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Abstract. Radiation schemes are physically important but
computationally expensive components of weather and cli-
mate models. This has spurred efforts to replace them with
a cheap emulator based on neural networks (NNs), obtaining
large speed-ups, but at the expense of accuracy, energy con-
servation and generalization. An alternative approach, which
is slower but more robust than full emulation, is to use NNs to
predict optical properties but keep the radiative transfer equa-
tions. Recently, NNs were developed to replace the RRT-
MGP (Rapid Radiative Transfer Model for General circu-
lation model applications–Parallel) gas optics scheme and
shown to be accurate while improving speed. However, the
evaluations were based solely on offline radiation computa-
tions.

In this paper, we describe the implementation and prog-
nostic evaluation of RRTMGP-NN in the Integrated Fore-
casting System (IFS) of the European Centre for Medium-
Range Weather Forecasts (ECMWF). The new gas optics
scheme was incorporated into ecRad, the modular ECMWF
radiation scheme. Using two new methods to improve ac-
curacy – a hybrid loss function designed to reduce radia-
tive forcing errors and an early stopping method based on
monitoring fluxes and heating rates with respect to a line-
by-line benchmark – we train NN models on RRTMGP k

distributions with reduced spectral resolutions. Offline eval-
uation of the new NN gas optics, RRTMGP-NN 2.0, shows
a very high level of accuracy for clear-sky fluxes and heating
rates. For instance, the RMSE in the shortwave surface down-
welling flux is 0.78 W m−2 for RRTMGP and 0.80 W m−2

for RRTMGP-NN in a present-day scenario, while upwelling
flux errors are actually smaller for the NN. Because our ap-

proach does not affect the treatment of clouds, no additional
errors will be introduced for cloudy profiles. RRTMGP-
NN closely reproduces radiative forcings for five important
greenhouse gases across a wide range of concentrations such
as 8×CO2.

To assess the impact of different gas optics schemes in
the IFS, four 1-year coupled ocean–atmosphere simulations
were performed for each configuration. The results show that
RRTMGP-NN and RRTMGP produce very similar model
climates, with the differences being smaller than those be-
tween existing schemes and statistically insignificant for
zonal means of single-level quantities such as surface tem-
perature. The use of RRTMGP-NN speeds up ecRad by a
factor of 1.5 compared to RRTMGP (the gas optics being al-
most 3 times faster) and is also faster than the older and less
accurate RRTMG, which is used in the current operational
cycle of the IFS.

1 Introduction

Although atmospheric radiation is well understood, and very
accurate solutions are available, atmospheric models need to
settle for a trade-off between the accuracy and cost of radia-
tion computations. This trade-off can be controlled via many
factors like the temporal and spatial frequency of compu-
tations (Hogan and Bozzo, 2018), simplifying assumptions
(e.g. neglecting 3D effects), and spectral resolution (Hogan
and Matricardi, 2020). To reduce the latter, most modern
radiation schemes use the correlated k-distribution method
(e.g. Goody et al., 1989), since it allows broadband fluxes
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to be computed with high accuracy using only O(102–103)
quadrature points, compared with O(106–107) for line-by-
line (LBL) methods which resolve individual spectral lines
in the absorption spectra of atmospheric gases.

Despite this, computations remain expensive enough that
many of the other aforementioned approximations need to
be made, and coarse-resolution climate simulations can still
spend half of the total model runtime on radiation (Cotronei
and Slawig, 2020). To make better use of computer resources
in an era where computer hardware is becoming more het-
erogenous, and the gap between hardware peak performance
and the performance achieved with typical physics codes is
probably increasing even further, machine learning (ML) is
a promising way to simultaneously address computational
challenges and potentially reduce model uncertainty by rep-
resenting sub-grid processes more realistically.

Indeed, interest in the use of ML for parameterization
of sub-grid processes has been growing, with a particu-
lar focus on learning convection or unified physics param-
eterizations from high-resolution simulations (Rasp et al.,
2018; Brenowitz and Bretherton, 2018; Gentine et al., 2018;
Brenowitz et al., 2020; Yuval et al., 2021). Using ML specif-
ically for atmospheric radiation has a long history (Cheval-
lier et al., 1998; Krasnopolsky et al., 2008, 2010; Pal et al.,
2019; Liu et al., 2020; Roh and Song, 2020; Song and Roh,
2021). These studies trained feed-forward neural networks
(FNNs) to emulate a physical radiation scheme, achieving
impressive speed-ups typically between 10–100× (although,
in many cases relative to outdated or unoptimized codes). As-
sessing the level of accuracy achieved is difficult in the ab-
sence of common datasets, metrics and comparison against
benchmark computations, but reported errors are typically
too high to be considered for use in the ECMWF weather
forecast model. For instance, shortwave fluxes in Song and
Roh (Fig. 1, 2021) had root mean square errors (RMSEs) of
roughly 15 W m−2 in the offline evaluation against the orig-
inal scheme. To our knowledge, the ability of FNN-based
radiation emulators to compute the radiative forcing due to
changes in greenhouse gases has not been evaluated, so such
schemes must be considered unsuitable also for climate mod-
els until they are shown to do so accurately.

One difficulty in evaluating the FNN approach is that once
trained, the models cannot be applied to another dataset (such
as that from an intercomparison project) in the likely case
that it uses a different vertical grid, since the number of in-
puts and outputs is fixed and corresponds to collapsed and
concatenated vertical profiles and may be large depending
on the vertical resolution and the number of gases consid-
ered. The high dimensionality in turn implies a difficulty for
the models to generalize to e.g. warmer and moister climates
given the “curse of dimensionality”. Moreover, to obtain rea-
sonable heating rates, the typical approach has been to pre-
dict profiles of heating rates in addition to fluxes at the top of
the atmosphere and surface, as opposed to predicting fluxes
and computing heating rates physically. The downside of this

approach is that it breaks energy conservation, as the fluxes
and heating rates are likely to be inconsistent.

An alternative which offers better accuracy, reliability and
interpretability at the cost of a smaller speed-up is to use ML
only to predict optical properties and couple it to a radiative
transfer solver. This may be justified by considering that ra-
diation schemes solve the radiative transfer equation (using
the two-stream approximation) to obtain accurate estimates
of broadband radiative fluxes, after having first computed
spectral optical properties of gases, clouds and aerosols, ide-
ally in separate modules (Fig. 1, Hogan and Bozzo, 2018).
In contrast, parameterizations of other processes are often
based more on empirical relationships and simplified theo-
ries (Wang et al., 2022). The computation of optical proper-
ties (which control the absorption, emission and scattering of
radiation) within radiation schemes is likewise data driven,
as it relies on look-up tables. This is arguably a much easier
and more suitable problem for neural networks than comput-
ing radiative flows from one vertical level to the next, espe-
cially for feed-forward networks which do not structurally
incorporate the vertical dependencies of the latter.

