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Abstract. All current global climate models (GCMs) uti-
lize only grid-averaged surface heat fluxes to drive the at-
mosphere, and thus their subgrid horizontal variations and
partitioning are absent. This can result in many simulation
biases. To address this shortcoming, a novel parameteriza-
tion scheme considering the subgrid variations of the sen-
sible and latent heat fluxes to the atmosphere and the as-
sociated partitioning is developed and implemented into the
National Center for Atmospheric Research (NCAR) Climate
Earth System Model 1.2 (CESM1.2). Compared to the de-
fault model, in addition to the improved boreal summer pre-
cipitation simulation over eastern China and the coastal ar-
eas of the Bay of Bengal, the long-standing overestimations
of precipitation on the southern and eastern margins of the
Tibetan Plateau (TP) in most GCMs are alleviated. The im-
proved precipitation simulation on the southern margin of the
TP is from suppressed large-scale precipitation, while that
on the eastern edge of the TP is due to decreased convec-
tive precipitation. Moisture advection is blocked toward the
southern edge of the TP, and the anomaly of anticyclonic
moisture transport over northern China extends westward,
suppressing local convection on the eastern edge of the TP.
The altered large-scale circulation in the lower atmosphere
resulting from anomalous heating and cooling in the plan-
etary boundary layer is responsible for the change in mois-

ture transport. The performance of other key variables (e.g.,
surface energy fluxes, clouds and 2 m temperature) is also
evaluated thoroughly using the default CESM1.2, the new
scheme and the scheme stochastically allocating the subgrid
surface heat fluxes to the atmosphere (i.e., without subgrid
partitioning included). This study highlights the importance
of subgrid surface energy variations and partitioning to the
atmosphere in simulating the hydrological and energy cycles
in GCMs.

1 Introduction

The importance of land surface heterogeneity has been iden-
tified through many observational and modeling studies (e.g.,
Taylor et al., 2007; Lothon et al., 2011; Rochetin et al., 2017;
Wang et al., 2017). The variability in surface heat fluxes
caused by the heterogeneity of surface properties is crucial
to turbulence in the planetary boundary layer (PBL), as well
as the evolution of large-scale atmospheric circulation and
clouds (Rieck et al., 2014; Lee et al., 2019). In most global
climate models (GCMs), confined by the horizontal resolu-
tion (∼ 100–200 km), the subgrid surface heat fluxes to the
atmosphere are averaged out, thus degrading the simulation
of convection and PBL processes. This is one of the causes of
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precipitation simulation biases in GCMs, such as “too much
light rain and too little heavy rain” (e.g., Dai, 2006; O’Brien
et al., 2016; Na et al., 2020; Wang et al., 2021a), unrealis-
tic precipitation evolution over the Indian summer monsoon
region (e.g., Waliser et al., 2012; Wang et al., 2018), and ex-
tremely excessive precipitation over the eastern and south-
ern parts of the steep Tibetan Plateau (TP) (e.g., Zhou et al.,
2021).

The land surface energy balance involves biophysical and
biogeochemical processes (Lee et al., 2011; Liu et al., 2014;
Duveiller et al., 2018; Chakraborty and Lee, 2019; Liu et al.,
2022), which are closely related to surface properties. For
instance, forests dissipate sensible heat to the PBL more ef-
ficiently than open landscapes (Rotenberg and Yakir, 2010;
Wei et al., 2021), and the increase in vegetation density has
been found to favor the release of latent heat rather than sen-
sible heat during the past three and a half decades (Forzieri
et al., 2020). The different performance of the energy terms
suggests the potential importance of surface energy partition-
ing. However, the grid-scale surface heat fluxes to the atmo-
sphere are rudimentarily treated by calculating the weighted
averages within each grid cell in all GCMs. This simplified
approach inevitably hampers our understanding of small-
scale land–atmosphere feedback, which is among the critical
processes in efforts to project future climate change through
GCMs (Miralles et al., 2019; Forzieri et al., 2020).

