Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1445-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Porting the WAVEWATCH III (v6.07) wave action source terms to GPU
Olawale James Ikuyajolu
CORRESPONDING AUTHOR
Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Program in Ocean Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Luke Van Roekel
Fluid Dynamics and Solid Mechanics (T-3), Los Alamos National Laboratory, Los Alamos, NM, USA
Steven R. Brus
Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
Erin E. Thomas
Fluid Dynamics and Solid Mechanics (T-3), Los Alamos National Laboratory, Los Alamos, NM, USA
Yi Deng
Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
Program in Ocean Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Sarat Sreepathi
Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
Related authors
No articles found.
Fucheng Yang, Jie He, Boniface Fosu, Yen-Heng Lin, and Yi Deng
EGUsphere, https://doi.org/10.5194/egusphere-2025-2684, https://doi.org/10.5194/egusphere-2025-2684, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Climate models often misrepresent rainfall, especially in the tropics. We improved a technique called nudging, which helps align model behavior with real-world data. This allowed us to better isolate and test how the model creates rain. We found that even when guided by real wind patterns, the model still produced too much light rain and not enough heavy rain, pointing to deeper flaws in its design. Our method helps reveal and fix these weaknesses.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Sara Calandrini, Darren Engwirda, and Luke Van Roekel
EGUsphere, https://doi.org/10.5194/egusphere-2024-472, https://doi.org/10.5194/egusphere-2024-472, 2024
Preprint withdrawn
Short summary
Short summary
Most modern ocean circulation models only consider the hydrostatic pressure, but for coastal phenomena nonhydrostatic effects become important, creating the need to include the nonhydrostatic pressure. In this work, we present a nonhydrostatic formulation for MPAS-Ocean (MPAS-O NH) and show its correctness on idealized benchmark test cases. MPAS-O NH is the first global nonhydrostatic model at variable resolution and is the first nonhydrostatic ocean model to be fully coupled in a climate model.
Louise Steffensen Schmidt, Thomas Vikhamar Schuler, Erin Emily Thomas, and Sebastian Westermann
The Cryosphere, 17, 2941–2963, https://doi.org/10.5194/tc-17-2941-2023, https://doi.org/10.5194/tc-17-2941-2023, 2023
Short summary
Short summary
Here, we present high-resolution simulations of glacier mass balance (the gain and loss of ice over a year) and runoff on Svalbard from 1991–2022, one of the fastest warming regions in the Arctic. The simulations are created using the CryoGrid community model. We find a small overall loss of mass over the simulation period of −0.08 m yr−1 but with no statistically significant trend. The average runoff was found to be 41 Gt yr−1, with a significant increasing trend of 6.3 Gt per decade.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Hyein Jeong, Adrian K. Turner, Andrew F. Roberts, Milena Veneziani, Stephen F. Price, Xylar S. Asay-Davis, Luke P. Van Roekel, Wuyin Lin, Peter M. Caldwell, Hyo-Seok Park, Jonathan D. Wolfe, and Azamat Mametjanov
The Cryosphere, 17, 2681–2700, https://doi.org/10.5194/tc-17-2681-2023, https://doi.org/10.5194/tc-17-2681-2023, 2023
Short summary
Short summary
We find that E3SM-HR reproduces the main features of the Antarctic coastal polynyas. Despite the high amount of coastal sea ice production, the densest water masses are formed in the open ocean. Biases related to the lack of dense water formation are associated with overly strong atmospheric polar easterlies. Our results indicate that the large-scale polar atmospheric circulation must be accurately simulated in models to properly reproduce Antarctic dense water formation.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022, https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Short summary
We document the model experiments for the future climate projection by E3SMv1.0. At the highest future emission scenario, E3SMv1.0 projects a strong surface warming with rapid changes in the atmosphere, ocean, sea ice, and land runoff. Specifically, we detect a significant polar amplification and accelerated warming linked to the unmasking of the aerosol effects. The impact of greenhouse gas forcing is examined in different climate components.
Carolyn Branecky Begeman, Xylar Asay-Davis, and Luke Van Roekel
The Cryosphere, 16, 277–295, https://doi.org/10.5194/tc-16-277-2022, https://doi.org/10.5194/tc-16-277-2022, 2022
Short summary
Short summary
This study uses ocean modeling at ultra-high resolution to study the small-scale ocean mixing that controls ice-shelf melting. It offers some insights into the relationship between ice-shelf melting and ocean temperature far from the ice base, which may help us project how fast ice will melt when ocean waters entering the cavity warm. This study adds to a growing body of research that indicates we need a more sophisticated treatment of ice-shelf melting in coarse-resolution ocean models.
