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Abstract. Surface gravity waves play a critical role in several
processes, including mixing, coastal inundation, and surface
fluxes. Despite the growing literature on the importance of
ocean surface waves, wind–wave processes have tradition-
ally been excluded from Earth system models (ESMs) due to
the high computational costs of running spectral wave mod-
els. The development of the Next Generation Ocean Model
for the DOE’s (Department of Energy) E3SM (Energy Exas-
cale Earth System Model) Project partly focuses on the in-
clusion of a wave model, WAVEWATCH III (WW3), into
E3SM. WW3, which was originally developed for opera-
tional wave forecasting, needs to be computationally less ex-
pensive before it can be integrated into ESMs. To accomplish
this, we take advantage of heterogeneous architectures at
DOE leadership computing facilities and the increasing com-
puting power of general-purpose graphics processing units
(GPUs). This paper identifies the wave action source terms,
W3SRCEMD, as the most computationally intensive module
in WW3 and then accelerates them via GPU. Our experi-
ments on two computing platforms, Kodiak (P100 GPU and
Intel(R) Xeon(R) central processing unit, CPU, E5-2695 v4)
and Summit (V100 GPU and IBM POWER9 CPU) show
respective average speedups of 2× and 4× when mapping
one Message Passing Interface (MPI) per GPU. An average
speedup of 1.4× was achieved using all 42 CPU cores and
6 GPUs on a Summit node (with 7 MPI ranks per GPU).
However, the GPU speedup over the 42 CPU cores remains
relatively unchanged (∼ 1.3×) even when using 4 MPI ranks
per GPU (24 ranks in total) and 3 MPI ranks per GPU (18

ranks in total). This corresponds to a 35 %–40 % decrease
in both simulation time and usage of resources. Due to too
many local scalars and arrays in the W3SRCEMD subrou-
tine and the huge WW3 memory requirement, GPU perfor-
mance is currently limited by the data transfer bandwidth be-
tween the CPU and the GPU. Ideally, OpenACC routine di-
rectives could be used to further improve performance. How-
ever, W3SRCEMD would require significant code refactoring
to make this possible. We also discuss how the trade-off be-
tween the occupancy, register, and latency affects the GPU
performance of WW3.

1 Introduction

Ocean surface gravity waves, which derive energy and mo-
mentum from steady winds blowing over the surface of the
ocean, are a very crucial aspect of the physical processes at
the atmosphere–ocean interface. They influence a variety of
physical processes such as momentum and energy fluxes,
gas fluxes, upper-ocean mixing, sea spray production, ice
fracture in the marginal ice zone, and Earth albedo (Cava-
leri et al., 2012). Such complex wave processes can only be
treated accurately by including a wave model into Earth sys-
tem models (ESMs). The first ocean models neglected the
existence of ocean waves by assuming that the ocean surface
is rigid to momentum and buoyancy fluxes from the atmo-
spheric boundary layer (Bryan and Cox, 1967). Currently,
most state-of-the-science ESMs are still missing some or all

Published by Copernicus Publications on behalf of the European Geosciences Union.



1446 O. J. Ikuyajolu et al.: WAVEWATCH III on GPU

of these wave-induced effects (Qiao et al., 2013), despite the
growing literature on their importance in the simulation of
weather and climate.

Recent literature has shown that incorporating different as-
pects of surface waves into ESMs leads to improved skill
performance, particularly in the simulation of sea surface
temperature, wind speed at 10 m height, ocean heat content,
mixed-layer depth, and the Walker and Hadley circulations
(Law Chune and Aouf, 2018; Song et al., 2012; Shimura
et al., 2017; Qiao et al., 2013; Fan and Griffies, 2014; Li et al.,
2016). Yet, only two climate models that participated in the
Climate Model Intercomparison Project Phase 6 (CMIP6),
i.e., the First Institute of Oceanography Earth System Model
Version 2 (FIO-ESM v2.0; Bao et al., 2020) and the Com-
munity Earth System Model Version 2 (CESM2; Danaba-
soglu et al., 2020), have a wave model as part of their default
model components. However, for CMIP6, only FIO-ESM
v2.0 employed a wave model. Wind–wave-induced physical
processes have traditionally been excluded from ESMs due
to the high computational cost of running spectral wave mod-
els on global model grids for long-term climate integrations.
In addition to higher computing costs due to longer simu-
lation times, adding new model components also increases
resource requirements (e.g., the number of central process-
ing units/nodes). The next-generation ocean model develop-
ment in the US Department of Energy (DOE) Energy Ex-
ascale Earth System Model (E3SM) project partly focuses
on the inclusion of a spectral wave model, WAVEWATCH
III (WW3), into E3SM to improve the simulation of coastal
processes within E3SM. To make WW3 within E3SM fea-
sible for long-term global integrations, we need to make it
computationally less expensive.

