Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1427-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-16-1427-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions
Edward C. Chan
CORRESPONDING AUTHOR
Institute for Advanced Sustainability Studies, Potsdam, Germany
Joana Leitão
Institute for Advanced Sustainability Studies, Potsdam, Germany
Andreas Kerschbaumer
Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und
Klimaschutz, Berlin, Germany
Timothy M. Butler
Institute for Advanced Sustainability Studies, Potsdam, Germany
Related authors
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Edward C. Chan and Timothy M. Butler
Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, https://doi.org/10.5194/gmd-14-4555-2021, 2021
Short summary
Short summary
A large-eddy simulation based chemical transport model is implemented for an idealized street canyon. The dynamics of the model are evaluated using stationary measurements. A transient model run is also conducted over a 24 h period, where variations of pollutant concentrations indicate dependence on emissions, background concentrations, and solar state. Comparison stationary model runs show changes in flow structure concentrations.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Nikhil Korhale, Tabish Ansari, Tim Butler, Jurgita Ovadndevaite, Colin D. O'Dowd, and Liz Coleman
EGUsphere, https://doi.org/10.5194/egusphere-2025-3824, https://doi.org/10.5194/egusphere-2025-3824, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigate the distribution and trends of surface ozone and its precursors over Ireland using advanced modelling to determine the drivers of ozone. Trajectory analysis is used to trace the origins of air masses, revealing the impact of transboundary pollution and atmospheric transport. The rising trend has been observed at urban sites over the past two decades, but without a similar trend at coastal sites. Coastal areas consistently show higher ozone levels than rural and urban areas.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Cynthia H. Whaley, Tim Butler, Jose A. Adame, Rupal Ambulkar, Steve R. Arnold, Rebecca R. Buchholz, Benjamin Gaubert, Douglas S. Hamilton, Min Huang, Hayley Hung, Johannes W. Kaiser, Jacek W. Kaminski, Christoph Knote, Gerbrand Koren, Jean-Luc Kouassi, Meiyun Lin, Tianjia Liu, Jianmin Ma, Kasemsan Manomaiphiboon, Elisa Bergas Masso, Jessica L. McCarty, Mariano Mertens, Mark Parrington, Helene Peiro, Pallavi Saxena, Saurabh Sonwani, Vanisa Surapipith, Damaris Y. T. Tan, Wenfu Tang, Veerachai Tanpipat, Kostas Tsigaridis, Christine Wiedinmyer, Oliver Wild, Yuanyu Xie, and Paquita Zuidema
Geosci. Model Dev., 18, 3265–3309, https://doi.org/10.5194/gmd-18-3265-2025, https://doi.org/10.5194/gmd-18-3265-2025, 2025
Short summary
Short summary
The multi-model experiment design of the HTAP3 Fires project takes a multi-pollutant approach to improving our understanding of transboundary transport of wildland fire and agricultural burning emissions and their impacts. The experiments are designed with the goal of answering science policy questions related to fires. The options for the multi-model approach, including inputs, outputs, and model setup, are discussed, and the official recommendations for the project are presented.
Aditya Nalam, Aura Lupaşcu, Tabish Ansari, and Tim Butler
Atmos. Chem. Phys., 25, 5287–5311, https://doi.org/10.5194/acp-25-5287-2025, https://doi.org/10.5194/acp-25-5287-2025, 2025
Short summary
Short summary
Tropospheric O3 molecules are labeled with the identity of their precursor source to simulate contributions from various emission sources to the global tropospheric O3 burden (TOB) and its trends. With an equatorward shift, anthropogenic NOx emissions become significantly more efficient at producing O3 and play a major role in driving TOB trends, mainly due to larger convection at the tropics effectively lifting O3 and its precursors to the free troposphere, where O3 lifetime is longer.