To incorporate the subgrid horizontal variations in the sur-
face heat fluxes to the atmosphere, a recent study (Sun et al.,
2021) proposed a parameterization using stochastic sampling
and tested it in the National Center for Atmospheric Research
(NCAR) Climate Earth System Model 1.2 (CESM1.2). It was
found that this scheme improved the boreal summer pre-
cipitation simulation over eastern China. However, Sun et
al. (2021) did not comprehensively assess the overall perfor-
mance of other variables. Another important limitation is that
there is no advance in reducing excessive summer precipita-
tion on the southern and eastern margins of the TP, which,
is a long-standing issue in GCMs (Mueller and Seneviratne,
2014; Ma et al., 2015).

In the Sun et al. (2021) scheme, although the subgrid sur-
face heat fluxes to the atmosphere are parameterized via
stochastic sampling and internal multiple calls of the PBL
and convection schemes, the underlying relationship between
the subgrid heat fluxes is neglected. The conversion of the
surface available energy into latent and sensible heat fluxes
on a subgrid scale exerts a strong control on global water and
energy cycles (Pitman, 2003; Tang et al., 2014; Wang et al.,
2021b) by regulating land–atmosphere feedback, especially
in regions with complicated land surface features, such as
the TP and its surrounding areas (Pielke, 2001; Findell et al.,
2011; Forzieri et al., 2018, 2020). As the next logical step, in
this study, the Sun et al. (2021) parameterization is updated
by taking the partitioning between the subgrid sensible and
latent heat fluxes into account. Given that only the simulated
precipitation by the Sun et al. (2021) scheme was investi-

gated, the performance on the simulations of other variables
such as grid-scale surface energy fluxes, clouds and 2 m tem-
perature is further evaluated thoroughly along with the mod-
ified parameterization.

The paper is organized as follows. Section 2 briefly de-
scribes the Sun et al. (2021) parameterization scheme and
further modifications, CESM and the experiments, and the
observation and reanalysis datasets. The evaluations of the
two schemes are presented in Sect. 3. The uncertainties are
discussed in Sect. 4, while the conclusions are given in
Sect. 5.

2 Methodology

2.1 CESM and subgrid heat flux scheme

To compare with Sun et al. (2021), the GCM used in this
study is NCAR CESM1.2. The atmospheric component is
the Community Atmosphere Model, version 5 (CAM5).
The land model is the Community Land Model, version 4
(CLM4). The spatial land surface heterogeneity in the default
CLM4 is represented as a nested subgrid hierarchy in which
the grid cells are composed of multiple land units, snow and
soil columns, and plant functional types (PFTs) (Oleson et
al., 2010). All of the fluxes to and from the surface, includ-
ing the heat fluxes, are defined at the PFT level. Since the
subgrid heat fluxes exported to the CAM5 are weighted av-
erages and their weights depend on the fractional coverage
of each PFT within the grid cell, the subgrid variations in the
land surface fluxes are missing during the land–atmosphere
coupling process (Sun et al., 2021).

To consider the influences of the heterogeneity of the sub-
grid heat fluxes to the atmosphere in CESM1.2, a parame-
terization scheme is developed and implemented in CLM4.
This scheme establishes the truncated normal distributions
of the subgrid sensible and latent heat fluxes independently
within the grid cell at each time step. The probability density
function (PDF) of subgrid sensible and latent heat fluxes in a
given grid cell is calculated by

f (x|F̄,σ,Fmin,Fmax)=
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where F̄ is the weighted average value of all subgrid heat
fluxes, σ is the standard deviation, Fmin and Fmax are the
minima and maxima of the subgrid heat fluxes, respectively,
and φ and 9 are the PDF and the cumulative distribution
function (CDF) of the standard normal distribution, respec-
tively. N (i.e., the maximum number of PFTs coexisting in
the grid cell) samples of sensible and latent heat fluxes are
independently and randomly paired with each other to drive
N independent groups of the PBL and the deep convection
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parameterization schemes in CAM5. The outputs from these
N calls of the schemes are then averaged with equal weights
as the inputs of the other schemes.

