield decline corresponding
to temperature warmer than 30 ◦C, which is 5–10 ◦C lower
than plant-scale studies (Prasad et al., 2011). In our study,
the new temperature stress function adopted from Wang et
al. (2017) has shown a lower temperature for optimal pho-
tosynthesis compared to the function developed from Col-
latz et al. (1991) from lab measurements (35 ◦C). Judging
from the simulated results, the new temperature stress func-
tion has better performance and less overestimation. To ob-
tain a comprehensive understanding of temperature stress on
crop yield, we still call for potential applications of ESM-
based crop models in the future, as temperature and moisture
processes are better integrated within model structures.

For the second way, there have been debates on the use
of fixed GDD thresholds for regulating growing stages, es-
pecially between crop model developers and genotype seed
breeders. For example, crop modelers tend to use the GDD-
based thresholds to constrain and regulate crop growing sea-
sons while these thresholds are artificial and empirical (based
on the site where the model is developed and is subject to pa-
rameter calibration). Recent advances through seed breeding
and genetically modified organisms (GMOs) have provided
new crop genotypes every 2–3 years, which has been a fun-
damental reason for a continuous increasing trend in crop
yield in the last half century – for example, the International
Maize and Wheat Improvement Center (CIMMYT) has re-
cently made efforts to breed early-maturing and heat-tolerant

wheat varieties, aiming to adapt wheat lines from South Asia
to the conditions in Mexico (Mondal et al., 2016).

This brings in a paradoxical situation that crop modelers,
agroclimatic scientists, agronomists, and farmers are relying
on statics empirical GDD thresholds to estimate crop growth
when these thresholds are in fact dynamic. So is there any
value in using static GDD thresholds of current crops to pre-
dict future crop yield under climate change when forthcom-
ing advances in genotypes will almost surely break through
such thresholds?

There is no simple yes or no answer to the question above.
Nonetheless, such questions manifest themselves through
the progress of model parameterization. Most crop model-
ing schemes that are capable of coupling crop–climate in-
teractions such as Noah-MP still require GDD-based ap-
proaches to characterize crop growth. Higher-order represen-
tations that consider gene effects on phenology directly ex-
ist, but their complexity makes simulating the entire genetic
controls on specific traits impossible (Wang et al., 2019). In
this context, it is critical to understand the GDD threshold
approach limitations and consider approaches to capture the
evolving GDD threshold dynamics.

5 Conclusions

Spring wheat production in the Canadian Prairies and US
Northern Great Plains is a significant source of wheat for
domestic food supply and international exports. This study
establishes an example for the development of a new crop
species within the Noah-MP crop model framework and its
application in large regional simulations. The study further
investigates the crop model responses to heat stress within a
13-year study period. We found the following.

1. The point-scale spring crop model successfully cap-
tures spring wheat LAI dynamics for 3 site years in
Kenaston, SK, Canada, compared with default monthly
climatology LAI. The simulated higher LAI results in
more efficient water movement from the soil to the at-
mosphere, mediated by plants’ stomata. Therefore, this
single-point model demonstrates the ability to quantify
the vertical continuum of the complex energy–water–
carbon exchange within the atmosphere–crop–soil sys-
tem.

2. To propagate the point-scale crop model to the regional
scale, dynamic planting/harvest triggers are applied to
better depict the heterogenous farming practices than a
province/state-level map used in a previous study. This
approach not only improves the growing season LAI,
as evaluated by MODIS 8 d LAI time slices, but also
the final yield, compared to agricultural census data. It
is also shown that the modeled yield is closely related
to the duration of crops’ grain-filling stage, highlight-
ing the importance of reasonably capturing the spring
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wheat phenology. It is noted that the improved results
obtained in this study through dynamic planting/harvest
are for the spring wheat planted in the Northern Great
Plains and Canadian Prairies. As a general approach to
capture the spatiotemporal heterogeneity for the plant-
ing dynamics, future studies are encouraged to a larger
region or global crop model applications.

3. An updated temperature response function is imple-
mented within the photosynthesis–stomata process in
the crop model to better represent the optimal temper-
ature range for wheat growing conditions. This simula-
tion shows reduced final yield by about 10 % in southern
states in the US and Manitoba in Canada, while it does
not have a significant effect in Alberta. The interannual
variability of crop yields is well captured for Manitoba,
especially for the yield damages due to heatwaves in the
recent decade.