Ioannis Kioutsioukis, Christian Hogrefe, Paul A. Makar, Ummugulsun Alyuz, Jessy O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Buttler, Olivia E. Clifton, Philippe Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camaño, John Pleim, Young-Hee Ryu, Robero San Jose, Donna Schwede, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2025-1091, https://doi.org/10.5194/egusphere-2025-1091, 2025
Short summary
Short summary
Deposition is a key in air quality modelling. An evaluation of the AQMEII4 models is performed prior to analysing the different deposition schemes in relation to the LULC used. Such analysis is unprecedented. Among the results, LULC masks have to be harmonised and up-to-date information used in place of outdated and too course masks. Alternatively LULC masks should be evaluated and intercom pared when multiple model results are analysed.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark W. Shephard, Ranjeet S. Sokhi, and Stefano Galmarini
Atmos. Chem. Phys., 25, 3049–3107, https://doi.org/10.5194/acp-25-3049-2025, https://doi.org/10.5194/acp-25-3049-2025, 2025
Short summary
Short summary
The large range of sulfur and nitrogen deposition estimates from air quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulfur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by hydrometeors, aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, gas deposition via plant cuticles and soil, and land use data.
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025, https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
Short summary
An enhanced emission module has been developed for the PALM model system, improving flexibility and scalability of emission source representation across different sectors. A model for parametrized domestic emissions has also been included, for which an idealized model run is conducted for particulate matter (PM10). The results show that, in addition to individual sources and diurnal variations in energy consumption, vertical transport and urban topology play a role in concentration distribution.
Diego Guizzardi, Monica Crippa, Tim Butler, Terry Keating, Rosa Wu, Jacek W. Kamiński, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Rachel Hoesly, Marilena Muntean, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Annie Duhamel, Tabish Ansari, Kristen Foley, Guannan Geng, Yifei Chen, and Qiang Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-601, https://doi.org/10.5194/essd-2024-601, 2025
Preprint under review for ESSD
Short summary
Short summary
The global air pollution emission mosaic HTAP_v3.1 is the state-of-the-art database for addressing the evolution of a set of policy-relevant air pollutants over the past 2 decades. The inventory is made by the harmonization and blending of seven regional inventories, gapfilled using the most recent release of EDGAR (EDGARv8). By incorporating the best available local information, the HTAP_v3.1 mosaic inventory can be used for policy-relevant studies at both regional and global levels.
Christian Hogrefe, Stefano Galmarini, Paul A. Makar, Ioannis Kioutsioukis, Olivia E. Clifton, Ummugulsum Alyuz, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Tim Butler, Philip Cheung, Alma Hodzic, Richard Kranenburg, Aurelia Lupascu, Kester Momoh, Juan Luis Perez-Camanyo, Jonathan E. Pleim, Young-Hee Ryu, Roberto San Jose, Martijn Schaap, Donna B. Schwede, and Ranjeet Sokhi
EGUsphere, https://doi.org/10.5194/egusphere-2025-225, https://doi.org/10.5194/egusphere-2025-225, 2025
Short summary
Short summary
Performed under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in regional-scale models. The results also strongly suggest that improvement and harmonization of the representation of land use in these models would serve the community in their future development efforts.
Tabish Ansari, Aditya Nalam, Aurelia Lupaşcu, Carsten Hinz, Simon Grasse, and Tim Butler
EGUsphere, https://doi.org/10.5194/egusphere-2024-3752, https://doi.org/10.5194/egusphere-2024-3752, 2024
Short summary
Short summary
Surface ozone can travel far from its sources. In recent decades, emissions of ozone-forming gases have decreased in North America and Europe but risen in Asia, alongside rising global methane levels. Using advanced modeling, this study reveals that while local reductions in nitrogen oxides have lowered summer ozone, increases in natural and foreign sources offset these gains. Methane remains important, but its ozone impact has declined with reduced local emissions.
Monica Crippa, Diego Guizzardi, Tim Butler, Terry Keating, Rosa Wu, Jacek Kaminski, Jeroen Kuenen, Junichi Kurokawa, Satoru Chatani, Tazuko Morikawa, George Pouliot, Jacinthe Racine, Michael D. Moran, Zbigniew Klimont, Patrick M. Manseau, Rabab Mashayekhi, Barron H. Henderson, Steven J. Smith, Harrison Suchyta, Marilena Muntean, Efisio Solazzo, Manjola Banja, Edwin Schaaf, Federico Pagani, Jung-Hun Woo, Jinseok Kim, Fabio Monforti-Ferrario, Enrico Pisoni, Junhua Zhang, David Niemi, Mourad Sassi, Tabish Ansari, and Kristen Foley
Earth Syst. Sci. Data, 15, 2667–2694, https://doi.org/10.5194/essd-15-2667-2023, https://doi.org/10.5194/essd-15-2667-2023, 2023
Short summary
Short summary
This study responds to the global and regional atmospheric modelling community's need for a mosaic of air pollutant emissions with global coverage, long time series, spatially distributed data at a high time resolution, and a high sectoral resolution in order to enhance the understanding of transboundary air pollution. The mosaic approach to integrating official regional emission inventories with a global inventory based on a consistent methodology ensures policy-relevant results.