Computer architectures are evolving rapidly, especially in
the high-performance computing environment, from tradi-
tional homogeneous machines with multicore central pro-
cessing units (CPUs) to heterogeneous machines with multi-
node accelerators such as graphics processing units (GPUs)
and multicore CPUs. Moreover, the number of CPU–GPU
heterogeneous machines in the top 10 of the TOP500 in-
creased from two in November 2015 (https://www.top500.
org/lists/top500/2015/11/, last access: 30 November 2022)
to seven in November 2022 (https://www.top500.org/lists/
top500/2022/11/, last access: 30 November 2022). The ad-
vent of heterogeneous super-computing platforms as well
as the increasing computing power and low energy-to-
performance ratio of GPUs has motivated the use of GPUs
to accelerate climate and weather models. In recent years,
numerous studies have reported successful GPU porting of
full or partial weather and climate models with improved
performance (Hanappe et al., 2011; Xu et al., 2015; Yuan
et al., 2020; Zhang et al., 2020; Bieringer et al., 2021;
Mielikainen et al., 2011; Michalakes and Vachharajani, 2008;
Shimokawabe et al., 2010; Govett et al., 2017; Li and
Van Roekel, 2021; Xiao et al., 2013; Norman et al., 2017;
Norman et al., 2022; Bertagna et al., 2020). A GPU pro-

gramming model is different from CPU code, so program-
mers must recode or use directives to port codes to GPU.
Because climate and weather models consist of million of
lines of code, a majority of the GPU-based climate simula-
tions only operate on certain hot spots (most computationally
intensive operations) of the model while leaving a large por-
tion of the model on CPUs. In recent years, however, efforts
have been made to run an entire model component on a GPU.
For example, Xu et al. (2015) ported the entire Princeton
Ocean Model to GPU and achieved a 6.9× speedup. Simi-
larly, the entire E3SM atmosphere including SCREAM (Sim-
ple Cloud-Resolving E3SM Atmosphere Model) is running
on a GPU (https://github.com/E3SM-Project/scream, last ac-
cess: 30 November 2022). Taking advantage of the recent
advancements in GPU programming in climate sciences and
the heterogeneous architectures at DOE leadership comput-
ing facilities, this study seeks to identify and move the com-
putationally intensive parts of WW3 to GPU through the use
of OpenACC pragmas.

The rest of the paper is structured as follows: Sect. 2
presents an overview of the WW3 model and its paralleliza-
tion techniques, give an introduction to the OpenACC pro-
gramming model, describe the hardware and software en-
vironment of our testing platforms, and finally present the
test case configuration used in this study; the results sec-
tion, Sect. 3, presents the WW3 profiling analysis on CPU,
discusses the challenges encountered, outlines GPU-specific
optimization techniques, and compares the GPU results with
the original Fortran code; and Sect. 4 concludes the paper.

2 Model description and porting methodology

2.1 WAVEWATCH III

WW3 is a third-generation spectral wave model developed
at the US National Centers for Environmental Prediction
(NOAA/NCEP) (WAVEWATCH III® Development Group,
2019) from the WAve Model (WAM) (The Wamdi Group,
1988). It has been widely used to simulate ocean waves
in many oceanic regions for various science and engineer-
ing applications (Chawla et al., 2013b; Alves et al., 2014;
Cornett, 2008; Wang and Oey, 2008). To propagate waves,
WW3 solves the random-phase spectral action density bal-
ance equation, N(φ,λ,σ,θ, t), for wave number direction
spectra. The intrinsic frequency (σ ) relates the action den-
sity spectrum to the energy spectrum (F ), N = F

σ
. For large-

scale applications, the evolution of the wave action density
in WW3 is expressed in spherical coordinates as follows:

∂N

∂t
+
∂(CφN)

∂φ
+
∂(CλN)

∂λ
+
∂(CσN)

∂σ
+
∂(CθN)

∂θ
=

∑
i

Si . (1)

Equation (1) is solved by discretizing in both physical
space (λ, φ) and spectral space (σ , θ ). Here, φ is the lon-
gitude, λ is the latitude, σ is the relative frequency, θ is the
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direction, t is time, and S represents the source and sinks
terms. The net source–sink terms consist of several physical
processes responsible for the generation, dissipation, and re-
distribution of energy. The net source–sink terms available
in WW3 are wave generation due to wind (Sin), dissipation
(Sds), nonlinear quadruplet interactions (Snl), bottom friction
(Sbt), and depth-limited breaking (Sdb); triad wave–wave in-
teractions (Str); scattering of waves by bottom features (Ssc);
wave–ice interactions (Sice); and reflection off shorelines or
floating objects (Sref). Details of each source term can be
found in the WW3 manual (WAVEWATCH III® Develop-
ment Group, 2019). The primary source–sink terms used in
this work are Sin, Sds, Snl, Sbt, and Sdb. Several modules
are used for the calculation of source terms. However, the
W3SRCEMD module manages the general calculation and in-
tegration of source terms.

When moving code between different architectures, it is
necessary to understand its structure. For the purposes of
our study, Fig. 1 shows a representation of the WW3 algo-
rithm structure. WW3 is divided into several submodules, but
the actual wave model is W3WAVEMD, which runs the wave
model for a given time interval. Within W3WAVEMD, several
modules are called at each time interval to handle initializa-
tions, interpolation of winds and currents, spatial propaga-
tion, intra-spectral propagation, calculation and integration
of source terms, output file processing, etc. In our work, we
found that W3SRCEMD is the most computationally intensive
part of WW3; thus, we focus our attention on this module.
According to Fig. 1a, W3SRCEMD is being called at each
spatial grid point, which implies that the spatial grid loop is
not contained in W3SRCEMD but rather in W3WAVEMD. Fig-
ure 1b, which represents W3SRCEMD, contains a dynamic in-
tegration time loop that can only be executed sequentially. It
also calls a number of submodules, such as W3SRC4MD for
the computation of the wind input and wave breaking dissipa-
tion source terms. W3SRCEMD consists of collapsed spectral
loops (NSPECH= NK×NTH), where NK is the number of
frequencies (σ ) and NTH is the number of wave directions
(θ ). Lastly, W3SRC4MD (Fig. 1c) consists of only frequency
(NK) loops. The structure of other source terms submodules
is similar to W3SRC4MD.