FNNs were consequently developed to emulate the gas
optics parameterization Rapid Radiative Transfer Model for
General circulation model applications–Parallel (RRTMGP)
(Pincus et al., 2019) in two different studies, which found
speed-ups of 2–6× compared to the original code (Ukko-
nen et al., 2020; Veerman et al., 2021). In the former study
the NN gas optics was combined with a refactored radiative
transfer solver to speed up the entire radiation scheme (with-
out cloud or aerosol optics) by a factor of 1.8–3.5. Recently,
Ukkonen (2022a) compared different emulation strategies
for shortwave radiation and found that using NNs for gas
optics hardly affected accuracy at all, whereas replacing the
entire scheme with FNNs was the fastest but also least ac-
curate approach, with heating rates computed from fluxes
having a RMSE of 1.35 K d−1. An interesting middle ground
was found in using bidirectional recurrent neural networks,
which structurally resemble physical computations, to emu-
late the full radiation scheme. This produced far more accu-
rate fluxes (RMSE of 1–1.5 W−2) and heating rates (RMSE
0.16 K d−1) than FNNs while offering a smaller but still ap-
preciable speed-up.

While recent studies show that gas optics emulation is at
this point more suitable for operational implementation than
replacing the full radiation scheme, not least due to inher-
ently better generalization (e.g. to arbitrary vertical grids),
the evaluations were based on offline radiation computa-
tions (Ukkonen et al., 2020; Veerman et al., 2021; Ukko-
nen, 2022a). As the offline accuracy does not necessarily re-
flect its performance when coupled with other components
(Liu et al., 2020), the NN version of RRTMGP (Ukkonen
et al., 2020) is in this work integrated into the ecRad radia-
tion scheme used in the Integrated Forecasting System (IFS),
which is a global numerical weather prediction model de-
veloped at the European Centre for Medium-Range Weather
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Forecasts (ECMWF). New NN models are then trained on
RRTMGP k distributions with reduced spectral resolution.
These k distributions were added since Pincus et al. (2019);
Ukkonen et al. (2020) and have around the same number of k
terms as the older RRTMG scheme that is used operationally
in the IFS. While even more compact k distributions were re-
cently developed by Hogan and Matricardi (2022), we found
that their ecCKD gas optics code is already very fast and
therefore has less acceleration potential by using NNs. Fi-
nally, we perform free-running IFS simulations in order to
test the generalization and accuracy of the NNs in a prog-
nostic setting. In the context of wider literature on ML-based
parameterizations, our focus on gas optics represents a more
typical model development approach focusing on modules
and aims for immediate application in numerical weather
prediction (NWP) and climate models. On the other hand,
the gas optics scheme plays a very central role in climate
models as pointed out by Hogan and Matricardi (2022) and
is often computationally a significant part of the full radiation
scheme (Hogan and Bozzo, 2018; Ukkonen et al., 2020).

The structure of the paper is as follows: Sect. 2 briefly de-
scribes the ecRad and RRTMGP-NN codes and the imple-
mentation of RRTMGP-NN in ecRad. Section 3 provides an
overview of the machine learning methodology, which has
been refined to reproduce radiative forcings with respect to
individual gases more accurately. The results are then pre-
sented in Sect. 4, consisting of an offline evaluation and a
prognostic evaluation where the impact of the new gas optics
schemes (RRTMGP and RRTMGP-NN) on model climate is
determined using a small ensemble of year-long IFS simula-
tions.

2 Codes

2.1 ecRad

ecRad is a radiation scheme developed at ECMWF and has
been used operationally in the IFS since 2017 (Hogan and
Bozzo, 2018). It is highly configurable with multiple options
for gas optics, cloud optics, aerosol optics and radiative trans-
fer solvers, which represent cloud heterogeneity in different
ways and support various cloud overlap assumptions.

2.2 RRTMGP

RRTMGP is a recent gas optics scheme with a correlated k
distribution that is based on state-of-the-art spectroscopy. It
it part of a freely available toolbox, RTE+RRTMGP, which
couples it to a radiative transfer solver (RTE). The radiation
scheme seeks to balance accuracy, efficiency and flexibility,
and both the code and data continue to evolve (Pincus et al.,
2019). The original RRTMGP k distributions have a rela-
tively large number of k terms, also known as g points: 224
in the shortwave (SW) and 256 in the longwave (LW), corre-
sponding to 16 in each SW and LW band, of which there are

14 and 16 respectively. Recently, reduced k distributions with
half the number of g points (112/128) have been generated
from the full distributions. This was done using the same ap-
proach as in the evolution from the RRTM scheme (Mlawer
et al., 1997) to its reduced-resolution version designed for
GCMs, RRTMG (Iacono et al., 2000), namely by iteratively
combining neighbouring g points while attempting to mini-
mize a cost function that includes fluxes, forcing and heating
rates (Robert Pincus and Eli J. Mlawer, personal communica-
tion, 24 May 2022). The reduction in g points was similar in
both cases; RRTMG, which is used operationally in the IFS,
has 112/140 g points.

As the number of g points gives the number of pseudo-
monochromatic radiative transfer calculations, it largely de-
termines the cost of the whole radiation scheme. The NNs de-
veloped in this paper are therefore based on the new reduced
k distributions (“reduced RRTMGP”) and not the k distribu-
tions with higher spectral resolution (“full RRTMGP”).

2.3 RRTMGP-NN and implementation in ecRad

RRTMGP-NN is a neural network version of RRTMGP de-
scribed in Ukkonen et al. (2020), available with a refactored
version of the RTE solver which has columns as the outer-
most dimension (in terms of memory location) instead of
g points. The modified radiation scheme is referred to as
RTE+RRTMGP-NN, and like the original code, it is writ-
ten in modern Fortran. The simple yet efficient NN kernel
is based on BLAS routines for batched inference, exploiting
the lack of vertical and horizontal dependencies in gas op-
tics computations. The code can also be run on GPUs; in this
case NVIDIA cuBLAS is used for the matrix multiplications,
and OpenACC directives are wrapped around the remaining
computations. (While efficient, the speed advantage over ver-
sion 1.5 of RTE+RRTMGP is actually much smaller on GPU
than CPU, as shown in Sect. 3.2 of Ukkonen, 2022b). The un-
derlying structure of RRTMGP and RRTMGP-NN is loosely
sketched out in Fig. 1 to demonstrate why the latter is more
efficient. For the purpose of clarity, the computation of op-
tical properties in RRTMGP has been simplified in the dia-
gram: for each band, the code actually computes the absorp-
tion by 1–2 “major” gas species by 3D interpolation in tem-
perature; pressure; and η, the relative abundance of the two
major species (Pincus et al., 2019). The contributions from
less important “minor” gases are computed separately using
2D interpolation for each minor gas in the band; therefore,
a given band is written to several times. The NN gas optics
instead predicts all spectral points simultaneously given an
input matrix containing all gases.