Felix Kleinert, Lukas H. Leufen, Aurelia Lupascu, Tim Butler, and Martin G. Schultz
Geosci. Model Dev., 15, 8913–8930, https://doi.org/10.5194/gmd-15-8913-2022, https://doi.org/10.5194/gmd-15-8913-2022, 2022
Short summary
Short summary
We examine the effects of spatially aggregated upstream information as input for a deep learning model forecasting near-surface ozone levels. Using aggregated data from one upstream sector (45°) improves the forecast by ~ 10 % for 4 prediction days. Three upstream sectors improve the forecasts by ~ 14 % on the first 2 d only. Our results serve as an orientation for other researchers or environmental agencies focusing on pointwise time-series predictions, for example, due to regulatory purposes.
Johana Romero-Alvarez, Aurelia Lupaşcu, Douglas Lowe, Alba Badia, Scott Archer-Nicholls, Steve Dorling, Claire E. Reeves, and Tim Butler
Atmos. Chem. Phys., 22, 13797–13815, https://doi.org/10.5194/acp-22-13797-2022, https://doi.org/10.5194/acp-22-13797-2022, 2022
Short summary
Short summary
As ozone can be transported across countries, efficient air quality management and regulatory policies rely on the assessment of local ozone production vs. transport. In our study, we investigate the origin of surface ozone in the UK and the contribution of the different source regions to regulatory ozone metrics. It is shown that emission controls would be necessary over western Europe to improve health-related metrics and over larger areas to reduce impacts on ecosystems.
Aurelia Lupaşcu, Noelia Otero, Andrea Minkos, and Tim Butler
Atmos. Chem. Phys., 22, 11675–11699, https://doi.org/10.5194/acp-22-11675-2022, https://doi.org/10.5194/acp-22-11675-2022, 2022
Short summary
Short summary
Ground-level ozone is an important air pollutant that affects human health, ecosystems, and climate. Ozone is not emitted directly but rather formed in the atmosphere through chemical reactions involving two distinct precursors. Our results provide detailed information about the origin of ozone in Germany during two peak ozone events that took place in 2015 and 2018, thus improving our understanding of ground-level ozone.
Noelia Otero, Oscar E. Jurado, Tim Butler, and Henning W. Rust
Atmos. Chem. Phys., 22, 1905–1919, https://doi.org/10.5194/acp-22-1905-2022, https://doi.org/10.5194/acp-22-1905-2022, 2022
Short summary
Short summary
Surface ozone and temperature are strongly dependent and their extremes might be exacerbated by underlying climatological drivers, such as atmospheric blocking. Using an observational data set, we measure the dependence structure between ozone and temperature under the influence of atmospheric blocking. Blocks enhanced the probability of occurrence of compound ozone and temperature extremes over northwestern and central Europe, leading to greater health risks.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Edward C. Chan and Timothy M. Butler
Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, https://doi.org/10.5194/gmd-14-4555-2021, 2021
Short summary
Short summary
A large-eddy simulation based chemical transport model is implemented for an idealized street canyon. The dynamics of the model are evaluated using stationary measurements. A transient model run is also conducted over a 24 h period, where variations of pollutant concentrations indicate dependence on emissions, background concentrations, and solar state. Comparison stationary model runs show changes in flow structure concentrations.
Elena Macdonald, Noelia Otero, and Tim Butler
Atmos. Chem. Phys., 21, 4007–4023, https://doi.org/10.5194/acp-21-4007-2021, https://doi.org/10.5194/acp-21-4007-2021, 2021
Short summary
Short summary
NO2 limit values are still regularly exceeded in many European cities despite decreasing emissions. Measurements of NOx concentrations from stations across Europe were systematically analysed to assess long-term changes observed in urban areas. We compared trends in concentration increments to trends in total and traffic emissions to find potential discrepancies. The results can help in evaluating inaccuracies in emission inventories and in improving spatial imbalances in data availability.