Finally, the model results are discussed in various aspects,
including limitations in uncertain planting/harvest dates and
the heat stress function, as well as potential future develop-
ment. The model’s capability to reasonably simulate interan-
nual variability and the large spatial distribution of growing
season LAI and final yields was demonstrated.

This work has great implications for developing the meth-
ods to address how crop production will be affected by future
climate change, warmer temperatures, and uncertain precip-
itation patterns, which are critical to future research be the
next step in our research.
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Appendix A

Table A1. Spring wheat parameters in the Noah-MP crop model in this study.

Parameter name Value Unit Physical meaning

PLTDAY 145 DOY Planting date
HSDAY 273 DOY Harvest date
GDDTBASE 5 ◦C Base temperature for GDD accumulation
GDDTCUT 30 ◦C Upper temperature for GDD accumulation
GDDS1 150 Accumulated ◦C GDD from seeding to emergence
GDDS2 450 Accumulated ◦C GDD from seeding to initial vegetative stage
GDDS3 770 Accumulated ◦C GDD from seeding to post-vegetative stage
GDDS4 950 Accumulated ◦C GDD from seeding to initial reproductive stage
GDDS5 1120 Accumulated ◦C GDD from seeding to physical maturity
C3PSN 1 – Indicator for C3 plant (1) or C4 plant (0)
KC25 30 Pa CO2 Michaelis–Menten constant at 25 ◦C
AKC 2.1 – Q10 base for KC25
KO25 3× 104 Pa O2 Michaelis–Menten constant at 25 ◦C
AKO 1.2 – Q10 base for KO25
VCMX25 60 µmolCO2 m−2 s−1 Maximum rate of carboxylation at 25 ◦C
AVCMX 1.5 – Q10 base for VCMX25
BP 1× 104 µmolm2 s−1 Minimum leaf conductance
MP 9 – Slope of conductance to photosynthesis
QE25 0.06 µmolCO2 µmol−1 photon Quantum efficiency at 25 ◦C
Q10MR 2.0 – Q10 base for maintenance respiration
DILE_FC_S5 0.5 – Coefficient for temperature leaf stress death
DILE_FC_S6 0.5 – –
DILE_FW_S5 0.2 – Coefficient for water leaf stress death
DILE_FW_S6 0.2 – –
FRA_GR 0.2 – Fraction of growth respiration
LF_OVRC_S5 0.05 – Fraction of leaf turnover
LF_OVRC_S6 0.05 – –
RT_OVRC_S5 0.12 – Fraction of root turnover
RT_OVRC_S6 0.06 – –
LFMR25 0.8 µmolCO2m−2 s−1 Leaf maintenance respiration at 25 ◦C
LFPT_S3 0.4 – Fraction of carbohydrate flux to leaf
LFPT_S4 0.3 – –
LFPT_S5 0.1 – –
STPT_S3 0.5 – Fraction of carbohydrate flux to stem
STPT_S4 0.6 – –
STPT_S5 0.2 – –
STPT_S6 0.2 – –
RTPT_S3 0.1 – Fraction of carbohydrate flux to root
RTPT_S4 0.1 – –
GRAINPT_S5 0.7 – Fraction of carbohydrate flux to grain
GRAINPT_S6 0.8 – –
BIO2LAI 0.025 m2 kg−1 Leaf area per living leaf biomass
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Code availability. The Noah-MP model is driven by the
National Center for Atmospheric Research (NCAR) high-
resolution land data assimilation system (Chen et al.,
2007) and can be downloaded from https://github.com/
CharlesZheZhang/hrldas/tree/wheat (last access: December
2022) (access https://doi.org/10.5281/zenodo.7556048, Cen-
lin_He et al., 2023a). The Noah-MP LSM can be accessed from
https://github.com/CharlesZheZhang/noahmp/tree/wheat (last ac-
cess: December 2022) with the release of the code (v4.4 with spring
wheat dynamics with DOI https://doi.org/10.5281/zenodo.7556046,
Cenlin_He et al., 2023b).

Data availability. The modeling results and analysis data used in
this study are uploaded to and can be accessed through the Zenodo
repository: https://doi.org/10.5281/zenodo.7023831 (Zhang, 2022).