2.2 WW3 grids and parallel concepts

The current version of WW3 can be run and compiled for
both single- and multiprocessor Message Passing Interface
(MPI) compute environments with regular grids, two-way
nested (mosaic) grids (Tolman, 2008), spherical multicell
(SMC) grids (Li, 2012), and unstructured triangular meshes
(Roland, 2008; Brus et al., 2021). In this study, we ran and
compiled WW3 using an MPI with unstructured triangular
meshes as the grid configuration. In WW3, the unstructured
grid can be parallelized in physical space using either card
deck (CD) (Tolman, 2002) or domain (Abdolali et al., 2020)
decomposition. Following Brus et al. (2021), we used the CD

approach as the parallelization strategy. The ocean (active)
grid cells are sorted and distributed linearly between proces-
sors in a round-robin fashion using n=mod(m− 1,N), i.e.,
grid cell m is assigned to processor n. Here, N is the total
number of processors. If N is divisible by M (the total num-
ber of ocean grids), every processor n has the same number
of grids, NSEAL (Fig. 1a). The source term calculation as
well as the intra-spectral propagation are computed using the
aforementioned parallel strategy, but data are gathered on a
single processor to perform the spatial propagation.

2.3 OpenACC

To demonstrate the promise of GPU computing for WW3,
we used the OpenACC programming model. OpenACC is
a directive-based parallel programming model developed to
run codes on accelerators without significant programming
effort. Programmers incorporate compiler directives in the
form of comments into Fortran, C, or C++ source codes to
assign the computationally intensive sections of the code to
be executed on the accelerator. OpenACC helps to simplify
GPU programming because the programmer is not preoc-
cupied with the code parallelism details, unlike CUDA and
OpenCL where you need to change the code structure to
achieve GPU compatibility. The OpenACC compiler auto-
matically transfers calculations and data between two dif-
ferent architectures: the host (CPU) and the accelerator de-
vice (GPU). OpenACC works together with OpenMP, MPI,
and CUDA, supporting heterogeneous parallel environments.
Starting from version 4.5, the OpenMP API (application pro-
gramming interface) specification has been extended to in-
clude GPU offloading and GPU parallel directives. Whereas
OpenMP and OpenACC have similar constructs, OpenMP is
more prescriptive. Prescriptive directives describe the exact
computation that should be performed and provide the com-
piler no flexibility. Our study focuses solely on OpenACC
because it has the most mature implementation using the
NVIDIA compiler on NVIDIA GPUs at the time of analy-
sis.

OpenACC has three levels of parallelism (Fig. 2), namely
vectors, workers, and gangs, corresponding to threadIdx.x,
threadIdx.y, and blockIdx.x in CUDA terminology. A gang
is a group of workers, where multiple gangs work indepen-
dently without synchronization. Workers are groups of vec-
tors/threads within a gang, and a vector is the finest level of
parallelism operating with single-instruction, multiple thread
(SIMT). Gangs, workers, and vectors can be added to a loop
region that needs to be executed on a GPU. An example
of Fortran code with and without OpenACC directives is
shown in Fig. 3. The OpenACC directives are shown in green
as comments starting with !$acc (e.g., lines 6 and 12 in
Fig. 3b). In Fig. 3b, line 6 is a declaration directive for al-
locating memory for variables on GPU, line 8 is the data re-
gion to move data into the GPU, line 11 updates data already
present on the GPU with new values from the CPU, line 12
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Figure 1. A schematic representation of the WAVEWATCH III code structure.

Table 1. GPU hardware specifications.

Summit (V100) Kodiak (P100)

Compute capability 7 6
Global memory size 16 GB 16 GB
L1 cache 10 MB 1.3 MB
L2 cache 6 MB 4 MB
Shared memory size per SM Configurable up to 96 kB 49 kB
Constant memory 64 kB 64 kB
Register file size 256 kB (per SM) 256 kB (per SM)
32-bit registers 65 536 (per SM) 65 536 (per SM)
Max registers per thread 255 255
Number of multiprocessors (SMs) 80 56
Warp size 32 threads 32 threads
Maximum resident warps per SM 64 64
Maximum resident blocks per SM 32 32
Maximum resident threads per SM 2048 2048
Maximum threads per block 1024 1024

SM refers to streaming multiprocessor, and L1 and L2 denote Level 1 and Level 2, respectively.

launches the parallel region at the gang level and then dis-
patches the parallel threads at the worker and vector levels,
line 21 updates CPU data with new values from the GPU,
and line 28 deletes the data on the GPU after computation.
To learn more about all OpenACC directives, the reader is re-
ferred to NVIDIA (2017) or Chandrasekaran and Juckeland
(2017)

2.4 Test case configuration

In this study, the WW3 model was configured and simulated
over the global ocean with an unstructured mesh with a 1◦

global resolution and a 0.25◦ resolution in regions with a
depth of less than 4 km, e.g., 1◦ at the Equator and 0.25◦

in coastal regions (Brus et al., 2021). The number of the un-
structured mesh nodes is 59 072 (ranges from 1◦ at the Equa-
tor to 0.5◦ along coastlines; hereafter 59K). In addition, we
demonstrate the effect of scaling the problem size on speedup
by using an unstructured mesh with 228 540 nodes (ranges
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Figure 2. A map of gangs, workers, and vectors (adapted from Jiang
et al., 2019).

from 0.5◦ at the Equator to 0.25◦ along coastlines; hereafter
228K). Following Chawla et al. (2013a), for both spatial grid
configurations, we use a spectral grid that has 36 directions
and 50 frequency bands that range exponentially from 0.04
to 0.5 Hz, separated by a factor of 1.1. In WW3, the combi-
nations and types of the source terms in Eq. (1) depend on the
research question being answered. WW3 has several source
term packages which can be implemented by activating dif-
ferent switches. However, as the goal of this study is purely
computational, we selected the following commonly used
source–sink term switches: ST4, DB1, BT1, and NL1. The
ST4 switch (Ardhuin et al., 2010) consists of the wind input
(Sin) and wave breaking dissipation (Sds) source terms, the
DB1 switch is for the depth-induced breaking (Sdb) source
term, the BT1 switch consists of the bottom friction (Sbt)
source term parameterizations, and the nonlinear quadruplet
wave interactions (Snl) are computed in the model using the
NL1 switch.