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary
Short summary
An atmospheric chemistry model has been implemented in the microscale PALM model system 6.0. This article provides a detailed description of the model, its structure, input requirements, various features and limitations. Several pre-compiled ready-to-use chemical mechanisms are included in the chemistry model code; however, users can also easily implement other mechanisms. A case study is presented to demonstrate the application of the new chemistry model in the urban environment.
Tim Butler, Aurelia Lupascu, and Aditya Nalam
Atmos. Chem. Phys., 20, 10707–10731, https://doi.org/10.5194/acp-20-10707-2020, https://doi.org/10.5194/acp-20-10707-2020, 2020
Short summary
Short summary
Ground-level ozone (O3) is not directly emitted; it is formed chemically in the atmosphere. Some ground-level O3 is transported from the stratosphere, but most O3 is produced from reactive precursors that are emitted by both natural and anthropogenic sources. We present the results of a novel source apportionment method for ground-level O3. Our results are consistent with previous work and also provide new insights. In particular, we highlight the roles of methane and international shipping.
Cited articles
Berlin City Senate: Luftreinhalteplan für Berlin: 2. Fortschreibung.
Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 194–195, 2019.
Buch, N., Velastin, S. A., and Orwell, J.: A review of computer vision
techniques for the analysis of urban traffic, IEEE T.
Intell. Transp., 12, 920–939, 2011.
Builtjes, P. J. H., van Loon, M., Schaap, M., Teeuwisse, S., Visschedijnk,
A. J. H., and Bloos, J. P.: Project on the modelling and verification of
ozone reduction strategies: contribution of TNO-MEP, TNO-report
MEP-R2003/166, ISSN: 1875-2322, 2003.
Carslaw, D. C., Priestman, M., Williams, M. L., Stewart, G. B., and Beevers,
S. D.: Performance of optimised SCR retrofit buses under urban driving and
controlled conditions, Atmos. Environ., 105, 70–77, 2015.
Chan, E. C. and Butler, T. M.: urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon, Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, 2021.
Chan, E. C., Leitão, J., Schmitz, S. A., Kerschbaumer, A., and Butler,
T. M.: Hourly Roadside Traffic Emissions from Bottom-up Inventory for the
City of Berlin, Proceedings of the 21st International Conference on
Harmonisation within Atmospheric Dispersion Modelling for Regulatory
Purposes, Aveiro, Portugal, 27–30 September 2022a.
Chan, E. C., Leitão, J., Kerschbaumer, A., and Butler, T. M.: Source
code for Yeti 1.0: a generalized framework for constructing bottom-up
emission inventory from traffic sources, Zenodo [code], https://doi.org/10.5281/zenodo.6594260, 2022b.
Coelho, M. C., Fontes, T., Bandeira, J. M., Pereira, S., Tchepel, O., Dias,
D., Sá, E., Amorim, J. H., and Borrego, C.: Assessment of potential
improvements on regional air quality modelling related with implementation
of a detailed methodology for traffic emission estimation, Sci.
Total Environ., 470, 127–137, 2014.
Davison, J., Rose, R. A., Farren, N. J., Wagner, R. L., Murrells, T. P., and
Carslaw, D. C.: Verification of a National Emission Inventory and Influence
of On-road Vehicle Manufacturer-Level Emissions, Environ. Sci.
Technol., 55, 4452–4461, 2021.
Diegmann, V.: IMMIS/em/luft Version 4.0 User's Guide, IVU Umwelt GmbH,
Freiburg, http://www.ivu-umwelt.de/upload/download/handbuecher/immisluft_40_user_guide.pdf (last access: 10 February 2023), 2008.