RRTMGP-NN previously loaded models from ASCII files
like the Neural-Fortran code (Curcic, 2019) that it is built
upon. We have refined the code so that models are loaded
from netCDF files, which contain not only the weights and
activation functions, but also coefficients used for scaling in-
puts and outputs, as well as metadata about the training data.
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Figure 1. Schematic illustrating the data flow in a structure of (a) a conventional gas optics scheme such as RRTMGP and (b) RRTMGP-
NN. For a given band, RRTMGP makes several calls to interpolation kernels to compute gas-specific contributions to optical properties,
accounting for temperature (T ) and pressure (p) dependencies, as well overlap of major gases in the band. These kernels loop over the g
points in a single band, of which there are only 1–12 in the reduced k distributions, leading to poor vectorization. The steps are repeated
for each vertical level and column. The NN (b) achieves better performance (i) by predicting a vector containing all g points from a vector
containing T , p and the mixing ratios of all gases (treating gas interactions implicitly by the NN) and (ii) batching the computations for
multiple atmospheric levels and columns by expressing the core NN computations as matrix–matrix multiplications (between weights W and
input matrices) that are delegated to a BLAS library. For each hidden NN layer, this is followed by the addition of biases b and transformation
by a non-linear activation function f (x). The schematic shows a network with only one hidden layer; in this study two hidden layers are
used.

These files could in the future be expanded to replace the k-
distribution files in their entirety, keeping relevant metadata
and the look-up-table coefficients used to compute Planck
sources from Planck fraction and temperature.

We now briefly describe the integration of RRTMGP into
ecRad. The goal was to avoid larger changes in ecRad. How-
ever, since RTE+RRTMGP makes heavy use of Fortran-
derived types to specify e.g. gas concentrations and optical
properties, use of existing RRTMGP interfaces would imply
a significant amount of array copying to communicate be-
tween ecRad- and RRTMGP-derived types. Large changes in
RRTMGP are not desirable either because they reduce main-
tainability of the gas optics code.

With these conflicting goals in mind, a balance was sought
with non-intrusive changes in both codes but prioritizing
minimal changes in ecRad. Firstly, the refactored radiation
scheme with neural networks, RTE+RRTMGP-NN, was im-
plemented instead of the reference gas optics code in order
to make direct use of existing NN code. This has the ad-
vantage that RTE+RRTMGP-NN uses the same dimension
order as ecRad with optical properties having g points in-
nermost and columns as the outermost dimension, remov-
ing the need for array transposes, which can be a computa-
tional bottleneck (Ukkonen et al., 2020). While the NN fork
of RTE+RRTMGP is currently only maintained by the first
author, the code is very similar to RTE+RRTMGP. The k dis-
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tributions are loaded from netCDF files which can be copied
over as new ones are made available in the main repository.

The RRTMGP(-NN) package was then added as an ecRad
subdirectory, with some small changes to remove the depen-
dence on RTE. The source code of RRTMGP-NN is kept sep-
arate: it does not use any of the ecRad modules. Instead, new
interfaces were written for RRTMGP-NN for easy interoper-
ability with ecRad and avoiding array copying. For instance,
the new interface for the longwave (gas_optics_int_ecRad)
replaces the derived-type arguments of the original RRT-
MGP interface, containing optical properties and Planck
sources, with explicit shape arrays used in ecRad. The com-
putational kernels remain the same, as in original RRTMGP
they do not use derived types. In ecRad, another interface
then prepares the RRTMGP-NN gas concentrations (columns
outermost) by transposing the ecRad gases (columns in-
nermost) and calls gas_optics_int_ecRad (longwave) and
gas_optics_ext_ecRad (shortwave). ecRad has similar inter-
faces to the RRTMG and ecCKD (Hogan and Matricardi,
2022) gas optics schemes. The overhead from transposing
the gases and thermodynamic arrays is very small. The k dis-
tributions and NN models are stored in the ecRad “config”-
derived type in order to avoid introducing new arguments to
the main interface.

3 Machine learning

In training NNs to emulate RRTMGP, we use a similar
methodology as in Ukkonen et al. (2020), where detailed of-
fline evaluation against line-by-line computations suggested
a similar level of accuracy in overall fluxes and heating rates
as the original scheme, despite using fairly simple NN mod-
els with two hidden layers and 16–48 neurons in each hidden
layer. Various aspects of the methodology are refined from
the previous paper as described below.

3.1 Data

We use similar training data as in Ukkonen et al. (2020), in
which a diverse and extensive dataset was prepared from sev-
eral sources, including atmospheric profiles used in previous
radiation studies, as well as data from future climate experi-
ments and a reanalysis. These initial datasets were syntheti-
cally supplemented, or extended, by varying greenhouse gas
concentrations both manually and by using hypercube sam-
pling. The data in this study differ from Ukkonen et al. (2020)
principally in two ways. Firstly, data provided by the Radia-
tive Forcing Model Intercomparison Project (RFMIP; Pincus
et al., 2016), comprising of 100 profiles and 18 perturbation
experiments, now serve as an independent validation dataset
used for early stopping (Sect. 3.3) instead of training. These
profiles were designed to assess global mean clear-sky errors
in instantaneous radiative forcing and should be well suited
as an out-of-sample test for our purposes. Secondly, a dif-

ferent dataset based on the CAMS reanalysis (Inness et al.,
2019) is used. The new CAMS data use the same approach as
the IFS and the Correlated k-distribution Model Intercompar-
ison Project (CKDMIP; Hogan and Matricardi, 2020), where
only nine gases are considered, but the radiative forcing of
many minor greenhouse gases is represented by artificially
increasing the concentration of CFC-11 (Meinshausen et al.,
2017). The height dependence of these gases is represented,
and other RRTMGP gases are set to zero. (Neither of these
generally applies to the remaining training data, where all
minor RRTMGP gases are included but as scalar concentra-
tions.)