We develop and test our accelerated WW3 code on GPUs
on the following two computational platforms with heteroge-
neous architectures:

1. the Kodiak cluster from the Parallel Reconfigurable
Observational Environment (PROBE) facility (Gibson
et al., 2013) of Los Alamos National Laboratory. Ko-
diak has 133 compute nodes. Each node contains an In-
tel(R) Xeon(R) CPU (E5-2695 v4), 2.10 GHz with 36
CPU cores, and four NVIDIA Tesla P100 SXM2 gen-
eral purpose computation on graphics processing units
(GPGPUs), each with 16 GB of memory.

2. Summit, a high-performance computing system at Oak
Ridge National Laboratory (ORNL). Summit has 4608
nodes; each node contains two IBM POWER9 CPUs
and six NVIDIA Tesla V100 GPUs, each with 80
streaming multiprocessors. All are connected together

with NVIDIA’s high-speed NVLink. Summit is the
fastest supercomputer in the US and the second fastest
in the world (in 2021).

Table 1 shows the configuration of each compute node
for both platforms. For a more accurate comparison of
CPU and GPU codes, we used the same compiler. On
Kodiak, the CPU Fortran code was compiled using the
flags -g -O3 -acc. Similarly, the OpenACC code was
compiled with flags -g -O3 -acc -Minfo=accel
-ta=tesla,ptxinfo,maxregcount:n. Like-
wise, the flags for the CPU code on Summit are
-g -O2, and those of OpenACC are -g -O2
-acc -ta=tesla,ptxinfo,maxregcount:n
-Minfo=accel. Options
-ta=tesla:ptxinfo,maxregcount:n are the
optimization flags1 used in this study (Sect. 3.2). Adding
the option -ta=tesla:ptxinfo to the compile flags
provides information about the amount of shared memory
used per kernel (a function that is called by the CPU for
execution on the GPU) as well the registers per thread. The
flag -ta=tesla:maxregcount:n, where “n” is the
number of registers, sets the maximum number of registers
to use per thread.

As a test case, we performed a 5 h simulation from
00:00:00 to 05:00:00 on 1 June 2005 by forcing WW3 with
atmospheric winds derived from the US National Center for
Atmospheric Research (NCAR) reanalysis. We verify the
GPU model for correctness using significant wave heights
(SWHs) from the CPU-only simulation.

3 Results and evaluations

In this section, we first describe the performance of WW3
on a CPU and its computationally intensive sections. Fur-
thermore, we discuss the challenges encountered, how GPU
optimization is done, and present the performance result of
porting WW3 on GPU. Lastly, we discuss the performance
limitation using roofline analysis.

3.1 WW3 profiling analysis on a CPU

With model optimization, an important step is to find the run-
time bottlenecks by measuring the performance of various
sections in units of time and operations. In order to not waste
time nor resources improving the performance of rarely used
subroutines, we first need to figure out where WW3 spends
most of its time. The technical term for this process is “profil-
ing”. For this purpose, we profile WW3 by running the Call-
grind profiler from the Valgrind tool and then visualize the
output using a KCachegrind tool (Weidendorfer, 2008). An
application’s performance can be 10× to 50× slower when
profiling it with Callgrind; however, the proportions of time

1WW3 hangs when the -O3 optimization flag is used.
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Table 2. The speedups and simulation times associated with offloading one MPI rank exclusively to one GPU on Kodiak and Summit with
59K and 228K mesh sizes for MPI ranks ranging from 1 to 32.

MPI ranks CPU GPU Speedup

Summit

59K

1 6688.97 1429.92 4.7
2 3347.84 748.39 4.5
4 1685.4 386.4 4.4
8 842.91 205.45 4.1

16 435.5 113.63 3.8
32 236.84 64.39 3.7

228K

1 38 982.1 5905.57 6.6
2 19 827.3 3042.59 6.5
4 9901.16 1544.22 6.4
8 3424 778.45 4.4

16 1720.87 399.59 4.3
32 878.05 219 4.0

Kodiak

59K

1 5574.38 2477.38 2.3
2 2856.38 1291.53 2.2
4 1564.3 700.68 2.2
8 873.05 373.78 2.3

16 398.54 195.99 2.0
32 239.64 114.2 2.1

228K

1 22 864.27 9636.75 2.4
2 12 184.45 5592.38 2.2
4 6313.02 2964.1 2.1
8 3423.55 1448.44 2.4

16 1586.75 746.27 2.1
32 871.22 381.01 2.3

remain the same. Figure 4 shows the call graph obtained by
profiling WW3 with 300 MPI ranks. The source term sub-
routine, W3SRCEMD, can easily be spotted as the consumer
of ∼ 82 % of the total execution time and resources. Within
the W3SRCEMD subroutine, the dissipation source term Sds
uses more than 40 % of the total runtime because it con-
tains numerous time-consuming spectral loops. In fact, pro-
filing WW3 with another profiler (not shown), Intel Advisor
(Intel Corporation, 2021), specifically highlights the time-
consuming spectral loops. In WW3, each processor serially
runs through its sets of allocated spatial grids (described
in Sect. 2.2), with each containing spectral grid points, and
W3SRCEMD has a time-dynamic integration (Fig. 1b) proce-
dure which can not be parallelized. Looping through spectral
grids and the time-dynamic integration procedure are plausi-
ble reasons why W3SRCEMD is the bottleneck of WW3. We
refer to the WW3 model with GPU-accelerated W3SRCEMD
as “WW3-W3SRCEMD.gpu”, and we refer to the CPU-only
version as “WW3.cpu”.