Steven R. Brus, Phillip J. Wolfram, Luke P. Van Roekel, and Jessica D. Meixner
Geosci. Model Dev., 14, 2917–2938, https://doi.org/10.5194/gmd-14-2917-2021, https://doi.org/10.5194/gmd-14-2917-2021, 2021
Short summary
Short summary
Wind-generated waves are an important process in the global climate system. They mediate many interactions between the ocean, atmosphere, and sea ice. Models which describe these waves are computationally expensive and have often been excluded from coupled Earth system models. To address this, we have developed a capability for the WAVEWATCH III model which allows model resolution to be varied globally across the coastal open ocean. This allows for improved accuracy at reduced computing time.
Qing Li and Luke Van Roekel
Geosci. Model Dev., 14, 2011–2028, https://doi.org/10.5194/gmd-14-2011-2021, https://doi.org/10.5194/gmd-14-2011-2021, 2021
Short summary
Short summary
Physical processes in the ocean span multiple spatial and temporal scales. Simultaneously resolving all these in a simulation is computationally challenging. Here we develop a more efficient technique to better study the interactions across scales, particularly focusing on the ocean surface turbulent mixing, by coupling a global ocean circulation model MPAS-Ocean and a large eddy simulation model PALM. The latter is customized and ported on a GPU to further accelerate the computation.
Cited articles
Abdolali, A., Roland, A., van der Westhuysen, A., Meixner, J., Chawla, A.,
Hesser, T. J., Smith, J. M., and Sikiric, M. D.: Large-scale hurricane
modeling using domain decomposition parallelization and implicit scheme
implemented in WAVEWATCH III wave model, Coast. Eng., 157, 103656,
https://doi.org/10.1016/j.coastaleng.2020.103656, 2020. a
Alves, J.-H. G. M., Chawla, A., Tolman, H. L., Schwab, D., Lang, G., and Mann,
G.: The operational implementation of a Great Lakes wave forecasting system
at NOAA/NCEP, Weather Forecast., 29, 1473–1497, 2014. a
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J., Aouf, L., and Collard, F.:
Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40, 1917–1941, 2010. a
Bao, Y., Song, Z., and Qiao, F.: FIO-ESM Version 2.0: Model Description and
Evaluation, J. Geophys. Res.-Oceans, 125, e2019JC016036,
https://doi.org/10.1029/2019JC016036, 2020. a
Bertagna, L., Guba, O., Taylor, M. A., Foucar, J. G., Larkin, J., Bradley,
A. M., Rajamanickam, S., and Salinger, A. G.: A Performance-Portable
Nonhydrostatic Atmospheric Dycore for the Energy Exascale Earth System Model
Running at Cloud-Resolving Resolutions, SC '20, IEEE Press, https://doi.org/10.1109/SC41405.2020.00096, 2020. a
Bieringer, P. E., Piña, A. J., Lorenzetti, D. M., Jonker, H. J. J., Sohn,
M. D., Annunzio, A. J., and Fry, R. N.: A Graphics Processing Unit (GPU)
Approach to Large Eddy Simulation (LES) for Transport and Contaminant
Dispersion, Atmosphere, 12, 890, https://doi.org/10.3390/atmos12070890, 2021. a
Brus, S. R., Wolfram, P. J., Van Roekel, L. P., and Meixner, J. D.: Unstructured global to coastal wave modeling for the Energy Exascale Earth System Model using WAVEWATCH III version 6.07, Geosci. Model Dev., 14, 2917–2938, https://doi.org/10.5194/gmd-14-2917-2021, 2021. a, b, c
Bryan, K. and Cox, M. D.: A numerical investigation of the oceanic general
circulation, Tellus, 19, 54–80, https://doi.org/10.3402/tellusa.v19i1.9761, 1967. a
Cavaleri, L., Fox-Kemper, B., and Hemer, M.: Wind Waves in the Coupled Climate
System, B. Am. Meteorol. Soc., 93, 1651–1661,
https://doi.org/10.1175/BAMS-D-11-00170.1, 2012. a
Chandrasekaran, S. and Juckeland, G.: OpenACC for Programmers: Concepts and
Strategies, 1st Edn., Addison-Wesley Professional, ISBN 978-0134694283, 2017. a
Chawla, A., Spindler, D. M., and Tolman, H. L.: Validation of a thirty year
wave hindcast using the Climate Forecast System Reanalysis winds, Ocean
Model., 70, 189–206, 2013a. a
Chawla, A., Tolman, H. L., Gerald, V., Spindler, D., Spindler, T., Alves, J.-H.