Diegmann, V., Mahlau, A., Breitenbach, Y., and Tautz, F.: Modellrechnungen
zur Zweiten Fortschreibung des Berliner Luftreinhalteplans, IVU Umwelt GmbH, https://www.berlin.de/sen/uvk/_assets/umwelt/luft/luftreinhaltung/luftreinhalteplan-2-fortschreibung/endbericht_modellrechnungen_lrp_berlin.pdf (last access: 10 February 2023),
2020.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within the
WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Guevara, M., Tena, C., Porquet, M., Jorba, O., and Pérez García-Pando, C.: HERMESv3, a stand-alone multi-scale atmospheric emission modelling framework – Part 2: The bottom–up module, Geosci. Model Dev., 13, 873–903, https://doi.org/10.5194/gmd-13-873-2020, 2020.
Gurney, K. R., Liang, J., Patarasuk, R., O'Keeffe, D., Huang J., Hutchins,
M., Lauvaux, T., Turnbull, J. C., and Shepson, P. B.: Reconciling the
differences between a bottom-up and inverse-estimated FFCO2 emissions
estimates in a large US urban area, Elementa,
5, 44, https://doi.org/10.1525/elementa.137, 2017.
Herenz, P., Grunow, K., Kaupp, H., Clemen, S. and Kerschbaumer, A.:
Luftgütemessdaten Jahresbericht 2019, Senatsverwaltung für Umwelt,
Verkehr und Klimaschutz, 38–39, https://www.berlin.de/sen/uvk/_assets/umwelt/luft/luftqualitaet/luftdaten-archiv/monats-und-jahresberichte/jahresbericht2019.pdf
(last access: 10 February 2023), 2020.
Ibarra-Espinosa, S., Ynoue, R., O'Sullivan, S., Pebesma, E., Andrade, M. D. F., and Osses, M.: VEIN v0.2.2: an R package for bottom–up vehicular emissions inventories, Geosci. Model Dev., 11, 2209–2229, https://doi.org/10.5194/gmd-11-2209-2018, 2018.
INFRAS: Handbuch Emissionsfaktoren des Srassenverkehrs Version 1.2, https://www.hbefa.net/e/documents/HBEFA12DOKU.pdf, 1999.
Keller, M., Hausberger, S., Matzer, C., Wüthrich, P., and Notter, B.:
HBEFA Version 3.3 Background documentation, https://www.hbefa.net/e/documents/HBEFA33_Documentation_20170425.pdf, 2017.
Khan, B., Banzhaf, S., Chan, E. C., Forkel, R., Kanani-Sühring, F., Ketelsen, K., Kurppa, M., Maronga, B., Mauder, M., Raasch, S., Russo, E., Schaap, M., and Sühring, M.: Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications, Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021, 2021.
Kollosche, I., Schulz-Montag, B. and Steinmüller, K.: E-Mobility 2025:
Szenarien für die Region Berlin, Technische Universität Berlin, urn:nbn:de:kobv:109-opus-164030,
2010.
Kuik, F., Kerschbaumer, A., Lauer, A., Lupascu, A., von Schneidemesser, E., and Butler, T. M.: Top–down quantification of NOx emissions from traffic in an urban area using a high-resolution regional atmospheric chemistry model, Atmos. Chem. Phys., 18, 8203–8225, https://doi.org/10.5194/acp-18-8203-2018, 2018.
Landman, L. C.: Modelling Hourly Diurnal Emissions and Interrupted Diurnal
Emissions Based on Real-Time Diurnal Data, EPA Report 420-R-01-019,
Environmental Protection Agency, USA, 2001.
Lowell, D. and Kamakaté, F.: Urban off-cycle NOx emissions from Euro
IV/V trucks and buses – Problems and solutions for Europe and developing
countries, Report The International Council on Clean Transportation, https://theicct.org/wp-content/uploads/2021/06/ICCT_WP18_urban_Nox_emissions.pdf (last access: 10 February 2023), 2012.
Notter, B., Keller, M., Althaus, H. J., Cox, B., Knörr, W., Heidt, C.,
Biemann, K., Räder, D. and Jamet, M.: HBEFA 4.1 Development Report,
INFRAS, https://www.hbefa.net/e/documents/HBEFA41_Development_Report.pdf (last access: 10 February 2023), 2019.
Notter, B., Cox, B., Hausberger, S., Matzer, C., Weller, K., Dippold, M.,
Politschnig, N., Lipp, S., Allekotte, M., Knörr, W., André, M.,
Gagnpain, L., Hult, C., and Jerksjö, M.: HBEFA 4.2 Documentation of
updates, INFRAS, https://www.hbefa.net/e/documents/HBEFA42_Update_Documentation.pdf (last access: 10 February 2023), 2022.