Fortunately, W3SRCEMD does not contain neighboring
grid dependencies in the spatial nor spectral grids, i.e., no
parallel data transfers; therefore, W3SRCEMD can be ported
to GPUs with less difficulty. We moved the entire WW3
source term computation to GPU, as shown in Fig. 3b.

3.2 Challenges and optimization

Once the program hot spot is ported to the GPU, the GPU
code needs to be optimized in order to improve its perfor-
mance. Conventionally, the optimization of GPU codes in-
volves loop optimization (fusion and collapse), data trans-
fer management (CPU to GPU and GPU to CPU), mem-
ory management, and occupancy. Some of these optimiza-
tion techniques are interrelated (e.g., memory management
and occupancy). The WW3 model contains very few col-
lapsible loops, so loop fusing and loop collapsing did not ef-
fectively optimize the code (not shown). To successfully port
WW3-W3SRCEMD.gpu and achieve the best performance,
two challenges had to be overcome in this study. The first is a
data transfer issue caused by the WW3 data structure, while
the second is a memory management and occupancy issue
caused by the use of many local arrays, sometimes of spec-
tral length, and scalars within W3SRCEMD and its embedded
subroutines.

3.2.1 Data transfer management

It is important to understand the layout of data structures in
the program before porting to a GPU. WW3 outlines its data
structures using modules, e.g., W3ADATMD, W3GDATMD, and
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Figure 3. A schematic representation of the WAVEWATCH III original Fortran source code for the W3WAVEMD module (a) and its
OpenACC directives version (b).

W3ODATMD (lines 2 and 3 of Fig. 3a). Depending on the
variable required, each subroutine uses these modules. These
variables are called global external variables. As it is not pos-
sible to move data within a compute kernel in a GPU, all
necessary data must be present on the GPU prior to launch-
ing the kernel that calls W3SRCEMD. The structure of WW3
requires the use of a routine directive (!$acc routine)
to create a device version of W3SRCEMD, as well as other
subroutines in it. In Fortran, the routine directive appears in
the subprogram specification section or its interface block.
Due to the use of routine directives, OpenACC declare direc-
tives (!$acc declare create; line 6 of Fig. 3b) were
added to the data structures module to inform the compiler
that global variables need to be created in the device mem-
ory as well as the host memory.

All data must be allocated on the host before being
created on a device unless they have been declared de-
vice residents. In WW3, however, arrays whose size are
determined by spatial–spectral grid information are allo-
cated at runtime, rather than within the data structure
modules. Thus, creating data on the device within the
WW3 data modules poses a problem. Due to this restric-

tion, it was then necessary to explicitly move all of the
required data to the GPU before launching the kernel.
For managing data transfers between iteration cycles, we
use !$acc update device(variables) and !$acc
update self(variables) (lines 11 and 21 in Fig. 3b).
However, it would be easier to use unified memory, which of-
fers a unified memory address space to both CPUs and GPUs,
rather than tracking each and every piece of data that needs to
be sent to the GPU, but the latest OpenACC version does not
support the use of unified memory with routine directives. In
the future, having this feature would save time spent track-
ing data transfers in programs with many variables such as
WW3.

3.2.2 Memory management and occupancy

Occupancy is defined as the ratio of active warps (workers)
on a streaming multiprocessor (SM) to the maximum number
of active warps supported by the SM. On Kodiak and Sum-
mit, the maximum number of threads per SM is 2048. A warp
consists of 32 threads which implies that the total number of
possible warps per SM is 8. Even if the kernel launch con-
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Figure 4. The call graph obtained by profiling WAVEWATCH III with 300 CPU cores on Summit. Each box includes the name of the
subroutine and its relative execution time as a percentage.

figuration maximizes the number of threads per SM, other
GPU resources, such as shared memory and registers, may
also limit the number of maximum threads, thus indirectly af-
fecting GPU occupancy. A register is a small amount of fast
storage available to each thread, whereas shared memory is
the memory shared by all threads in each SM. As seen in Ta-
ble 1, the maximum memory per SM for Kodiak and Summit
is 256 kB, but the maximum shared memory is 64 kB for Ko-
diak (P100) and 94 kB for Summit (V100). In terms of total
register file size per GPU, Kodiak and Summit have 14 336
and 20 480 kB, respectively.