The stochastic sampling implicitly parameterizes the un-
certainties of the PBL and convection processes to a certain
degree. As stated in Sun et al. (2021), the sampled fluxes
from a statistical distribution rather than the fluxes directly
from individual PFTs can represent the mix of subgrid fluxes
from mixed land cover types in reality. Moreover, the distri-
bution of the sampled subgrid surface heat fluxes based on
the assumed normal distribution resembles the distribution
of realistic subgrid PFT heat fluxes within the grid cell in
long-term statistics. As shown in Fig. 1, for the sensible heat
flux, over the grid cells with 16 and 8 PFTs, the two distribu-
tions are highly consistent, in terms of mean value, variance
and skewness. The latent heat flux has similar results (not
shown). Given that those grid cells are stochastically selected
and cover different climatic regimes (Fig. S1 in the Supple-
ment), the assumed normal distribution works well and thus
the sampled samples can represent the realistic features for
climate simulation.

Note that the closure of the surface energy balance at the
grid scale is not affected by the stochastic sampling method.
The surface energy balance is closed at the grid scale in
the default land–atmosphere coupling way. Therefore, the
stochastic sampling at the subgrid scale based on the trun-
cated normal distributions with mean values equal to the de-
fault grid averages calculated by the weighted fluxes on each
PFT within the grid cell (Fig. 1) can assure that the grid-
scale surface energy balance is closed as well in the long-
term statistics, although at a given time step this might be
broken up.

2.2 Modified subgrid heat flux scheme

In the stochastic scheme proposed by Sun et al. (2021),
the sampled subgrid sensible heat and latent heat fluxes are
stochastically paired, without considering the underlying re-
lationship between them. However, we can compute the cor-
relation coefficients between the subgrid sensible and latent
heat fluxes within each grid cell at every time step (i.e.,
30 min) using the following equation:

r =

∑n
i=1wi(FSHi − F̄SH)(FLHi − F̄LH)

σSHσLH
, (2)

where n is the number of PFTs within a grid cell in the land
model, wi is the area percentage of each PFT within the grid
cell, FSHi and FLHi are the subgrid surface sensible and latent
heat fluxes of each PFT, respectively, F̄SH and F̄LH are their
weighted averages, and σSH and σLH are their standard de-
viations. The correlation coefficients vary with time. Figure
2a shows the annual mean distribution of the energy parti-
tioning between the sensible heat and latent heat fluxes at the
subgrid scale. There are negative correlations at low latitudes
in the Northern Hemisphere (NH) and most of the Southern

Hemisphere (SH), whereas most regions have positive corre-
lations in the middle and high latitudes in the NH and on the
TP. In boreal summer (June–July–August, JJA) (Fig. 2b), the
sensible and latent heat fluxes in most regions of the world
are negatively correlated, except for the TP, Greenland, the
central US and southern Australia (Fig. 2b). In boreal winter
(December–January–February, DJF) (Fig. 2c), the global dis-
tribution is similar to that of the annual mean, showing larger
positive correlation coefficients but smaller negative corre-
lation coefficients. Positive correlation coefficients in both
summer and winter mainly persist in high latitudes and alti-
tudes. This is because as snow melts in summer the land sur-
face gains more water for evaporation (i.e., latent heat flux).
Sensible heat flux increases synchronously from enhanced
surface net radiation as a result of increased incoming solar
radiation and reduced snow albedo. In winter, decreased so-
lar radiation and increased snow cover reduce both sensible
and latent heat fluxes.

Here we propose two methods below based on the subgrid
surface energy partitioning between sensible and latent heat
fluxes.

1. Arrange the randomly selected N subgrid sensible heat
fluxes and N subgrid latent heat fluxes in each grid cell
from largest to smallest and pair them in turn to drive the
atmosphere independently. In this case, a large (small)
sensible heat flux corresponds to a large (small) latent
heat flux.