G. M., Cao, D., Hanson, J. L., and Devaliere, E.-M.: A multigrid wave
forecasting model: A new paradigm in operational wave forecasting, Weather
Forecast., 28, 1057–1078, 2013b. a
Cornett, A. M.: A global wave energy resource assessment, in: The Eighteenth
International Offshore and Polar Engineering Conference, International
Society of Offshore and Polar Engineers, ISOPE-I-08-370, 2008. a
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a
Fan, Y. and Griffies, S. M.: Impacts of Parameterized Langmuir Turbulence and
Nonbreaking Wave Mixing in Global Climate Simulations, J. Climate,
27, 4752–4775, https://doi.org/10.1175/JCLI-D-13-00583.1, 2014. a
Gibson, G., Grider, G., Jacobson, A., and Lloyd, W.: PRObE: A thousand-node
experimental cluster for computer systems research, Usenix ;login, 38, https://www.usenix.org/system/files/login/articles/07_gibson_036-039_final.pdf (last access: 2 June 2022), 2013. a
Govett, M., Rosinski, J., Middlecoff, J., Henderson, T., Lee, J., MacDonald,
A., Wang, N., Madden, P., Schramm, J., and Duarte, A.: Parallelization and
Performance of the NIM Weather Model on CPU, GPU, and MIC Processors,
B. Am. Meteorol. Soc., 98, 2201–2213,
https://doi.org/10.1175/BAMS-D-15-00278.1, 2017. a
Hanappe, P., Beurivé, A., Laguzet, F., Steels, L., Bellouin, N., Boucher, O., Yamazaki, Y. H., Aina, T., and Allen, M.: FAMOUS, faster: using parallel computing techniques to accelerate the FAMOUS/HadCM3 climate model with a focus on the radiative transfer algorithm, Geosci. Model Dev., 4, 835–844, https://doi.org/10.5194/gmd-4-835-2011, 2011. a
Ikuyajolu, O. J., Van Roekel, L., Brus, S., Thomas, E. E., and Deng, Y.: Porting the WAVEWATCH III Wave Action Source Terms to GPU – WaveWatchIII configuration files, Zenodo [data set], https://doi.org/10.5281/zenodo.6483480, 2022a. a
Ikuyajolu, O. J., Van Roekel, L., Brus, S., Thomas, E. E., and Deng, Y.:
Porting the WAVEWATCH III Wave Action Source Terms to GPU – Code Base (1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.6483401, 2022b. a
Intel Corporation: Intel Advisor User Guide Version 2022.0, Intel
Corporation,
https://www.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top.html (last access: 30 November 2022),
2021. a
Jiang, J., Lin, P., Wang, J., Liu, H., Chi, X., Hao, H., Wang, Y., Wang, W.,
and Zhang, L.: Porting LASG/ IAP Climate System Ocean Model to Gpus Using
OpenAcc, IEEE Access, 7, 154490–154501,
https://doi.org/10.1109/ACCESS.2019.2932443, 2019. a
Law Chune, S. and Aouf, L.: Wave effects in global ocean modeling:
parametrizations vs. forcing from a wave model, Ocean Dynam., 68,
1739–1758, https://doi.org/10.1007/s10236-018-1220-2, 2018. a
Li, J.-G.: Propagation of ocean surface waves on a spherical multiple-cell
grid, J. Comput. Phys., 231, 8262–8277,
https://doi.org/10.1016/j.jcp.2012.08.007, 2012. a
Li, Q. and Van Roekel, L.: Towards multiscale modeling of ocean surface turbulent mixing using coupled MPAS-Ocean v6.3 and PALM v5.0, Geosci. Model Dev., 14, 2011–2028, https://doi.org/10.5194/gmd-14-2011-2021, 2021. a
Li, Q., Webb, A., Fox-Kemper, B., Craig, A., Danabasoglu, G., Large, W. G., and
Vertenstein, M.: Langmuir mixing effects on global climate: WAVEWATCH III in
CESM, Ocean Model., 103, 145–160,
https://doi.org/10.1016/j.ocemod.2015.07.020, 2016. a, b
Michalakes, J. and Vachharajani, M.: GPU acceleration of numerical weather
prediction, in: 2008 IEEE International Symposium on Parallel and Distributed
Processing, 14–18 April 2008, Miami, FL, USA, 1–7, https://doi.org/10.1109/IPDPS.2008.4536351, 2008. a
Mielikainen, J., Huang, B., and Huang, H.-L. A.: GPU-Accelerated Multi-Profile
Radiative Transfer Model for the Infrared Atmospheric Sounding
Interferometer, IEEE J. Sel. Top. Appl., 4, 691–700, https://doi.org/10.1109/JSTARS.2011.2159195, 2011. a
Norman, M. R., Mametjanov, A., and Taylor, M. A.: Exascale Programming
Approaches for the Accelerated Model for Climate and Energy, https://doi.org/10.1201/b21930-9, 2017. a
Norman, M. R., Bader, D. A., Eldred, C., Hannah, W. M., Hillman, B. R., Jones,
C. R., Lee, J. M., Leung, L. R., Lyngaas, I., Pressel, K. G., Sreepathi, S.,
Taylor, M. A., and Yuan, X.: Unprecedented cloud resolution in a
GPU-enabled full-physics atmospheric climate simulation on OLCF's summit
supercomputer, Int. J. High Perform. Co., 36, 93–105, 2022. a
Qiao, F., Song, Z., Bao, Y., Song, Y., Shu, Q., Huang, C., and Zhao, W.:
Development and evaluation of an Earth System Model with surface gravity
waves, J. Geophys. Res.-Oceans, 118, 4514–4524,
https://doi.org/10.1002/jgrc.20327, 2013. a, b
Roland, A.: Development of WWM II: Spectral wave modeling on unstructured
meshes, PhD thesis, https://www.academia.edu/1548294/PhD_Thesis_Spectral_Wave_Modelling_on_Unstructured_Meshes (last access: 2 June 2022), 2008. a
Shimokawabe, T., Aoki, T., Muroi, C., Ishida, J., Kawano, K., Endo, T., Nukada,
A., Maruyama, N., and Matsuoka, S.: An 80-Fold Speedup, 15.0 TFlops Full GPU
Acceleration of Non-Hydrostatic Weather Model ASUCA Production Code, in: SC
'10: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, 1–11,
https://doi.org/10.1109/SC.2010.9, 2010.