The reanalysis profiles are designed to encompass the vari-
ability in present-day atmospheric conditions, with the fol-
lowing steps taken to increase variance and capture extremes.
Starting from an initial pool of roughly 164 000 profiles span-
ning global reanalysis data from 2008 and 2017 and inter-
polated to a 320 km resolution equal-area grid (Ukkonen,
2022a), 1000 profiles were drawn. Of these, 17 were selected
to contain the minimum and maximum of temperature, hu-
midity and ozone at different pressure levels (a total of 9
variables) in the whole dataset, similarly to Hogan and Ma-
tricardi (2020). Another 486 profiles were selected by con-
structing k = 81 k-means clusters which are clustered in the
nine dimensions represented by the variables in the previ-
ous step. From each cluster, which the k-means algorithm
ensures is as different to other clusters as possible, six ran-
dom profiles were selected. The remaining roughly 500 pro-
files were randomly drawn from the entire dataset minus ones
already chosen. Vertical profiles selected by the minimum–
maximum, semi-random and random method are depicted in
Fig. 2.

The 1000 CAMS profiles were then expanded into 42
experiments or scenarios where CO2, CH4, N2O, CFC-
11 equivalent and CFC-12 are varied similarly to Hogan and
Matricardi (2020) where the concentration of gases were in-
dividually varied across a large range, keeping other gases
constant, except for CO2, CH4 and N2O which were also
perturbed in pairs to account for the overlap in their absorp-
tion spectra. The 1000× 42× 60 (layers) ≈ 2.5 million sam-
ples make up roughly 47 % of the 5.42 million total training
samples. The remaining parts comprise (i) end-of-century
CMIP6 data corresponding to a high-emissions scenario;
(ii) profiles from the “mean–maximum–minimum” CKD-
MIP dataset; and (iii) 42 profiles used for tuning RRTMGP,
all of which were expanded into up to hundreds of experi-
ments as described in Ukkonen et al. (2020). The data are
summarized in Table 1.

3.2 Choice of inputs and outputs

Our RRTMGP emulator predicts layer-wise optical prop-
erties from an input vector which contains gas mixing ra-
tios, temperature and log pressure. The NNs take as input
all the RRTMGP gases and output all g points, which re-
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Figure 2. Vertical profiles of temperature, water vapour and ozone selected from the CAMS data as described in Sect. 3.1. The top panel
shows 486 random profiles (black), and the bottom panel shows 486 profiles drawn from k-means clusters (black) and 17 that were selected
to sample minimum and maximum values (blue).

Table 1. Different subsets of the gas optics training data. The original data contained only profiles (or columns) and were extended to sample
different greenhouse gas scenarios and/or temperature ranges in different experiments. For further information and more detail about the last
three datasets the reader is referred to Sect. 3.2 of Ukkonen et al. (2020).

Dataset (original source of profiles) Application Experiments Profiles Layers Total samples× 106

CAMS reanalysis NWP, climate 42 1000 60 2.52
CMIP6 Climate 200 420 19 1.596
Garand et al. (2001) NWP, climate 322 42 42 0.568
CKDMIP-MMM (Hogan and Matricardi, 2020) NWP, climate 58 243 52 0.733
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sults in better computational intensity and efficiency than
computing one band at a time, and the contributions from
minor gases one gas at a time, as is done in the look-up-
table (LUT) kernels in RRTMGP (Ukkonen et al., 2020).
In the shortwave (SW), the NN outputs are absorption and
Rayleigh cross-sections, while the longwave (LW) predic-
tands are absorption cross-section and Planck fraction. Here,
cross-sections refer to optical depth divided by the number
of dry-air molecules in a layer N . This allows generalization
to arbitrary vertical grids, since optical depths are obtained
in a separate step by multiplying the cross-sections with N .
Meanwhile, Planck fraction is the fraction of a band’s to-
tal Planck function that is associated with each LW g point,
obtained by 3D interpolation in the original code. Like in
RRTMGP, this is multiplied with the band-integrated Planck
function at a level or layer (interpolated from a LUT using
the temperature of that level/layer) to get the Planck function
for each LW g point. This retains a small LUT interpolation
but simplifies the NN model by requiring only Ngpt outputs
(where Ngpt is the number of g points), instead of 3× ng to
directly predict the Planck functions used in reference RRT-
MGP or 2×ng to get the Planck functions in RRTMGP-NN.
(The original code has 1 Planck variable for each layer and
2 for each layer interface, the upward and downward emis-
sion, whereas RTE+RRTMGP-NN has 1 for each layer and
layer interface. ecRad only uses 1 Planck function, defined
at layer interfaces.) Reducing the number of NN outputs can
decrease model complexity and runtimes, since most of the
floating-point operations occur in the final NN layer given
Ngpt > Nneurons > Ninputs. However, in this work a single
LW model is used, which predicts both absorption cross-
sections and Planck fractions as one big vector. This may
not be the fastest approach but has the benefit of easing the
optimization procedure described in the next section.

In addition to predicting cross-sections instead of optical
depths, to obtain good results with less complex models it
is useful to pre-process both inputs and outputs. Firstly, the
distributions of all outputs and some inputs were made more
uniform by taking their N th square root (a weaker form of
log scaling; see Table 1 in Ukkonen et al., 2020), and after-
wards the inputs are scaled to the 0–1 range, and outputs are
scaled to have roughly 0 mean and unit variance by using a
variant of standardization that preserves correlations between
different outputs (Ukkonen et al., 2020).

3.3 Optimizing for fluxes when predicting optical
properties

Training gas optics ML models presents a tuning challenge,
as the variables we ultimately care about are not optical prop-
erties but radiative fluxes and heating rates – outputs from
the solver. We previously found it relatively easy to develop
gas optics NNs, which upon implementation in the radiation
code result in low mean errors in fluxes and heating rates, but
difficult to obtain accurate radiative forcings at the top of the

atmosphere or surface with respect to changes in the concen-
tration of individual gases, especially minor ones (Ukkonen
et al., 2020). The problem is likely to stem from predicting
aggregated optical properties, instead of computing the con-
tribution from minor gases separately (as is usually done in
k distributions), which is more efficient but leads to major
gases dominating the loss function. Mostly accurate radiative
forcings for CKDMIP gases were ultimately obtained via a
time-consuming, iterative process where new models were
continuously trained and evaluated and the training data ex-
panded. In this work we have attempted to automate the op-
timization with regards to fluxes, heating rates and forcings
to at least some extent by adding two new techniques to the
training methodology.