To estimate GPU usage, we use the CUDA occu-
pancy calculator available at https://docs.nvidia.com/cuda/
cuda-occupancy-calculator/CUDA_Occupancy_Calculator.
xls (last access: 30 November 2022). In this study, the
kernel launch configurations consist of NSEAL gangs,
where NSEAL refers to the number of grids on each node,
and each gang has 32 vector lengths (or threads). With this
configuration, the achievable GPU occupancy (regardless of
other resources) is 50 %. Adding -ta=tesla:pxtinfo
to the compiler flags provides information about the size
of registers, memory spills (movement of variables out of
the register space to the main memory), and shared memory
allocated during compilation. Kodiak and Summit both
allocate the maximum 255 kB register per thread, reducing
the GPU occupancy to 13 %. In addition, a full register
leads to the spilling of memory into the Level 1 (L1) cache
(shared memory). A spill to cache is fine, but a spill to the
global memory will severely affect performance because
the time required to get data from the global memory is
longer than the time required to get data from a register.
This phenomenon is known as latency: the amount of time
required to move data from one point to the other. Therefore,
an increase (decrease) in register size causes two different
things simultaneously: a decrease (increase) in occupancy

and a decrease (increase) in latency. There is always a
trade-off between register, latency, and occupancy, and the
trick is to find the spot that maximizes performance. One
can set the maximum number of registers per thread via
the -ta=tesla:maxregcount:n flag, where “n” is the
number of registers.

Figure 5 illustrates how the trade-off between latency and
occupancy affects the GPU performance based on the num-
ber of registers. Our analysis was only based on the perfor-
mance of running a 228K mesh configuration with 16 MPI
tasks. For Summit, as the number of registers increases from
16 to 64, the GPU occupancy remains constant at 50 % and
GPU performance improves due to the movement of more
variables to the fast memory. As indicated by the blue part
of the line, this is a latency-dominant region. However, as
the number of register increases from 64 to 192, GPU occu-
pancy gradually decreases from 50 % to 13 %. This degraded
performance despite moving more data into the fast mem-
ory. Therefore, this is an occupancy-dominant region, as in-
dicated by the red part of the line (Fig. 5b). From 192 to the
maximum register count, the occupancy remains constant at
13 % and GPU performance remains relatively constant. As
occupancy is constant, latency is expected to dominate this
region, which is represented by the green part of the line in
Fig. 5b. However, we observe no memory spill for registers
between 192 and 255 and, thus, the latency effect remains un-
changed. Therefore, constant latency and occupancy result in
constant performance in this region.

Figure 5b shows that 64 registers produced the best perfor-
mance (minimum runtime) on Summit. For brevity, the previ-
ously described trade-off analysis also applies to Kodiak, and
a 96 register count produced the best performance (Fig. 5a).
On Kodiak, the register count that achieved the best perfor-
mance is higher than on Summit, probably due to Summit’s
larger L1 and Level 2 (L2) caches (Table 1). With larger L1
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Figure 5. The WW3-W3SRCEMD.gpu runtime (primary vertical
axis) and occupancy (secondary vertical axis in orange) based on
register counts on Kodiak (a) and Summit (b). For the runtime, the
light blue part of the line represents the latency-dominant region, the
red part represents the occupancy-dominant region, and the green
part represents the neutral region. We analyzed the result of running
a 228K mesh size on 16 GPUs and CPUs.

and L2 caches, more data can be stored, reducing memory
spillover to global memory and, thus, reducing latency. Opti-
mizing the register count increases the GPU performance by
approximately 20 % on Kodiak and by 14 % on Summit.

3.3 GPU-accelerated W3SRCEMD

This section compares the performance of WW3.cpu and
WW3-W3SRCEMD.gpu. Note that the speedups in this sec-
tion are achieved by parallelizing the local grids’ loop, which
calls the W3SRCEMD function, using the OpenACC parallel
directives (Fig. 3). In W3SRCEMD and its dependent subrou-
tines, we introduced the OpenACC routine directive (!$acc
routine) which instructs the compiler to build a device
version of the subroutine so that it may be called from a
device region by each gang. In addition, at the start of the

time integration, we moved the required constants’ data to
the GPU (line 8 of Fig. 3). Using the average over the last
2 h simulation, Fig. 7 compares the output results of CPU
and WW3-W3SRCEMD.gpu codes as well as their relative
difference for significant wave height (SWH). According to
the validation results, the SWH is nearly identical, and the
error is negligible and acceptable. It is possible that the error
stems from the difference in mathematical precision between
the GPU and CPU.

For simplicity, we start by mapping one MPI rank to one
GPU. Comparing the performance of a single GPU with
a single CPU core (Table 2) on Kodiak, 2.3× and 2.4×
speedups were achieved for the 59K and 228K meshes, re-
spectively. Here, the speedup is relative to a single CPU core.
Similarly, we achieved speedups of 4.7× and 6.6× on Sum-
mit for the 59K and 228K meshes, respectively. On Summit,
the GPU performance of 228K nodes is better because the
CPU gets extremely slow. Summit’s speedup is greater than
Kodiak’s because the Tesla V100 SXM2 16GB GPU is faster
than the Tesla P100 PCIe 16GB GPU (NVIDIA, 2017). Due
to the reduction in GPU workload, speedups gradually de-
cline as the number of MPI ranks increases (Table 2).