The regional-scale crop planting area data are available from the
USDA NASS website (https://nassgeodata.gmu.edu/CropScape/,
Han et al., 2012). The county-level crop yield data are available
from the USDA NASS website (https://quickstats.nass.usda.gov/
(U.S. NASS, 2022).

The census agricultural region data can be downloaded from the
Statistics Canada website (https://doi.org/10.25318/3210000201-
eng, Statistics Canada, 2022).

The 13-year forcing data for regional simulations are from
the CONUS WRF simulation and can be accessed at https:
//rda.ucar.edu/datasets/ds612.0 (last access: December 2022)
(https://doi.org/10.5065/D6V40SXP, Rasmussen and Liu, 2017).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-3809-2023-supplement.
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pendent and Combined Effects of High Temperature and Drought
Stress During Grain Filling on Plant Yield and Chloroplast EF-
Tu Expression in Spring Wheat, J. Agron. Crop Sci., 197, 430–
441, https://doi.org/10.1111/j.1439-037X.2011.00477.x, 2011.

Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark,
M. P., and Holland, G. J.: The future intensification of
hourly precipitation extremes, Nat. Clim. Change, 7, 48–52,
https://doi.org/10.1038/nclimate3168, 2016.

Qian, B., De Jong, R., Warren, R., Chipanshi, A., and Hill,
H.: Statistical spring wheat yield forecasting for the Cana-
dian prairie provinces, Agr. Forest Meteorol., 149, 1022–1031,
https://doi.org/10.1016/j.agrformet.2008.12.006, 2009.

Qian, B., Zhang, X., Smith, W., Grant, B., Jing, Q., Cannon, A. J.,
Neilsen, D., McConkey, B., Li, G., Bonsal, B., Wan, H., Xue,
L. and Zhao, J.: Climate change impacts on Canadian yields
of spring wheat, canola and maize for global warming levels
of 1.5 ◦C, 2.0 ◦C, 2.5 ◦C and 3.0 ◦C, Environ. Res. Lett., 14,
074005, https://doi.org/10.1088/1748-9326/ab17fb, 2019.

Rasmussen, R. and Liu, C.: High Resolution WRF Simulations
of the Current and Future Climate of North America, Research
Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory [data set],
https://doi.org/10.5065/D6V40SXP, 2017.

Geosci. Model Dev., 16, 3809–3825, 2023 https://doi.org/10.5194/gmd-16-3809-2023

https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://www.wur.nl/en/research-results/research-institutes/environmental-research/facilities-tools/software-models-and-databases/wofost/documentation-wofost.htm
https://www.wur.nl/en/research-results/research-institutes/environmental-research/facilities-tools/software-models-and-databases/wofost/documentation-wofost.htm
https://www.wur.nl/en/research-results/research-institutes/environmental-research/facilities-tools/software-models-and-databases/wofost/documentation-wofost.htm
https://www.wur.nl/en/research-results/research-institutes/environmental-research/facilities-tools/software-models-and-databases/wofost/documentation-wofost.htm
https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/
https://www.ers.usda.gov/topics/crops/wheat/wheat-sector-at-a-glance/
https://doi.org/10.1016/j.compag.2012.03.005
https://doi.org/10.2135/cssaspecpub19.c2
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1038/s43016-021-00400-y
https://doi.org/10.1038/s43017-022-00368-8
https://doi.org/10.1088/1748-9326/9/6/061002
https://doi.org/10.1088/1748-9326/9/6/061002
https://doi.org/10.5194/hess-23-4635-2019
https://doi.org/10.5194/hess-23-4635-2019
https://doi.org/10.1007/s00382-016-3327-9
https://doi.org/10.1002/2016JD025597
https://doi.org/10.1126/science.1204531
https://doi.org/10.1038/nclimate1043
https://doi.org/10.1002/2016MS000749
https://doi.org/10.1016/j.fcr.2016.04.017
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1175/JCLI-D-12-00383.1
https://doi.org/10.1175/JCLI-D-12-00383.1
https://doi.org/10.1111/j.1439-037X.2011.00477.x
https://doi.org/10.1038/nclimate3168
https://doi.org/10.1016/j.agrformet.2008.12.006
https://doi.org/10.1088/1748-9326/ab17fb
https://doi.org/10.5065/D6V40SXP


