Articles | Volume 16, issue 11
https://doi.org/10.5194/gmd-16-3241-2023
https://doi.org/10.5194/gmd-16-3241-2023
Development and technical paper
 | 
09 Jun 2023
Development and technical paper |  | 09 Jun 2023

Implementation of a machine-learned gas optics parameterization in the ECMWF Integrated Forecasting System: RRTMGP-NN 2.0

Peter Ukkonen and Robin J. Hogan

Related authors

Inclusion of the ECMWF ecRad radiation scheme (v1.5.0) in the MAR (v3.14), regional evaluation for Belgium, and assessment of surface shortwave spectral fluxes at Uccle
Jean-François Grailet, Robin J. Hogan, Nicolas Ghilain, David Bolsée, Xavier Fettweis, and Marilaure Grégoire
Geosci. Model Dev., 18, 1965–1988, https://doi.org/10.5194/gmd-18-1965-2025,https://doi.org/10.5194/gmd-18-1965-2025, 2025
Short summary
Coupling the urban canopy model TEB (SURFEXv9.0) with the radiation model SPARTACUS-Urbanv0.6.1 for more realistic urban radiative exchange calculation
Robert Schoetter, Robin James Hogan, Cyril Caliot, and Valéry Masson
Geosci. Model Dev., 18, 405–431, https://doi.org/10.5194/gmd-18-405-2025,https://doi.org/10.5194/gmd-18-405-2025, 2025
Short summary
Variation in shortwave water vapour continuum and impact on clear-sky shortwave radiative feedback
Kaah P. Menang, Stefan A. Buehler, Lukas Kluft, Robin J. Hogan, and Florian E. Roemer
EGUsphere, https://doi.org/10.5194/egusphere-2024-3051,https://doi.org/10.5194/egusphere-2024-3051, 2024
Short summary
Radiative Closure Assessment of Retrieved Cloud and Aerosol Properties for the EarthCARE Mission: The ACMB-DF Product
Howard W. Barker, Jason N. S. Cole, Najda Villefranque, Zhipeng Qu, Almudena Velázquez Blázquez, Carlos Domenech, Shannon L. Mason, and Robin J. Hogan
EGUsphere, https://doi.org/10.5194/egusphere-2024-1651,https://doi.org/10.5194/egusphere-2024-1651, 2024
Short summary
Evaluating the representation of Arctic cirrus solar radiative effects in the Integrated Forecasting System with airborne measurements
Johannes Röttenbacher, André Ehrlich, Hanno Müller, Florian Ewald, Anna E. Luebke, Benjamin Kirbus, Robin J. Hogan, and Manfred Wendisch
Atmos. Chem. Phys., 24, 8085–8104, https://doi.org/10.5194/acp-24-8085-2024,https://doi.org/10.5194/acp-24-8085-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
Presentation, calibration and testing of the DCESS II Earth system model of intermediate complexity (version 1.0)
Esteban Fernández Villanueva and Gary Shaffer
Geosci. Model Dev., 18, 2161–2192, https://doi.org/10.5194/gmd-18-2161-2025,https://doi.org/10.5194/gmd-18-2161-2025, 2025
Short summary
Synthesizing global carbon–nitrogen coupling effects – the MAGICC coupled carbon–nitrogen cycle model v1.0
Gang Tang, Zebedee Nicholls, Alexander Norton, Sönke Zaehle, and Malte Meinshausen
Geosci. Model Dev., 18, 2193–2230, https://doi.org/10.5194/gmd-18-2193-2025,https://doi.org/10.5194/gmd-18-2193-2025, 2025
Short summary
Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025,https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Investigating carbon and nitrogen conservation in reported CMIP6 Earth system model data
Gang Tang, Zebedee Nicholls, Chris Jones, Thomas Gasser, Alexander Norton, Tilo Ziehn, Alejandro Romero-Prieto, and Malte Meinshausen
Geosci. Model Dev., 18, 2111–2136, https://doi.org/10.5194/gmd-18-2111-2025,https://doi.org/10.5194/gmd-18-2111-2025, 2025
Short summary
From weather data to river runoff: using spatiotemporal convolutional networks for discharge forecasting
Florian Börgel, Sven Karsten, Karoline Rummel, and Ulf Gräwe
Geosci. Model Dev., 18, 2005–2019, https://doi.org/10.5194/gmd-18-2005-2025,https://doi.org/10.5194/gmd-18-2005-2025, 2025
Short summary

Cited articles

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q.: JAX: composable transformations of Python+NumPy programs, http://github.com/google/jax (last access: 8 June 2023), 2018. a
Brenowitz, N. D. and Bretherton, C. S.: Prognostic validation of a neural network unified physics parameterization, Geophys. Res. Lett., 45, 6289–6298, https://doi.org/10.1029/2018gl078510, 2018. a
Brenowitz, N. D., Beucler, T., Pritchard, M., and Bretherton, C. S.: Interpreting and stabilizing machine-learning parametrizations of convection, J. Atmos. Sci., 77, 4357–4375, 2020. a
Chevallier, F., Chéruy, F., Scott, N., and Chédin, A.: A neural network approach for a fast and accurate computation of a longwave radiative budget, J. Appl. Meteorol., 37, 1385–1397, 1998. a
Cotronei, A. and Slawig, T.: Single-precision arithmetic in ECHAM radiation reduces runtime and energy consumption, Geosci. Model Dev., 13, 2783–2804, https://doi.org/10.5194/gmd-13-2783-2020, 2020. a, b
Download
Short summary
Climate and weather models suffer from uncertainties resulting from approximated processes. Solar and thermal radiation is one example, as it is computationally too costly to simulate precisely. This has led to attempts to replace radiation codes based on physical equations with neural networks (NNs) that are faster but uncertain. In this paper we use global weather simulations to demonstrate that a middle-ground approach of using NNs only to predict optical properties is accurate and reliable.
Share