3.3.1 Fair comparison using multiprocess service
(MPS)

The following sections focus exclusively on Summit’s re-
sults. Each Summit compute node is equipped with 6 GPUs
and 42 CPU cores. As an initial step, we used only six MPI
ranks on each node so that each process could offload its
work to one GPU. In order to properly compare CPUs and
GPUs on a single node, we must use all of the CPU and GPU
resources on a node. The NVIDIA Volta GPUs support mul-
tiprocess services. When running with a mesh size greater
than 59K and assigning multiple MPI ranks to a single GPU,
the GPU heap size overflows with an auto-allocation prob-
lem. The auto-allocation problem is solved by setting the
environment variable “PGI_ ACC_CUDA_HEAPSIZE” to a
minimum allowed number based on the mesh size and MPI
ranks per GPU. By mapping seven MPI ranks per GPU on
Summit, a speedup of 1.36× (1.41×) was achieved for the
59K (228K) mesh size (Fig. 6) over all of the CPU cores. We
also ran four, three, and two MPI ranks per GPU configura-
tion. The results of the different multiprocess configurations
and the two mesh sizes are shown in Table 3. Note that the
speedups of all the GPU configurations are compared with
the full 42-cores CPU run. By varying the number of MPI
ranks per GPU, it can be seen that the 4 and 3 MPI ranks per
GPU (24 and 18 MPI ranks in total) have higher speedups
than 7 MPIs per GPU for the 59K mesh size. Even with 2
MPI ranks per GPU (total of 12 ranks), the speedup is 1.23×.
The speedup for the 228K gradually decreases from 1.41× to
1.12× as the number of MPI ranks per GPU decreases from
seven to two. The workload (distributed grids) per MPI rank
decreases as the number of MPI ranks increases. As a result
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Figure 6. The runtime of WW3.cpu (orange) and WW3-
W3SRCEMD.gpu (green) for 42 CPU cores and 7 MPI ranks per
GPU on a Summit node with 59K and 228K meshes. The right-hand
bar chart shows the runtimes for only the GPU-accelerated subrou-
tine, W3SRCEMD, on a 228K grid size. The black line represents the
speedup of WW3-W3SRCEMD.gpu over WW3.cpu.

of the reduced workload, GPU utilization falls. The overall
performance of a GPU depends on both the number of MPI
ranks per GPU and the number of the grid size per MPI rank.

Table 4 shows the results of scaling the 228K mesh size
over multiple nodes. We used the full GPU configuration here
by launching seven MPI ranks on each GPU. In the results,
it can be seen that the speedup is relatively uniform across
multiple nodes. Likewise, as the number of grid points per
MPI rank decreases with increasing nodes, the speedup grad-
ually decreases due to reduced GPU utilization. However, the
speedup is always the highest whenever the number of grid
points per MPI rank is ∼ around 2500, e.g., the speedup of 2
nodes in Table 4 for 228K and the speedup of 24 MPI ranks
for the 59K mesh in Table 3. This is most likely due to the
tail effect – load imbalance between SMs. Based on our ker-
nel launch configuration, 64 register and a 32 block size, the
number of possible blocks per SM is limited to 32. With 80
SMs on a V100 GPU, the maximum total number of blocks
(gangs, i.e., grid points) that could be executed simultane-
ously is 80× 32 (2560).

All previous speedups are based on the whole WW3
code. However, only W3SRCEMD is accelerated on the GPU,
whereas the rest of the code is run on the CPU. Thus, when
comparing 24 MPI ranks in the GPU configuration with the
42 CPU cores, 24 MPI ranks are being used for the CPU
section of WW3-W3SRCEMD.gpu against 42 MPI ranks for
the WW3.cpu. Therefore, it is necessary to also consider only
the speedup of W3SRCEMD on the GPU over the CPU. The
last row of Table 3 (also Fig. 6) shows the runtimes and the

achieved speedup of the W3SRCEMD subroutine for a 288K
mesh size on a Summit node. In comparison with the speedup
based on the whole WW3 code, the W3SRCEMD speedup in-
creases for all configurations with a maximum speedup of
1.61×.

3.4 W3SRCEMD roofline plot

The roofline model helps us understand the trade-off between
data movement and computation, so we can find out what is
limiting our code and how close we are to it. The roofline
(Fig. 8) indicates that, as expected from a memory-intensive
model, the kernel is limited by the data transfer bandwidth
between the CPU and the GPU. Most of the kernel’s time is
spent executing memory (load/store) instructions. It is worth
mentioning that the device achieved a compute throughput
and a memory bandwidth that are both below 40 % of its peak
performance. Therefore, it appears that, while the computa-
tion is waiting for the GPU to provide required data, the GPU
is waiting for the CPU to transfer data. Similarly, the roofline
shows that the kernel memory bandwidth is approximately
equal to the NVLink bandwidth. Thus, the W3SRCEMD ker-
nel is limited by the bandwidth between the CPU and the
GPU memory.

The kernel also has a very low arithmetic intensity for both
single- and double-precision floating-point (Fig. 8) com-
putations, performing only very few flops for every dou-
ble and integer loaded from dynamic random access mem-
ory (DRAM). Arithmetic intensity is a measure of floating-
point operations (FLOPs) performed relative to the amount
of memory accesses in bytes that are needed for those opera-
tions. For our 5 h simulation, the kernel is being launched 21
times; therefore, there are 42 data movements between the
host and the device for nonconstant variables. Unfortunately,
the large arrays need to be updated on both the device and
host at each time step. As an example, VA, the spectra stor-
age array, is approximately 5 GB (20 GB) for a spatial mesh
size of 59 000 (228 000) and a spectral resolution of 50×36.
In summary, the W3SRCE subroutine is simply too big and
complicated to be ported efficiently using OpenACC routine
directives and, therefore, requires significant refactoring.

4 Conclusions

Climate science is increasingly moving towards higher-
spatial-resolution models and additional components to bet-
ter simulate previously parameterized or excluded processes.
In recent decades, the use of GPUs to accelerate scientific
problems has increased significantly due to the emergence of
supercomputers with heterogeneous architectures.

Wind-generated waves play an important role in modi-
fying physical processes at the atmosphere–ocean interface.
They have generally been excluded from most coupled Earth
system models, partly due to the high computational cost of
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Table 3. Node baseline comparison runtime (seconds) with different MPI ranks per GPU configuration on a Summit node. The numbers in
square brackets are the speedup relative to the whole CPU on a Summit node (42 MPI ranks). In the last row, we present the speedups and
simulation times when comparing only the GPU-accelerated subroutine, W3SRCEMD.