Firstly, errors in fluxes and heating rates were monitored
during training. While these metrics cannot easily be used
for optimizing the NN weights, they can be used as a cri-
teria to know when to stop training (early stopping) or to
optimize NN hyperparameters. Therefore, a Python training
programme was written where at the end of every epoch, the
NN models are saved to a file, and the Fortran radiation pro-
gramme is called with the new model, passing the location
as a command-line argument. The Fortran programme runs
RTE+RRTMGP-NN on a validation dataset and writes some
error metrics to standard output, which are finally read by
the training programme. For validation we used the RFMIP
dataset consisting of 100 profiles and 18 different perturba-
tion experiments, which allowed computing radiative forcing
errors with respect to CH4 and N2O and total forcing errors
with respect to all RRTMGP gases. In addition, a benchmark
line-by-line solution was available for this data, meaning that
the total (parameterization) error can be determined instead
of only emulation (NN) error. Our goal was to develop NNs
that have a similar level of accuracy as RRTMGP; that is, em-
ulation errors should be smaller than parameterization errors.
The error metrics were normalized by the RRTMGP values
so that a value of 1 indicates the same level of performance as
RRTMGP, and larger values indicate worse performance. An
overall “radiation error” was computed by taking the RMS
value of a total of eight metrics which differ slightly for the
longwave and shortwave (Table 2; the choices were ad hoc
but emphasize heating rate errors in the SW and radiative
forcing errors in the LW). This overall metric was used in the
early stopping criteria, and the model weights from the best
epoch (a minimum in the metric) were saved.

Secondly, a custom loss function was devised to minimize
the error in the difference in y associated with different per-
turbation experiments, in addition to the mean-squared er-
ror of y, where y is the scaled NN outputs. The new loss
function indirectly measures radiative forcing errors (albeit
weakly due to a non-linear dependence between spectral op-
tical properties and broadband fluxes) and has the form

loss= α
N∑
i=1
(yi − ŷi )

2
+ (1−α)

N∑
i=1
i odd

(
(yi+1− yi )− (ŷi+1− ŷi )

)2
, (1)
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Table 2. Metrics that comprise the overall radiation error. TOA, top of atmosphere; IRF, instantaneous radiative forcing; and “future all”, a
radiative forcing experiment with perturbed atmospheric conditions in addition to greenhouse gas concentrations.

Metric Longwave Shortwave

MAE heating rate X X
MAE heating rate (present day) X X
MAE heating rate (preindustrial) X
MAE heating rate (“future all”) X
Bias surface downwelling flux X
Bias TOA upwelling flux X
Bias TOA IRF (present day – preindustrial) X
Bias TOA IRF (future – present day) X
Bias TOA IRF (future – preindustrial) X
Bias surface IRF (future – preindustrial) X X
Bias surface IRF CH4 (present day – preindustrial) X X
Bias surface IRF N2O (present day – preindustrial) X

where y and ŷ are the target and NN output vectors, respec-
tively, and α is a coefficient that was set to 0.6 for LW and 0.2
for SW after testing a few different values and finding that
these seemed to give a reasonable trade-off between heat-
ing rate errors and radiative forcing errors. The second term
measures the error in the difference in y between different
perturbation experiments if the data are organized so that ad-
jacent samples (of a total N training samples) correspond to
different experiments but the same columns and vertical lay-
ers, which was achieved by transposing the data so that the
experiment dimension is innermost. In addition, the perturba-
tion experiments must be designed and arranged in memory
so that neighbouring indices relate to the goal, which was
minimizing the TOA and surface forcing errors of individual
gases (for instance, a pair of adjacent experiments could be
preindustrial and present-day N2O). Therefore, RFMIP-style
experiments such as present-day versus future concentrations
of all greenhouse gases, or 8×CO2 versus preindustrial CO2,
should be avoided, as they can easily dominate the error com-
pared to varying the concentration of minor greenhouse gases
(which was the challenge to begin with). This requirement
was only partially fulfilled, since we wanted to make use of
existing data. Though rather convoluted, and requiring be-
spoke data, the approach does reduce forcing errors (Fig. 3).

In the end, there was still a substantial random element
in obtaining good results, and several models were trained
before settling on the final models (based on errors with re-
spect to training data and not the independent offline evalua-
tion, which was only performed once). To obtain a satisfac-
tory LW model the early stopping criteria were loosened to
70 consecutive epochs of no improvement. In addition, in-
creasing the number of hidden neurons from Ukkonen et al.
(2020) seemed to improve results (the number of model pa-
rameters remains similar; this is explained by the number of
g points being roughly half of the previous k distributions).
The final LW model has two hidden layers with 64 neurons in
each layer, and the SW models have two hidden layers with

32 neurons in each layer. All models use the “softsign” acti-
vation function and are trained using the Adam optimizer, a
batch size of 2048 and learning rate of 0.01 as in our previous
paper.

Future studies could explore directly minimizing flux and
forcing errors when training NN-based gas optics mod-
els. Doing this via gradient descent optimization would re-
quire differentiating the radiative transfer solver to obtain the
derivative of fluxes with respect to changes in optical proper-
ties (and NN weights), which should be possible using auto-
matic differentiation tools like the Python library JAX (Brad-
bury et al., 2018) if the radiative transfer code was rewritten
in the supported language or API (JAX, for instance, has an
API based on NumPy). Finally, we note that while ecRad
uses g points innermost, the NN models themselves are ag-
nostic to whether the batch dimension is innermost or outer-
most and so in principle could be used by a radiation scheme
with columns innermost. (An inference kernel for such a
case, output_sgemm_flat_byrows, can be found in
RTE+RRTMGP-NN within neural/mod_network.F90.)

4 Results

In this section we evaluate the accuracy and speed of ecRad
with different gas optics schemes (RRTMGP, RRTMGP-NN
and the older RRTMG scheme) in both an offline and on-
line setting. The results were obtained using an optimized
development version of ecRad, which refactors the Triple-
clouds (Shonk and Hogan, 2008) and SPARTACUS (Hogan
et al., 2016) solvers for better efficiency and includes the new
RRTMGP(-NN) gas optics. One change is that reflectances
and transmittances are computed in the same numerical pre-
cision as the rest of the model (in the operational version of
ecRad, these two-stream computations are always performed
in double precision), which improves the single-precision
performance of all solvers in ecRad. The updated solvers also
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Figure 3. Monitoring of heating rate error (dashed cyan line, given by the mean of the LW heating rate metrics in Table 2) and the total
radiation error (solid blue line, given by the RMS of all the LW metrics listed in Table 2) when training the final LW gas optics model
using a hybrid loss function and early stopping (bottom) and training for the same number of epochs with a regular loss function (top). The
monitored errors (right axis) are computed using the RFMIP data with respect to line-by-line results and normalized by the RRTMGP value.
Also shown are the training losses (solid and dashed red lines). The larger radiation error when not using the hybrid loss function was largely
due to a single metric, the surface radiative forcing of N2O (not shown).

improve efficiency by batching the reflectance–transmittance
computations for multiple vertical levels. The optimizations,
to be described in a forthcoming paper, have a negligible im-
pact on fluxes and heating rates while making Tripleclouds
significantly cheaper and thus increase the share of the gas
optics in ecRad’s total runtime.