NSW-EPA: Air Emissions Inventory for the Greater Metropolitan Region in New
South Wales 2008 Calendar Year On-road Mobile Emissions: Results, Report EPA
2012/0256, New South Wales Environment Protection Authority, ISBN 978-1-74293-557-7, 2012.
Ntziachristos, L., Gkatzoflias, D., Kouridis, C. and Samaras, Z.: COPERT: a
European road transport emission inventory model. Information Technologies
in Environmental Engineering, Springer, Heidelberg, 491–504, https://doi.org/10.1007/978-3-540-88351-7_37, 2009.
Samaras, Z., Kyriakis, N., and Zachariadis, T.: Reconciliation of macroscale
and microscale motor vehicle emission estimates, Sci. Total
Environ., 169, 231–239, 1995.
Schmidt, W. and Düring, I.: Kfz-Kennzeichenerfassung 2015 an 7
Standorten in Berlin, Report 71183-12-01, Senatsverwaltung für
Gesundheit, Umwelt und Verbraucherschutz, 2016.
Schmidt, W. and Düring, I.: Ermittlung der Flottenzusammensetzung und
der mittleren täglichen Emissionen aus dem Kfz-Verkehr anhand von
Kennzeichenerhebungen (EFEK), Report 10106-20-10, Senatsverwaltung für
Umwelt, Verkehr und Klimaschutz, 2021.
Schmitz, S., Caseiro, A., Kerschbaumer, A. and von Schneidemesser, E.: Do
new bike lanes impact air pollution exposure for cyclists? A case study in
Berlin, Environ. Res. Lett., 16, 084031, https://doi.org/10.1088/1748-9326/ac1379, 2021.
Seum, S., Ehrenberger, S., and Pregger, T.: Extended emission factors for
future automotive propulsion in Germany considering fleet composition, new
technologies and emissions from energy supplies, Atmos. Environ.,
233, 117568, https://doi.org/10.1016/j.atmosenv.2020.117568, 2020.
Thonhofer, E. and Jakubek, S.: Investigatin of stochastic variation of
parameters for a macroscopic traffic model, J. Intell.
Transport. S., 22, 547–564, 2018.
Thunis, P., Degraeuwe, B., Cuvelier, K., Guevara, M., Tarrason, L. and
Clappier, A.: A novel approach to screen and compare emission inventories, Air Qual. Atmos. Hlth., 9, 325–333, 2016.
Tsanakas, N.: Emission estimation based on traffic models and measurements,
Thesis 1835, Linköping University, Sweden, ISBN 978-91-7685-092-3, 2019.
US-EPA: Overview of EPA's Motor Vehicle Emission Simulator (MOVES3), Report
EPA-420-R-21-004, United States Environmental Protection Agency, 2021.
Vanherle, K., Lopez-Aparicio, S., Grythe, H., Lükewille, A.,
Unterstaller, A., and Mayeres, I.: Transport Non-exhaust PM-emissions. An
overview of emission estimates, relevance, trends and policies, ETC/ATNI
Report 5/2020, European Environment Information and Observation Network,
Denmark, 2021.
VDI: Umweltmeteorologie – Kfz-Emissionsbestimmung – Luftbeimengungen, VDI
3782 Blatt 7, Verein Deutscher Ingenieure Kommission Reinhaltung der Luft –
Normenausschuss, 2020.
Veratti, G., Fabbi, S., Bigi, A., Lupascu, A., Tinarelli, G., Teggi, S.,
Brusaca, G., Butler, T. M., and Ghermandi, G.: Towards the coupling of a
chemical transport model with a micro-scale Lagrangian modelling system for
evaluation of urban NOx levels in a European hotspot, Atmos.
Environ., 223, 117285, https://doi.org/10.1016/j.atmosenv.2020.117285, 2020.
Weller H. G., Tabor, G., Jasak, H., and Fureby, C.: “A Tensorial approach to
computational continuum mechanics using object-oriented techniques,
Comput. Phys., 12, 620–631, 1998.
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written...