CPU GPU

Mesh size 42 ranks 42 ranks (7 per GPU) 24 ranks (4 per GPU) 18 ranks (3 per GPU) 12 ranks (2 per GPU)

59K 180.72 133.18 [1.36×] 124.28 [1.45×] 127.17 [1.42×] 146.34 [1.23×]
228K 683.66 483.22 [1.41×] 523.91 [1.30×] 533.08 [1.24×] 612.60 [1.12×]
228K (W3SRCEMD) 589.56 389.12 [1.52×] 407.54 [1.45×] 366.00 [1.61×] 395.31 [1.49×]

Table 4. The speedup of multiple nodes for the 228K mesh size on
Summit. We used all 42 CPU cores and 6 GPU on each node with a
configuration of 7 MPI ranks per GPU.

Nodes Grid points CPU GPU Speedup
(per rank)

1 5441 683.66 483.22 1.41×
2 2721 354.12 224.69 1.58×
3 1814 238.02 171.15 1.39×
4 1360 195.59 141.44 1.38×
5 1088 154.17 126.84 1.22×

modeling them. However, the Energy Exascale Earth Sys-
tem Model (E3SM) project seeks to include a wave model
(WW3), and introducing WW3 to E3SM would increase the
computational time and usage of resources.

In this study, we identified and accelerated the computa-
tionally intensive section of WW3 on a GPU using Ope-
nACC. Using the Valgrind and Callgrind tools, we found that
the source term subroutine, W3SRCEMD, consumes 78 % of
the execution time. The W3SRCEMD subroutine has no neigh-
boring grid point dependencies and is, therefore, well suited
for implementation on a GPU. Using two different computa-
tional platforms, Kodiak with four P100 GPUs and Summit
with six V100 GPUs on each node, we performed 5 h simula-
tion experiments using two global unstructured meshes with
59 072 and 228 540 nodes. On average, running W3SRCEMD
by offloading one MPI per GPU gives an approximate 4×
(2×) speedup over the CPU version on Summit (Kodiak). Via
a fair comparison, using all 42 CPU cores and 6 GPUs on a
Summit node, a speedup of 1.4× was achieved using 7 MPI
ranks per GPU. However, the GPU speedup over the 42 CPU
cores remains relatively unchanged (∼ 1.3×), even when us-
ing 4 MPI ranks per GPU (24 ranks in total) and 3 MPI ranks
per GPU (18 ranks in total). The GPU performance is heavily
affected by the data transfer bandwidth between the CPU and
the GPU. The large number of local scalars and arrays within
the W3SRCEMD subroutine and the huge amount of memory
required to run WW3 is currently hurting the GPU utiliza-
tion and, thus, the achievable speedup. Too many constants in
WW3 occupy the register (fast memory) and then spill over
to the L1 and L2 caches or the GPU global memory. To in-

Figure 7. The average of WW3.cpu (a) and WW3-
W3SRCEMD.gpu (b) last 2 h simulations and their differences (c)
for significant wave height.

crease the GPU performance, the grid loop counter within
W3WAVEMD must be pushed into the W3SRCEMD, thereby
moving the gang-level parallelization into W3SRCEMD. This
requires major code refactoring, starting with modification
of WW3 data structures. There are other parts of the WW3
code that can be ported to GPU, such as spatial and spectral
propagation.
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Figure 8. Roofline model for the W3SRCEMD kernel from NVIDIA Nsight Compute. The red and green dots are the double- and single-
precision values, respectively.

Coupling the CESM with WW3 at low resolution, Li et al.
(2016) found a 36 % and 28 % increase in computational cost
for ocean-wave-only and fully coupled simulations when
running WW3 on a 3.2◦×4◦ latitude–longitude grid with 25
frequency and 24 directional bins with a 3◦ resolution ocean
model and T31 atmosphere. Likewise, in a one-way cou-
pling of WW3 to the E3SM atmospheric component, WW3
increases the number of processors by ∼ 35 % and its run-
time is 44 % longer than the ocean model. From our first
attempt at GPU-based spectral wave modeling, the runtime
decreased by 35 %–40 % and resource usage decreased by
40 %–55 %. Thus, leveraging heterogeneous architectures re-
duces the amount of time and resources required to include
WW3 in global climate models. It is important to note that
WW3 will become a bottleneck as the ocean and atmosphere
models in E3SM move towards heterogeneous architectures.
Consequently, WW3 needs huge refactoring to take advan-
tage of GPU capabilities and be fully prepared for the Exas-
cale regime.

After refactoring the WW3 code, we also need to investi-
gate how different WW3 setups (grid parallelization method,
source term switches, propagation schemes, etc.) affect GPU
performance. The performance of GPU-accelerated WW3
using OpenMP should also be considered for future work.
The success of this work has laid the foundation for future
work in global spectral wave modeling, and it is also a major
step toward expanding E3SM’s capability to run with waves
on heterogeneous architectures in the near future.

Code and data availability. The model configuration and input
files can be assessed at https://doi.org/10.5281/zenodo.6483480
(Ikuyajolu et al., 2022a). The official repository of the WAVE-
WATCH III CPU code can be found at https://github.com/

NOAA-EMC/WW3 (last access: 30 November 2022). The new
WW3-W3SRCEMD.gpu code used in this work is available at
https://doi.org/10.5281/zenodo.6483401 (Ikuyajolu et al., 2022b).
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