The prognostic evaluation and offline timings were ob-
tained with an ecRad configuration close to operational IFS
cycle 47r3, which is similar to the 46r1 settings given in Ta-
ble 2 of Hogan and Bozzo (2018), except for replacement of
the pure exponential cloud overlap assumption with “expo-
nential random”, whereby vertically contiguous cloud layers
are partially correlated, but cloud layers separated by clear
sky are randomly overlapped. Furthermore, instead of the
McICA solver we use Tripleclouds due to the latter being
noise-free and a likely candidate for operational use in a near-
future cycle.

It should be noted that the RRTMGP results were not pro-
duced using the original RTE+RRTMGP package, which
uses two Planck source functions for half levels which are

then combined into one, and the LW results (Figs. A1–A4
in Appendix A), and could be very slightly impacted by the
simpler computation of Planck source in RRTMGP-NN. For
simplicity the RRTMGP-NN code configured with look-up
tables and not NNs is hereafter referred to as RRTMGP.

4.1 Speed-up

The runtime of ecRad with different gas optics schemes was
evaluated offline using 10 000 input profiles that were ran-
domly sampled from a global snapshot saved from a high-
resolution IFS run. Figure 4 shows timing results obtained on
a single node of the new ECMWF AMD-based supercom-
puter in Bologna to which ECMWF’s operational forecast
migrated in October 2022.

With reduced RRTMGP, the runtime of ecRad is slightly
higher than with RRTMG due to the new gas optics scheme
(shown in light blue) being more expensive. The older gas
optics module is faster by a factor of 1.41 despite the sim-
ilar spectral resolution. The poor efficiency of RRTMGP is
explained by short inner loops in the LUT code that iterate
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Figure 4. Runtime of ecRad in single precision per 100 atmospheric profiles (x axis) when combining different gas optics (y axis) with
the Tripleclouds solver, broken down into components. Three gas optics schemes are compared: RRTMGP with reduced spectral resolution
(112 SW and 128 LW g points), its neural network version (RRTMGP-NN), and the older RRTMG scheme with 112 (SW) and 140 (LW) g
points. The 10 000 original columns with 137 vertical levels were repeated 4 times into 40 000 columns that were blocked in an OpenMP loop
in which ecRad is called (blocking the derived-type arguments and using a block size of eight columns to reflect IFS use). Computations were
repeated 10 times in an outermost loop, and furthermore the programme was run three times, with the fastest result saved. The component
runtimes are means of per-thread values reported by the General Purpose Timing Library but normalized to add up to the total time spent in
the OpenMP loop (annotated to the right of the bars), which was incrementally higher than the sum of section means. The speed-up relative
to RRTMGP is shown to the right of the bar plot. Platform: 2× 64-core AMD EPYC 7H12 CPUs, GNU Fortran compiler version 9.3 and
Intel MKL library 19.0.5 (used for general matrix–matrix multiplication (GEMM) in RRTMGP-NN).

over the number of g points in a band (which is only 1–12
for the smaller k distributions), leading to poor vectorization.
However, speed is improved drastically with the NN version
of reduced RRTMGP, which is roughly 2.87 times faster than
the LUT-based code and 2 times faster than the operationally
used RRTMG scheme. The resulting speed-up in the full ra-
diation scheme is 1.48× and 1.29× compared to RRTMGP
and RRTMG respectively.

We note that the speed-up achieved with RRTMGP-NN is
heavily influenced by many factors, such as the hardware and
software platform (especially the performance of the BLAS
library) but also the number of gases included. While our
new RRTMGP-NN models support all of the 11 minor green-
house gas species in RRTMGP, here only the reduced set of
gases (with CFC-11 equivalent) is used as input in ecRad
and evaluated (remaining gases were set to zero in the NN
inputs). Including a large number of greenhouse gases would
slow down reference RRTMGP where the kernel has a loop
over minor gas species, whereas the runtime of RRTMGP-
NN would hardly be affected, improving the speed-up fur-
ther. Indeed, one benefit of our NN approach is that it can
account for many minor gases essentially for free in a com-
putational sense (although, not necessarily accurately, and in
the next section we do not evaluate radiative forcings with
respect to non-IFS gases).

4.2 Offline evaluation

Independent validation of the NN gas optics models was
carried out by using data and tools from CKDMIP (Hogan
and Matricardi, 2020). The data are from the Evaluation-1
dataset, which was not used for training. The accuracy of
the new RRTMGP-NN SW model, relative to a line-by-line
benchmark, is first shown in Fig. 5 for the present-day sce-
nario. The NN has almost identical accuracy as the reduced-
RRTMGP scheme it was trained on (Fig. 6), particularly in
terms of heating rates, which in both cases have an RMSE of
only 0.056–0.057 K d−1 below 4 hPa. Surprisingly, the bias
and root mean square errors in upwelling fluxes are actually
smaller when using NNs. Results using the other CKDMIP
concentration scenarios (glacial maximum, preindustrial and
future) are not presented here but are very similar, with the
NN gas optics resulting in better upwelling fluxes but similar
heating rates.

In general, the close emulation of RRTMGP was already
demonstrated in Ukkonen et al. (2020), and so the remain-
ing results are not discussed in detail, but the LW results
for present-day and future scenarios are provided in Ap-
pendix A (Figs. A1–A4). The improvement in upwelling
fluxes (but not heating rates) is even more pronounced in
the longwave, with RRTMGP-NN resulting in 40 %–50 %
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Figure 5. Evaluation of reduced-RRTMGP-NN shortwave fluxes and heating rates using the 50 independent profiles of the CKDMIP
Evaluation-1 dataset with present-day concentrations of greenhouse gases. The left column (a, d, g) shows the reference profiles of up-
welling flux, downwelling flux and heating rate from LBL calculations with five different values of the cosine of the solar zenith angle, µ0
(0.1, 0.3, 0.5, 0.7 and 0.9). The middle column (b, e, h) shows the corresponding biases (solid lines) and 95th percentile of errors (shaded
area) using all 250 data points. The right column (c, f) depicts instantaneous errors in upwelling TOA and downwelling surface fluxes with
the clusters corresponding to the different solar zenith angles.

lower biases in TOA upwelling flux than the original scheme
for the various concentration scenarios. The result is there-
fore probably not a fluke but attributable to using early stop-
ping based on a line-by-line benchmark. The exact mecha-
nism for this is unclear, but it is plausible that the NN fits
to physically correct signals in the data before it fits to re-
produce RRTMGP errors with respect to LBL (or the re-
sult is indeed a fluke, after all, the heating rate errors are
slightly worse than RRTMGP). The most notable difference
to our earlier paper is that the top-of-atmosphere and sur-
face forcings with respect to N2O, CFC-11 and CFC-12 have

been improved with the help of a hybrid loss function and
are now excellent (Fig. 7). We note that the new reduced-
RRTMGP k distributions with 112 (SW) and 128 (LW) g
points seem to trade only a little accuracy for nearly halv-
ing the cost of the radiation scheme, compared to the orig-
inal k distributions with almost double the spectral resolu-
tion (https://confluence.ecmwf.int/display/CKDMIP, last ac-
cess: 8 June 2023). The only major degradation is in long-
wave heating rates in the mesosphere, with reduced RRT-
MGP introducing a considerable warming bias in the mid-
mesosphere.
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Figure 6. As in Fig. 5 but for reduced RRTMGP.