2. Use the same method as (1) but arrange the randomly
selected N subgrid sensible heat fluxes from largest to
smallest and the N latent heat fluxes from smallest to
largest in each grid cell. In this case, a large (small)
subgrid sensible heat flux corresponds to a small (large)
subgrid latent heat flux.

Which one of the above methods is used for a given grid cell
depends on the time-varying correlation coefficient r . If the
correlation coefficient r in the grid cell is positive, the PBL
and convection parameterizations are driven using the heat
fluxes derived in method (1). Otherwise, the heat fluxes se-
lected using method (2) will be passed to the atmosphere.
The arithmetic mean of the outputs from N calls of the PBL
and the convection parameterizations is passed into the other
following schemes. Given that the surface energy balance
closure at the grid scale is not affected by the stochastic sam-
pling method, the follow-up collocation of the sampled sen-
sible and latent heat fluxes according to their correlation co-
efficient does not break up this rule. This is because this pro-
cess just rearranges the sequence of heat fluxes rather than
altering the values.

2.3 Experiments

Three Atmospheric Model Intercomparison Project (AMIP)-
type experiments with a finite-volume dynamical core at a
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Figure 1. Histograms and Gaussian kernel density estimates (KDEs) (dashed line) for realistic (green) and sampled (purple) sensible heat
fluxes at the PFT in the eight grid cells with 16 (top row) and 8 (bottom row) PFTs, respectively.

horizontal resolution of 1.9◦× 2.5◦ (∼ 2◦) and 30 vertical
levels from the surface to 3.6 hPa are conducted using ob-
served climatological (1982–2001 mean) monthly sea sur-
face temperature and sea ice extent data (Stone et al., 2018).
The control simulation (CTL) uses the standard CESM1.2,
the experimental simulation (EXP) uses the Sun et al. (2021)
parameterization in CESM1.2 (also the same as the EXP run
in their study) and the EXP_COR run uses the modifications
as described in Sect. 2.2. All of the simulations were run for
6 years, with the first year discarded as the spin-up stage. The
value ofN in each grid cell was fixed to 16, which equals the
maximum number of PFTs ever coexisting on a single col-
umn in the land model, although different grid cells have dif-
ferent numbers of PFTs (Sun et al., 2021). As noted by Sun
et al. (2021), further increasing N has negligible impacts on
the model performance compared with setting N to 16 and
enhances computational loading instead.

2.4 Observations and reanalyses

To evaluate the model performance, the simulation results
are compared with the available observation and reanalysis
datasets. The Tropical Rainfall Measuring Mission (TRMM;
Huffman et al., 2014) observations (0.25◦× 0.25◦) and the
Modern-Era Retrospective Analysis for Research and Ap-
plications version 2 (MERRA-2; Gelaro et al., 2017) re-
analysis (0.5◦× 0.625◦) are used for precipitation. The other
datasets include surface radiative fluxes from the Clouds and
the Earth’s Radiation Energy Systems (CERES) Energy Bal-
anced and Filled (1.0◦× 1.0◦) (EBAF; Loeb et al., 2012),
sensible heat and latent heat fluxes from the Global Land
Data Assimilation System version 2.1 (GLDAS-2.1) Noah
monthly data (1.0◦× 1.0◦) (Rodell et al., 2004) and 2 m air
temperature from the Climatic Research Unit with a 0.5◦ res-
olution (CRU; Harris et al., 2020). For consistency, all of the
observation and reanalysis datasets are regridded to the same
grid size as CAM5.
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Figure 2. Spatial distribution of (a) annual, (b) JJA (June–July–
August) and (c) DJF (December–January–February) mean correla-
tion coefficients r between the subgrid surface sensible and latent
heat fluxes in the EXP_COR simulation.

3 Results

Sun et al. (2021) found that the improved precipitation sim-
ulation with the parameterization of subgrid surface heat
fluxes to the atmosphere is most prominent for boreal sum-
mer. Therefore, to compare with Sun et al. (2021), the anal-
yses are first focused on boreal summer followed by a thor-

ough evaluation of the two parameterizations on simulated
climate variables for four seasons at the global scale.