Z. Zhang et al.: Developing spring wheat in the Noah-MP land surface model (v4.4) 3825

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C.,
Boote, K. J., Thorburn, P., Antle, J. M., Nelson, G. C., Porter,
C., Janssen, S., Asseng, S., Basso, B., Ewert, F., Wallach,
D., Baigorria, G., and Winter, J. M.: The Agricultural Model
Intercomparison and Improvement Project (AgMIP): Proto-
cols and pilot studies, Agr. Forest Meteorol., 170, 166–182,
https://doi.org/10.1016/j.agrformet.2012.09.011, 2013.

Sacks, W. J., Deryng, D., Foley, J. A., and Ramankutty, N.:
Crop planting dates: an analysis of global patterns, Global
Ecol. Biogeogr., 19, 607–620, https://doi.org/10.1111/j.1466-
8238.2010.00551.x, 2010.

Saiyed, I. M., Bullock, P. R., Sapirstein, H. D., Finlay, G.
J., and Jarvis, C. K.: Thermal time models for estimat-
ing wheat phenological development and weather-based rela-
tionships to wheat quality, Can. J. Plant Sci., 89, 429–439,
https://doi.org/10.4141/CJPS07114, 2009.

Semenov, M. A. and Shewry, P. R.: Modelling predicts that heat
stress, not drought, will increase vulnerability of wheat in Eu-
rope, Sci. Rep., 1, 66, https://doi.org/10.1038/srep00066, 2011.

Setiyono, T. D., Weiss, A., Specht, J., Bastidas, A. M., Cass-
man, K. G., and Dobermann, A.: Understanding and model-
ing the effect of temperature and daylength on soybean phenol-
ogy under high-yield conditions, F. Crop. Res., 100, 257–271,
https://doi.org/10.1016/j.fcr.2006.07.011, 2007.

Siebert, S., Ewert, F., Eyshi Rezaei, E., Kage, H., and Graß, R.:
Impact of heat stress on crop yield – On the importance of
considering canopy temperature, Environ. Res. Lett., 9, 044012,
https://doi.org/10.1088/1748-9326/9/4/044012, 2014.

Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, M., Duda,
M., Huang, X.-Y., Wang, W., and Powers, J.: A Description
of the Advanced Research WRF Version 3, (No. NCAR/TN-
475+STR), University Corporation for Atmospheric Research,
https://doi.org/10.5065/D68S4MVH, 2008.

Statistics Canada: Table 32-10-0002-01 Estimated ar-
eas, yield and production of principal field crops by
Small Area Data Regions, in metric and imperial units,
https://doi.org/10.25318/3210000201-eng, web archive: https:
//www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210000201,
last access: October 2022.

United States U.S. National Agricultural Statistics Service NASS
(US NASS): Web archive, https://quickstats.nass.usda.gov/, last
access: October 2022.

USDA NASS: Economics, Statistics and Market Information Sys-
tem, Usual Planting and Harvesting Dates for US Field Crops,
https://usda.library.cornell.edu/concern/publications/vm40xr56k
(last access: October 2022), 2010.

Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R.
P., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W.,
Reynolds, M. P., Alderman, P. D., Aggarwal, P. K., Anothai,
J., Basso, B., Biernath, C., Cammarano, D., Challinor, A. J.,
De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler,
S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun,
M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Liu, L.,
Müller, C., Naresh Kumar, S., Nendel, C., O’Leary, G., Ole-
sen, J. E., Palosuo, T., Priesack, E., Eyshi Rezaei, E., Ripoche,
D., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stöckle, C.,
Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P., Waha,
K., Wallach, D., Wang, Z., Wolf, J., Zhu, Y., and Asseng, S.:
The uncertainty of crop yield projections is reduced by im-

proved temperature response functions, Nat. Plants, 3, 17102,
https://doi.org/10.1038/nplants.2017.102, 2017.

Wang, E., Brown, H. E., Rebetzke, G. J., Zhao, Z., Zheng, B., and
Chapman, S. C.: Improving process-based crop models to bet-
ter capture genotype× environment×management interactions,
J. Exp. Bot., 70, 2389–2401, https://doi.org/10.1093/jxb/erz092,
2019.

