Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1427-2023
https://doi.org/10.5194/gmd-16-1427-2023
Model description paper
 | 
02 Mar 2023
Model description paper |  | 02 Mar 2023

Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions

Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler

Related authors

An enhanced emissions module for the PALM model system 23.10 with application on PM10 emissions from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-61,https://doi.org/10.5194/gmd-2024-61, 2024
Preprint under review for GMD
Short summary
urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon
Edward C. Chan and Timothy M. Butler
Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021,https://doi.org/10.5194/gmd-14-4555-2021, 2021
Short summary
Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021,https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024,https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024,https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024,https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024,https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary

Cited articles

Berlin City Senate: Luftreinhalteplan für Berlin: 2. Fortschreibung. Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 194–195, 2019. 
Buch, N., Velastin, S. A., and Orwell, J.: A review of computer vision techniques for the analysis of urban traffic, IEEE T. Intell. Transp., 12, 920–939, 2011.  
Builtjes, P. J. H., van Loon, M., Schaap, M., Teeuwisse, S., Visschedijnk, A. J. H., and Bloos, J. P.: Project on the modelling and verification of ozone reduction strategies: contribution of TNO-MEP, TNO-report MEP-R2003/166, ISSN: 1875-2322, 2003. 
Carslaw, D. C., Priestman, M., Williams, M. L., Stewart, G. B., and Beevers, S. D.: Performance of optimised SCR retrofit buses under urban driving and controlled conditions, Atmos. Environ., 105, 70–77, 2015. 
Chan, E. C. and Butler, T. M.: urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon, Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, 2021. 
Download
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.