3.1 Precipitation

Sun et al. (2021) (i.e., the EXP run) improved the simulation
of summer precipitation over eastern China and the coastal
areas of the Bay of Bengal (Fig. 3b–d), which is attributed to
altered vertical diffusion and convection. In particular, it still
produces excessive precipitation on the eastern and south-
ern margins of the TP. After taking the subgrid energy parti-
tioning into account in the EXP_COR run, the overall per-
formance in terms of the root-mean-square error (RMSE)
and the spatial correlation coefficient (COR) is comparable
to that of the EXP run (Fig. 3d and f). The long-standing
overestimations of precipitation on the southern and east-
ern margins of the TP are alleviated by up to −2.5 mm d−1

(Fig. 3b–f), although the simulated precipitation is still ex-
cessive. Over other regions such as southern China, the Mid-
dle East and Indonesia, there are some slight degradations.

Figure 4 zooms in on the region (20–50◦ N, 75–125◦ E)
where the simulated precipitation exhibits obvious improve-
ments in the EXP_COR run. In the CTL run, the wet bias
over the southern margin of the TP can exceed 11 mm d−1,
while that over the eastern margin of the TP is approximately
7 mm d−1. In CMIP5&6 models, the biases along the TP are
much larger than those in the rest of the world (Fig. 3) (Su
et al., 2013; Yu et al., 2015; Zhu and Yang, 2020; Lun et
al., 2021). In contrast, in the EXP_COR run, the reduced bi-
ases over these two regions can be as much as 2.5 mm d−1

accounting for a reduction of approximately 25 %, especially
over the southern margin of the TP. Given that there are many
causes (e.g., unrealistic water vapor advection and the ab-
sence of subgrid topographic effects) for the severe overes-
timation of precipitation along the TP, the improvement in
this study, to some extent, is impressive. The regionally av-
eraged RMSE decreases from 4.51 in the CTL run and 4.07
in the EXP run to 3.71 in the EXP_COR run, and the COR
increases from 0.48 in the CTL run to 0.60 in both the EXP
and EXP_COR runs.

Total precipitation in the model consists of convective
and large-scale components. Their contributions are analyzed
accordingly. Compared with the EXP run, large-scale pre-
cipitation is significantly suppressed on the southern fringe
(Fig. 5a and b), and more large-scale precipitation and con-
vective precipitation are reduced on the eastern margin in the
EXP_COR run.

A moisture budget analysis widely used in previous stud-
ies (Gao et al., 2017; Wang et al., 2016) is conducted to ex-
amine the causes of precipitation changes. Following Sun et
al. (2021), the atmospheric water vapor budget equation is
given below:

∂W

∂t
= (−W∇ ·V )+ (−V · ∇W)−P +E, (3)
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Figure 3. Spatial distributions of JJA (June–July–August) mean precipitation for (a) TRMM; the biases of (b) CTL, (d) EXP, and
(f) EXP_COR with respect to TRMM; and the differences (c) between EXP and CTL and (e) between EXP_COR and CTL. The crossed
areas are significant at the 95 % level. The spatial correlation coefficient (COR) and the root-mean-square error (RMSE) are given at the top
of (b), (d) and (f).

where P is precipitation and E is evaporation. W is the
column-integrated moisture given by

∫ Pbot
Ptop

qdp/g, in which
q is the specific humidity, Ptop and Pbot are the top and sur-
face pressures, respectively, and g is the acceleration due
to gravity. The vector V (with units of m s−1), given by
W−1∫ Pbot

Ptop
(qu)dp/g, represents the total horizontal mois-

ture transport normalized to the column-integrated moisture,
where u is the horizontal wind vector. The first term on the
right-hand side of Eq. (3) is the moisture convergenceQcnvg,
and the second term is the moisture advectionQadvt. The ten-
dency of the term ∂W

