Articles | Volume 16, issue 1
https://doi.org/10.5194/gmd-16-135-2023
https://doi.org/10.5194/gmd-16-135-2023
Development and technical paper
 | 
04 Jan 2023
Development and technical paper |  | 04 Jan 2023

Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2

Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang

Related authors

The 4DEnVar-based land coupled data assimilation system for E3SM version 2
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-124,https://doi.org/10.5194/gmd-2023-124, 2023
Preprint under review for GMD
Short summary
C-Coupler3.0: an integrated coupler infrastructure for Earth system modelling
Li Liu, Chao Sun, Xinzhu Yu, Hao Yu, Qingu Jiang, Xingliang Li, Ruizhe Li, Bin Wang, Xueshun Shen, and Guangwen Yang
Geosci. Model Dev., 16, 2833–2850, https://doi.org/10.5194/gmd-16-2833-2023,https://doi.org/10.5194/gmd-16-2833-2023, 2023
Short summary
Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities
Kai Zhang, Wentao Zhang, Hui Wan, Philip J. Rasch, Steven J. Ghan, Richard C. Easter, Xiangjun Shi, Yong Wang, Hailong Wang, Po-Lun Ma, Shixuan Zhang, Jian Sun, Susannah M. Burrows, Manish Shrivastava, Balwinder Singh, Yun Qian, Xiaohong Liu, Jean-Christophe Golaz, Qi Tang, Xue Zheng, Shaocheng Xie, Wuyin Lin, Yan Feng, Minghuai Wang, Jin-Ho Yoon, and L. Ruby Leung
Atmos. Chem. Phys., 22, 9129–9160, https://doi.org/10.5194/acp-22-9129-2022,https://doi.org/10.5194/acp-22-9129-2022, 2022
Short summary
What rainfall rates are most important to wet removal of different aerosol types?
Yong Wang, Wenwen Xia, and Guang J. Zhang
Atmos. Chem. Phys., 21, 16797–16816, https://doi.org/10.5194/acp-21-16797-2021,https://doi.org/10.5194/acp-21-16797-2021, 2021
Short summary
Effects of coupling a stochastic convective parameterization with the Zhang–McFarlane scheme on precipitation simulation in the DOE E3SMv1.0 atmosphere model
Yong Wang, Guang J. Zhang, Shaocheng Xie, Wuyin Lin, George C. Craig, Qi Tang, and Hsi-Yen Ma
Geosci. Model Dev., 14, 1575–1593, https://doi.org/10.5194/gmd-14-1575-2021,https://doi.org/10.5194/gmd-14-1575-2021, 2021
Short summary

Related subject area

Climate and Earth system modeling
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023,https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023,https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023,https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023,https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023,https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary

Cited articles

Beaudoing, H., Rodell, M., and NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 monthly 1.0 x 1.0 degree V2.1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/LWTYSMP3VM5Z, 2020. 
CESM Software Engineering Group: CESM User’s Guide (CESM1.2 Release Series User’s Guide), https://www2.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x290.html#download_ccsm_code, last access: 21 December 2022. 
Chakraborty, T. and Lee, X.: Land Cover Regulates the Spatial Variability of Temperature Response to the Direct Radiative Effect of Aerosols, Geophys. Res. Lett., 46, 8995–9003, https://doi.org/10.1029/2019gl083812, 2019. 
Dai, A.: Precipitation Characteristics in Eighteen Coupled Climate Models, J. Climate, 19, 4605–4630, https://doi.org/10.1175/JCLI3884.1, 2006. 
Duveiller, G., Forzieri, G., Robertson, E., Li, W., Georgievski, G., Lawrence, P., Wiltshire, A., Ciais, P., Pongratz, J., Sitch, S., Arneth, A., and Cescatti, A.: Biophysics and vegetation cover change: a process-based evaluation framework for confronting land surface models with satellite observations, Earth Syst. Sci. Data, 10, 1265–1279, https://doi.org/10.5194/essd-10-1265-2018, 2018. 
Download
Short summary
All global climate models (GCMs) use the grid-averaged surface heat fluxes to drive the atmosphere, and thus their horizontal variations within the grid cell are averaged out. In this regard, a novel scheme considering the variation and partitioning of the surface heat fluxes within the grid cell is developed. The scheme reduces the long-standing rainfall biases on the southern and eastern margins of the Tibetan Plateau. The performance of key variables at the global scale is also evaluated.