Articles | Volume 16, issue 4
https://doi.org/10.5194/gmd-16-1427-2023
https://doi.org/10.5194/gmd-16-1427-2023
Model description paper
 | 
02 Mar 2023
Model description paper |  | 02 Mar 2023

Yeti 1.0: a generalized framework for constructing bottom-up emission inventories from traffic sources at road-link resolutions

Edward C. Chan, Joana Leitão, Andreas Kerschbaumer, and Timothy M. Butler

Related authors

An enhanced emission module for the PALM model system 23.10 with application for PM10 emission from urban domestic heating
Edward C. Chan, Ilona J. Jäkel, Basit Khan, Martijn Schaap, Timothy M. Butler, Renate Forkel, and Sabine Banzhaf
Geosci. Model Dev., 18, 1119–1139, https://doi.org/10.5194/gmd-18-1119-2025,https://doi.org/10.5194/gmd-18-1119-2025, 2025
Short summary
urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon
Edward C. Chan and Timothy M. Butler
Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021,https://doi.org/10.5194/gmd-14-4555-2021, 2021
Short summary
Development of an atmospheric chemistry model coupled to the PALM model system 6.0: implementation and first applications
Basit Khan, Sabine Banzhaf, Edward C. Chan, Renate Forkel, Farah Kanani-Sühring, Klaus Ketelsen, Mona Kurppa, Björn Maronga, Matthias Mauder, Siegfried Raasch, Emmanuele Russo, Martijn Schaap, and Matthias Sühring
Geosci. Model Dev., 14, 1171–1193, https://doi.org/10.5194/gmd-14-1171-2021,https://doi.org/10.5194/gmd-14-1171-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
SURFER v3.0: a fast model with ice sheet tipping points and carbon cycle feedbacks for short- and long-term climate scenarios
Victor Couplet, Marina Martínez Montero, and Michel Crucifix
Geosci. Model Dev., 18, 3081–3129, https://doi.org/10.5194/gmd-18-3081-2025,https://doi.org/10.5194/gmd-18-3081-2025, 2025
Short summary
NMH-CS 3.0: a C# programming language and Windows-system-based ecohydrological model derived from Noah-MP
Yong-He Liu and Zong-Liang Yang
Geosci. Model Dev., 18, 3157–3174, https://doi.org/10.5194/gmd-18-3157-2025,https://doi.org/10.5194/gmd-18-3157-2025, 2025
Short summary
A method for quantifying uncertainty in spatially interpolated meteorological data with application to daily maximum air temperature
Conor T. Doherty, Weile Wang, Hirofumi Hashimoto, and Ian G. Brosnan
Geosci. Model Dev., 18, 3003–3016, https://doi.org/10.5194/gmd-18-3003-2025,https://doi.org/10.5194/gmd-18-3003-2025, 2025
Short summary
Baseline Climate Variables for Earth System Modelling
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O'Rourke, and Beth Dingley
Geosci. Model Dev., 18, 2639–2663, https://doi.org/10.5194/gmd-18-2639-2025,https://doi.org/10.5194/gmd-18-2639-2025, 2025
Short summary
PaleoSTeHM v1.0: a modern, scalable spatiotemporal hierarchical modeling framework for paleo-environmental data
Yucheng Lin, Robert E. Kopp, Alexander Reedy, Matteo Turilli, Shantenu Jha, and Erica L. Ashe
Geosci. Model Dev., 18, 2609–2637, https://doi.org/10.5194/gmd-18-2609-2025,https://doi.org/10.5194/gmd-18-2609-2025, 2025
Short summary

Cited articles

Berlin City Senate: Luftreinhalteplan für Berlin: 2. Fortschreibung. Senatsverwaltung für Umwelt, Verkehr und Klimaschutz, 194–195, 2019. 
Buch, N., Velastin, S. A., and Orwell, J.: A review of computer vision techniques for the analysis of urban traffic, IEEE T. Intell. Transp., 12, 920–939, 2011.  
Builtjes, P. J. H., van Loon, M., Schaap, M., Teeuwisse, S., Visschedijnk, A. J. H., and Bloos, J. P.: Project on the modelling and verification of ozone reduction strategies: contribution of TNO-MEP, TNO-report MEP-R2003/166, ISSN: 1875-2322, 2003. 
Carslaw, D. C., Priestman, M., Williams, M. L., Stewart, G. B., and Beevers, S. D.: Performance of optimised SCR retrofit buses under urban driving and controlled conditions, Atmos. Environ., 105, 70–77, 2015. 
Chan, E. C. and Butler, T. M.: urbanChemFoam 1.0: large-eddy simulation of non-stationary chemical transport of traffic emissions in an idealized street canyon, Geosci. Model Dev., 14, 4555–4572, https://doi.org/10.5194/gmd-14-4555-2021, 2021. 
Download
Short summary
Yeti is a Handbook Emission Factors for Road Transport-based traffic emission inventory written in the Python 3 scripting language, which adopts a generalized treatment for activity data using traffic information of varying levels of detail introduced in a systematic and consistent manner, with the ability to maximize reusability. Thus, Yeti has been conceived and implemented with a high degree of data and process symmetry, allowing scalable and flexible execution while affording ease of use.
Share