4.3 Prognostic evaluation

We now describe results from a prognostic evaluation of
RRTMGP-NN and RRTMGP using 1-year free-running
simulations with the IFS model. The model simulations
consisted of four atmosphere–ocean coupled simulations
13 months long initialized on 1 August of the years 2000,
2001, 2002 and 2003. After a 1-month spin-up for each sim-
ulation, the remaining 12 months were averaged over each
simulation. This configuration is very similar to that used
in Sect. 5 of Hogan and Bozzo (2018) to evaluate the im-
pact of changes to the radiation scheme; the simulations are
long enough to capture fast atmospheric and land-surface
processes that respond to changes in the treatment of radia-
tive transfer but short enough that the response is not signif-
icantly affected by the longer-term changes to ocean circu-
lation. The 1-year forecast length also matches the longest

operational forecast length used in ECMWF’s seasonal fore-
casts. The model configuration was as in the operational IFS
model cycle 47r3 except for the use of the Tripleclouds rather
than McICA solver. The horizontal resolution was TCo199
(around 60 km), and 137 vertical levels were used. The radi-
ation scheme was called every hour.

The impact of different gas optics schemes on annual mean
temperature from the surface to the lower mesosphere is
shown in Fig. 8. Because RRTMGP is not, to our knowledge,
routinely tested in single precision, both single- and double-
precision runs were performed with both reduced RRTMGP
and full RRTMGP. The NN version of reduced RRTMGP
was only tested in single precision (internally, RRTMGP-NN
always uses SP, as higher numerical precision does not ben-
efit NNs). In general, larger differences between the runs are
only seen in the mesosphere and upper stratosphere, which
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Figure 7. Comparison of RRTMGP-NN and LBL calculations of
instantaneous longwave clear-sky radiative forcing at the top of
the atmosphere (left column) and surface (right column) when per-
turbing different greenhouse gases (rows), averaged over the 50
Evaluation-1 profiles.

are very sensitive to heating rate differences. Comparison
against a reference dataset based on the Microwave Limb
Sounder (MLS) instrument above 20 hPa, and ERA5 reanal-
ysis data below this level are depicted in Fig. 8b and shows
a 5 K warm bias in the upper stratosphere for RRTMG and
larger in the mesosphere. The same bias was reported by
Hogan et al. (2017), which they explained by the use of the
older Kurucz solar spectrum in the RRTMG version used in
ecRad. RRTMGP uses a more recent solar spectrum with
less ultraviolet radiation, resulting in closer agreement with

MLS. In the mesosphere, RRTMGP-NN is much closer to the
reduced-RRTMGP scheme it is emulating than reduced RRT-
MGP is to full RRTMGP (Fig. 8c). This strongly suggests
that the emulation errors are small enough to be acceptable.

A height–latitude cross-section of temperature likewise
shows larger differences between the old RRTMG scheme
and RRTMGP than between different RRTMGP configura-
tions and the NN version (Fig. 9). A strong warm bias in
the stratosphere is evident for RRTMG but less so for any
version of RRTMGP, although the RRTMGP(-NN) runs do
show a weaker upper-stratospheric warm bias over high lati-
tudes and a substantial cold bias in the tropical stratosphere.

Finally, Fig. 10 compares annual/zonal means of 2 m tem-
perature, TOA net LW and SW fluxes, and downwelling SW
fluxes between simulations using different gas optics config-
urations. In general the differences relative to full RRTMGP
are statistically insignificant, as the means fall within the er-
ror bars computed from the 4-year sample. The only clear ex-
ception is RRTMG, which, for instance, at lower latitudes has
significantly larger surface downwelling SW flux and smaller
LW flux than full RRTMGP. These findings are consistent
in sign and approximate magnitude with the evaluation of
RRTMG against line-by-line calculations by Hogan and Ma-
tricardi (2020), although it should be stressed that these dif-
ferences of 0–2 W m−2 are still very modest.

5 Conclusions

In this paper we have evaluated RRTMGP-NN, a neural net-
work version of the RRTMGP gas optics scheme, integrated
into ECMWF’s radiation scheme ecRad, by performing both
offline calculations and four 1-year simulations with the free-
running IFS model. Emulating only the gas optics compo-
nent, instead of the full radiation scheme like in previous
work, results in much better accuracy. The NNs were trained
on diverse datasets which cover a wide range of gas con-
centrations and atmospheric conditions (including preindus-
trial, present-day and future conditions). Although training
on optical properties derived from RRTMGP, we used early
stopping with respect to a validation set containing broad-
band fluxes computed by a line-by-line model, based on met-
rics which included radiative forcings. Combining this with
the use of a hybrid loss function, we were able to reduce
radiative forcing errors. Clear-sky shortwave and longwave
fluxes, heating rates, and top-of-atmosphere and surface forc-
ings for five greenhouse gases were evaluated against line-
by-line computations using an independent dataset spanning
a wide range of climate scenarios. In each case, any em-
ulation errors introduced by RRTMGP-NN were virtually
undetectable compared to the parameterization error. Both
schemes have heating rate errors within 0.056–0.057 K d−1

(SW) and 0.102–0.116 K d−1 (LW). Flux errors were gener-
ally below 1 W m−2, and upwelling fluxes were actually im-
proved by using RRTMGP-NN. Fluxes for cloudy profiles
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Figure 8. Evaluation of global/annual mean temperature profiles from free-running simulations by the IFS. (a) Mean temperature, (b) differ-
ence against a reference dataset consisting of the MLS climatology above the 20 hPa height level and ERA5 below this level, and (c) difference
against a simulation using full-resolution RRTMGP in double precision. The small horizontal bars give the 95 % confidence interval as com-
puted from differences between different years. As indicated in the legend, the simulations were performed in double or single precision (DP
or SP) using the full- or reduced-resolution RRTMGP, the NN emulation of (reduced) RRTMGP, or the older RRTMG gas optics scheme.

would be even less affected, as the treatment of clouds is
identical in our approach.