∂t
on the left-hand side of Eq. (3) is neg-

ligible for seasonal averages of multiple years.
Compared with the CTL run, moisture convergence weak-

ens on the eastern edge of the TP, while moisture advection
increases in the EXP_COR run (Fig. 5e and f). On the south-
ern edge of the TP, moisture advection decreases, and mois-
ture convergence slightly increases. Overall, consistent with
the change in total precipitation, the total water vapor contri-
butions decrease on the eastern and southern edges of the TP
(Fig. 5h). We note that the spatial pattern of Qcnvg changes
in the EXP_COR run relative to the CTL run and resembles
that in the EXP run (Fig. 4d and f in Sun et al., 2021), which

is linked with the changes in the heating rate due to vertical
diffusion in the PBL caused by the subgrid variations in land
surface heat fluxes. In comparison with the EXP run, the neg-
ative moisture convergence anomaly is further aggravated,
and the positive bias of moisture advection on the eastern
margin of the TP is smaller (Sun et al., 2021). The negative
maximum of the total contribution thus shifts westward to
the eastern margin of the TP. Overall, moisture convergence
dominates the change in precipitation on the eastern border
of the TP (Fig. 5e and h). On the southern edge of the TP,
the main term contributing to precipitation changes is the re-
duced moisture advection (Fig. 5f and h).

The causes of the altered moisture convergence and advec-
tion are illustrated in Figs. 6 and S2, where the MERRA-2 re-
analysis is included for reference. In the EXP run, the subgrid
variations of the land surface heat fluxes increase (decrease)
PBL heating over southern (northern) China (Fig. 6a). With
the partitioning of subgrid surface heat fluxes included, the
increase (decrease) in the heating rate over southern (north-
ern) China is strengthened (Fig. 6b). Therefore, destabiliza-
tion (stabilization) in the lower atmosphere is further en-
hanced, promoting (suppressing) local convection. Lower
(higher) sea level pressure (SLP) anomalies over southern
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Figure 4. The same as Fig. 3 but focusing on the study area (20–50◦ N, 75–125◦ E). The regionally averaged spatial COR and RMSE are
given at the top of (b), (d) and (f).

(northern) China are generated in the EXP_COR run than in
the EXP run. In particular, compared with the EXP run, the
anomalous high SLP over northern China extends further to
the south and to the eastern border of the TP, with the anoma-
lous low SLP over southern China retreating (Fig. 6d–h). The
anomalous anticyclonic moisture transport associated with
downdraft expands accordingly, which engenders decreased
precipitation on the eastern border of the TP and slight dry
biases over southern China. Similar to the EXP run, convec-
tive precipitation dominates the changes in total precipita-
tion over eastern China and the eastern margin of the TP in
the EXP_COR run. In the EXP run, negative SLP anomalies
appear along the Bay of Bengal, leading to cyclonic mois-

ture transport from the ocean in the south (Fig. 6e). As a re-
sult, excessive moisture is transported to the southern edge
of the TP producing overestimated rainfall there. In contrast,
in the EXP_COR run (Fig. 6g), the easterly anomaly along
25–30◦ N partly blocks moisture transport from the ocean in
the south to the southern margin of the TP, and hence the de-
crease in large-scale precipitation plays a first-order role on
the southern margin of the TP.

