Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1427-2023
https://doi.org/10.5194/gmd-16-1427-2023
Model description paper
 | 
02 Mar 2023
Model description paper |  | 02 Mar 2023

Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions

Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler

Related authors

urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon
Edward C. Chan and Timothy M. Butler
Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021,https://doi.org/10.5194/gmd-14-4555-2021, 2021
Short summary
Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021,https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023,https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
SMLFire1.0: a stochastic machine learning (SML) model for wildfire activity in the western United States
Jatan Buch, A. Park Williams, Caroline S. Juang, Winslow D. Hansen, and Pierre Gentine
Geosci. Model Dev., 16, 3407–3433, https://doi.org/10.5194/gmd-16-3407-2023,https://doi.org/10.5194/gmd-16-3407-2023, 2023
Short summary
LandInG 1.0: a toolbox to derive input datasets for terrestrial ecosystem modelling at variable resolutions from heterogeneous sources
Sebastian Ostberg, Christoph Müller, Jens Heinke, and Sibyll Schaphoff
Geosci. Model Dev., 16, 3375–3406, https://doi.org/10.5194/gmd-16-3375-2023,https://doi.org/10.5194/gmd-16-3375-2023, 2023
Short summary
Conservation of heat and mass in P-SKRIPS version 1: the coupled atmosphere–ice–ocean model of the Ross Sea
Alena Malyarenko, Alexandra Gossart, Rui Sun, and Mario Krapp
Geosci. Model Dev., 16, 3355–3373, https://doi.org/10.5194/gmd-16-3355-2023,https://doi.org/10.5194/gmd-16-3355-2023, 2023
Short summary
Predicting the climate impact of aviation for en-route emissions: the algorithmic climate change function submodel ACCF 1.0 of EMAC 2.53
Feijia Yin, Volker Grewe, Federica Castino, Pratik Rao, Sigrun Matthes, Katrin Dahlmann, Simone Dietmüller, Christine Frömming, Hiroshi Yamashita, Patrick Peter, Emma Klingaman, Keith P. Shine, Benjamin Lührs, and Florian Linke
Geosci. Model Dev., 16, 3313–3334, https://doi.org/10.5194/gmd-16-3313-2023,https://doi.org/10.5194/gmd-16-3313-2023, 2023
Short summary

Cited articles

Berlin City Senate: Luftreinhalteplan für Berlin: 2. Fortschreibung. Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 194–195, 2019. 
Buch, N., Velastin, S. A., and Orwell, J.: A review of computer vision techniques for the analysis of urban traffic, IEEE T. Intell. Transp., 12, 920–939, 2011.  
Builtjes, P. J. H., van Loon, M., Schaap, M., Teeuwisse, S., Visschedijnk, A. J. H., and Bloos, J. P.: Project on the modelling and verification of ozone reduction strategies: contribution of TNO-MEP, TNO-report MEP-R2003/166, ISSN: 1875-2322, 2003. 
Carslaw, D. C., Priestman, M., Williams, M. L., Stewart, G. B., and Beevers, S. D.: Performance of optimised SCR retrofit buses under urban driving and controlled conditions, Atmos. Environ., 105, 70–77, 2015. 
Chan, E. C. and Butler, T. M.: urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon, Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, 2021. 
Download
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.