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J.,
Sickel, K., Šigut, L., Menzer, O., and Reichstein, M.:
Basic and extensible post-processing of eddy covariance
flux data with REddyProc, Biogeosciences, 15, 5015–5030,
https://doi.org/10.5194/bg-15-5015-2018, 2018.

Xu, X., Chen, F., Barlage, M., Gochis, D., Miao, S., and Shen,
S.: Lessons Learned From Modeling Irrigation From Field to
Regional Scales, J. Adv. Model. Earth Sy., 11, 2428–2448,
https://doi.org/10.1029/2018MS001595, 2019.

Yang, Z. L., Niu, G. Y., Mitchell, K. E., Chen, F., Ek, M. B., Bar-
lage, M., Longuevergne, L., Manning, K., Niyogi, D., Tewari,
M., and Xia, Y.: The community Noah land surface model
with multiparameterization options (Noah-MP): 2. Evaluation
over global river basins, J. Geophys. Res.-Atmos., 116, 1–16,
https://doi.org/10.1029/2010JD015140, 2011.

Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A.
K., Peterson, T. C., Trewin, B., and Zwiers, F. W.: Indices
for monitoring changes in extremes based on daily tempera-
ture and precipitation data, WIREs Clim. Chang., 2, 851–870,
https://doi.org/10.1002/wcc.147, 2011.

Zhang, Z.: Noah-MP data for modeling Cana-
dian spring wheat study, Zenodo [data set],
https://doi.org/10.5281/zenodo.7023831, 2022.

Zhang, Z., Li, Y., Chen, F., Barlage, M., and Li, Z.: Evaluation of
convection-permitting WRF CONUS simulation on the relation-
ship between soil moisture and heatwaves, Clim. Dynam., 55,
235–252, https://doi.org/10.1007/s00382-018-4508-5, 2018.

Zhang, Z., Li, Y., Barlage, M., Chen, F., Miguez-Macho, G., Ire-
son, A., and Li, Z.: Modeling groundwater responses to climate
change in the Prairie Pothole Region, Hydrol. Earth Syst. Sci.,
24, 655–672, https://doi.org/10.5194/hess-24-655-2020, 2020a.

Zhang, Z., Barlage, M., Chen, F., Li, Y., Helgason, W., Xu,
X., Liu, X., and Li, Z.: Joint Modeling of Crop and Ir-
rigation in the central United States Using the Noah-MP
Land Surface Model, J. Adv. Model. Earth Sy., 12, 7,
https://doi.org/10.1029/2020MS002159, 2020b.

https://doi.org/10.5194/gmd-16-3809-2023 Geosci. Model Dev., 16, 3809–3825, 2023

https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1111/j.1466-8238.2010.00551.x
https://doi.org/10.1111/j.1466-8238.2010.00551.x
https://doi.org/10.4141/CJPS07114
https://doi.org/10.1038/srep00066
https://doi.org/10.1016/j.fcr.2006.07.011
https://doi.org/10.1088/1748-9326/9/4/044012
https://doi.org/10.5065/D68S4MVH
https://doi.org/10.25318/3210000201-eng
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210000201
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210000201
https://quickstats.nass.usda.gov/
https://usda.library.cornell.edu/concern/publications/vm40xr56k
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1093/jxb/erz092
https://doi.org/10.5194/bg-15-5015-2018
https://doi.org/10.1029/2018MS001595
https://doi.org/10.1029/2010JD015140
https://doi.org/10.1002/wcc.147
https://doi.org/10.5281/zenodo.7023831
https://doi.org/10.1007/s00382-018-4508-5
https://doi.org/10.5194/hess-24-655-2020
https://doi.org/10.1029/2020MS002159

	Abstract
	Introduction
	Model and data
	Noah-MP crop model
	Dynamic planting and harvest dates
	Temperature stress function
	Kenaston site
	Regional data for agricultural management and model evaluation
	Experiment design

	Results
	Point-scale simulation
	Regional dynamics of LAI and yield 
	Temperature stress function

	Discussion
	Discrepancies in using MODIS to evaluate growing season phenology
	Uncertainty in planting and harvest date
	Temperature stress function

	Conclusions
	Appendix A
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