The results from the online evaluation are also highly en-
couraging, as they show very similar model climates for
RRTMGP and RRTMGP-NN. Global/annual mean temper-
ature profiles for the reduced-spectral-resolution RRTMGP
and its NN emulator are in closer agreement than differ-
ent versions of RRTMGP are to each other, and all of
these schemes, including RRTMGP-NN, substantially re-
duce stratosphere and mesosphere temperature biases rela-
tive to the older RRTMG scheme. In single-level fields, the
differences between RRTMGP-NN and RRTMGP are ob-
scured by natural variability. These results, taken together
with those from the offline evaluation, demonstrate that our
RRTMGP-NN models are safe and suitable for operational
weather and climate models. To our knowledge, the same has
not been demonstrated for full-radiation-scheme emulators,
whose substantial emulation errors particularly for cloudy
profiles (Fig. 2, Song and Roh, 2021) and potential lack of
reliability and energy conservation are especially worrisome
for climate modelling applications. For instance, radiative
forcings with respect to greenhouse gases, or cloud radiative
effects, have not been evaluated in any emulator study we are
aware of. We would also highlight the advantages of modular
radiation schemes, which allow reducing model uncertainties
in a continuous and interpretable manner by developing new
and improved solvers as well as gas, aerosol or cloud optics
schemes independently of one another.

Our evaluation of RRTMGP-NN was based on a setup
with a reduced set of LW gases (using artificially increased
CFC-11 concentrations to represent further gases); for appli-
cations where the individual radiative forcings of other RRT-
MGP minor greenhouse gases are of importance, such met-
rics can be evaluated offline and new NN models trained if

needed. The data and tools are freely available and may be
useful for future work. We encourage developers of new gas
optics schemes to consider NNs as part of their toolbox, as
they combine computational efficiency with algorithmic flex-
ibility that allows avoiding structural assumptions, although
training multi-gas models directly on line-by-line data could
be challenging in terms of data generation and optimizing for
minor gases.

In offline timings obtained on ECMWF’s AMD-based
supercomputer, using RRTMGP-NN instead of RRTMGP
makes ecRad 1.5 times faster. This should be a significant
reduction especially for climate models, which can spend a
large share of the total model runtime on radiation. For in-
stance, in coarse-resolution simulations using the ECHAM
climate model, it accounted for half of the runtime of the at-
mospheric model (Cotronei and Slawig, 2020). (In the IFS,
radiation is currently only a few percent of the model run-
time, but this is largely due to it being called on a coarser
grid and only every hour.) While studies emulating the en-
tire radiation scheme have reported much larger speed-ups of
1–2 orders of magnitude, comparisons are often against old
and slow radiation codes (e.g. Lagerquist et al., 2021), and
gains may be much smaller against state-of-the-art schemes.
For instance, by combining performance refactoring (that we
plan to describe in a future paper) with algorithmic develop-
ments that allow reducing the spectral dimension (Hogan and
Matricardi, 2022), the cost of ecRad with Tripleclouds is re-
duced by an order of magnitude compared to the operational
version using McICA (Hogan and Bozzo, 2018), which was
already significantly faster than the previous ECMWF radi-
ation scheme. Adopting common metrics for efficiency (e.g.
time per column per CPU core) and accuracy and standard
datasets for independent verification would no doubt be help-
ful for getting a clearer view of the usefulness of radiation
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Figure 9. Similar to Fig. 8 but showing the height–latitude cross-
section of mean temperature (black contours) and temperature dif-
ference (colours) against the reference datasets, only until 1 hPa.

emulators. Unfortunately, the latter may be difficult in prac-
tice given limitations such as inflexibility with regards to the
vertical grid, which affect usual emulation approaches. Nev-
ertheless, as machine learning does not offer a magic bullet
to the accuracy–speed trade-off problem (Ukkonen, 2022a),
it is important that both are carefully evaluated in emulator
studies.

Figure 10. Zonal mean of different single-level quantities using the
reference full RRTMGP run in double precision (a, c, e, g, i) and
differences relative to this run (b, d, f, h, j) with the vertical lines
indicating the 95 % confidence interval: (a, b) 2 m temperature, (c,
d) TOA net SW flux, (e, f) TOA net LW flux, (g, h) surface down-
welling SW flux and (i, j) surface downwelling LW flux.
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Appendix A: CKDMIP evaluation for the longwave

This section contains longwave results for the RRTMGP
gas optics model with reduced spectral resolution (reduced
RRTMGP) and its neural network (NN) version, using
the experiment protocol, data and tools from the Corre-
lated K-distribution Model Intercomparison Project (CK-
DMIP). Four figures are included, corresponding to dif-
ferent gas optics models and gas concentration scenarios:
RRTMGP-NN, present day (Fig. A1); RRTMGP, present day
(Fig. A2); RRTMGP-NN, future (Fig. A3); and RRTMGP,
future (Fig. A4). The calculations were performed using a
no-scattering solver with four discrete zenith angles in each
hemisphere.

Figure A1. Evaluation of reduced-RRTMGP-NN longwave fluxes and heating rates using the 50 independent profiles of the CKDMIP
Evaluation-1 dataset with present-day concentrations of greenhouse gases. Reference profiles of upwelling flux, downwelling flux and heating
rate from LBL calculations; corresponding errors (b, e, h) with solid lines showing bias and the shaded area giving the 95th percentile of
errors; and instantaneous errors in upwelling TOA and downwelling surface fluxes (c, f).
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Figure A2. As in Fig. A1 but for the original reduced RRTMGP.
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Figure A3. As in Fig. A1 but for the future scenario.
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Figure A4. As in Fig. A1 but for the future scenario and reduced RRTMGP.

Code and data availability. RTE+RRTMGP-NN is available on
GitHub https://github.com/peterukk/rte-rrtmgp-nn (last access:
8 June 2023) (https://doi.org/10.5281/zenodo.7413935, Ukkonen,
2022c); the Fortran programmes and Python scripts used for
data generation and model training are found in the subdirec-
tory examples/rrtmgp-nn-training. The training data and archived
version of RTE+RRTMGP-NN 2.0 with its training scripts can
be accessed at https://doi.org/10.5281/zenodo.6576680 (Ukkonen,
2022d). Finally, the optimized version of the ecRad radiation
scheme integrated with RRTMGP-NN 2.0 can be accessed at
https://doi.org/10.5281/zenodo.7148329 (Ukkonen, 2022e).
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