a
Shimura, T., Mori, N., Takemi, T., and Mizuta, R.: Long-term impacts of ocean
wave-dependent roughness on global climate systems, J. Geophys.
Res.-Oceans, 122, 1995–2011,
https://doi.org/10.1002/2016JC012621, 2017. a
Song, Z., Qiao, F., and Song, Y.: Response of the equatorial basin-wide SST to
non-breaking surface wave-induced mixing in a climate model: An amendment to
tropical bias, J. Geophys. Res.-Oceans, 117, C00J26,
https://doi.org/10.1029/2012JC007931, 2012. a
The Wamdi Group: The WAM model – A third generation ocean wave prediction
model, J. Phys. Oceanogr., 18, 1775–1810, 1988. a
Tolman, H. L.: Distributed-memory concepts in the wave model WAVEWATCH III,
Parallel Comput., 28, 35–52,
https://doi.org/10.1016/S0167-8191(01)00130-2, 2002. a
Tolman, H. L.: A mosaic approach to wind wave modeling, Ocean Model., 25,
35–47, https://doi.org/10.1016/j.ocemod.2008.06.005, 2008. a
Wang, D.-P. and Oey, L.-Y.: Hindcast of waves and currents in Hurricane
Katrina, B, B. Am. Meteorol. Soc, 89, 487–496, 2008. a
Weidendorfer, J.: Sequential Performance Analysis with Callgrind and
KCachegrind, in: Tools for High Performance Computing, edited by: Resch, M.,
Keller, R., Himmler, V., Krammer, B., and Schulz, A., Springer
Berlin Heidelberg, Berlin, Heidelberg, 93–113, https://doi.org/10.1007/978-3-540-68564-7_7, 2008. a
Xiao, H., Sun, J., Bian, X., and Dai, Z.: GPU acceleration of the WSM6 cloud
microphysics scheme in GRAPES model, Comput. Geosci., 59, 156–162,
https://doi.org/10.1016/j.cageo.2013.06.016, 2013. a
Xu, S., Huang, X., Oey, L.-Y., Xu, F., Fu, H., Zhang, Y., and Yang, G.: POM.gpu-v1.0: a GPU-based Princeton Ocean Model, Geosci. Model Dev., 8, 2815–2827, https://doi.org/10.5194/gmd-8-2815-2015, 2015. a, b
Yuan, Y., Shi, F., Kirby, J. T., and Yu, F.: FUNWAVE-GPU: Multiple-GPU
Acceleration of a Boussinesq-Type Wave Model, J. Adv. Model.
Earth Sy., 12, e2019MS001957,
https://doi.org/10.1029/2019MS001957, 2020. a
Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020. a
Executive editor
Having major Earth system model components make full use of new architectures is a critical step on the pathway to exascale climate simulation. This paper documents just this for the widely used WAVEWATCH III model.
Having major Earth system model components make full use of new architectures is a critical step...
Short summary
Wind-generated waves play an important role in modifying physical processes at the air–sea interface, but they have been traditionally excluded from climate models due to the high computational cost of running spectral wave models for climate simulations. To address this, our work identified and accelerated the computationally intensive section of WAVEWATCH III on GPU using OpenACC. This allows for high-resolution modeling of atmosphere–wave–ocean feedbacks in century-scale climate integrations.
Wind-generated waves play an important role in modifying physical processes at the air–sea...