3.2 Surface heat fluxes, clouds and 2 m air temperature

The above analysis indicates that the precipitation simula-
tion is improved through the adjustment of large-scale atmo-
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Figure 5. Spatial distribution of the differences in (a, b) large-scale precipitation and (c, d) convective precipitation between (left) EXP
and CTL and between (right) EXP_COR and CTL and the differences in (e–h) the contributions (moisture convergence Qcnvg, moisture
advection Qadvt, evaporation E and the sum TOT) to total precipitation between EXP_COR and CTL. The crossed areas are significant at
the 95 % level.
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Figure 6. Spatial distributions of the differences of JJA-mean PBL heating (a) between EXP and CTL and (b) between EXP_COR and CTL;
SLP superposed by the vector V from (c) MERRA-2; and the differences (d) between CTL and MERRA-2, (e) between EXP and CTL,
(f) between EXP and MERRA2, (g) between EXP_COR and CTL, and (h) between EXP_COR and MERRA2. The vector V is defined in
Eq. (3).
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Figure 7. Spatial distributions of the JJA-mean latent heat flux in (a) GLDAS (upward positive); the biases of (b) CTL, (c) EXP, and
(d) EXP_COR with respect to GLDAS; and the differences between (e) EXP and CTL and between (f) EXP_COR and CTL. The crossed
areas are significant at the 95 % level. The averaged spatial COR and RMSE values for the three simulations are given in (b)–(d).

spheric circulation in the lower atmosphere, which is highly
linked with grid-scale surface heating or cooling (Sun et al.,
2021). The following analyses will evaluate the performance
of other variables such as surface energy budgets, clouds and
2 m air temperature in JJA globally.

The evaluations of the latent heat flux simulation are
shown in Fig. 7. In those regions with large latent heat fluxes
in GLDAS (e.g., the eastern US, northern South America,
eastern China), the simulated values are generally underes-
timated in the CTL run, while in the regions with relatively
small latent fluxes (e.g., the Arabian Peninsula, the Sahara

and the northwestern TP), CTL tends to overestimate values.
Overall, the three simulations have similar distributions and
comparable CORs. This is probably because the low accu-
racy of land cover data in CLM is the major culprit for those
biases (Liu et al., 2021). In the regions with small correlation
coefficients r (Australia, the Arabian Peninsula, the Sahara
Desert) (Fig. 2a), there are no improvements noticed in the
EXP_COR run even with the simulation degraded.

For the sensible heat flux simulation (Fig. 8) over those
regions with large and small values in GLDAS, the CTL run
underestimates and overestimates them, respectively. Simi-
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Figure 8. Spatial distributions of the JJA-mean sensible heat flux in (a) GLDAS (upward positive); the biases of (b) CTL, (c) EXP, and
(d) EXP_COR with respect to GLDAS; and the differences between (e) EXP and CTL and between (f) EXP_COR and CTL. The crossed
areas are significant at the 95 % level. The averaged spatial COR and RMSE values for the three simulations are given in (b)–(d).

lar to latent heat fluxes, the three experiments resemble each
other, except that EXP_COR further alleviates the overesti-
mation along 45–60◦ N over the Eurasian continent where
sensible heat fluxes and latent heat fluxes are highly corre-
lated (Fig. 2b). The positive changes over the southern and
eastern margins of the TP in the EXP_COR run are more sig-
nificant than those in the EXP run (Fig. 8e and f). Nonethe-
less, we note some degradations from EXP to EXP_COR
(e.g., over southern China).

As indicated in Sect. 3.1, large-scale atmospheric circu-
lation in the lower atmosphere and local convection are al-
tered as PBL heating changes, which affects clouds as well.
The changes in clouds in turn influence surface radiation and

thus surface heat fluxes. The cloud properties affecting cloud
radiative effects include their macrostructures (e.g., fraction,
top and base heights, and vertical overlap) and microphys-
ical properties (e.g., particle size distribution and geomet-
ric configuration, cloud phase, and water condensation). As
shown in Fig. 9c, the EXP_COR run reduces low clouds over
northern China and southeastern Russia and increases them
over southern China and along 45–60◦ N in comparison with
the CTL run. The EXP run has a similar pattern of changes
but with smaller magnitudes compared with the EXP_COR
run (Fig. 9a–c). Low clouds reflect a large amount of incom-
ing solar radiation and emit longwave radiation at relatively
high temperatures, so they exert an overall net cooling effect
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Figure 9. Spatial distributions of JJA-mean (a–c) low, (d–f) middle and (g–i) high clouds in (a, d, g) the CTL run and their differences (b, e,
h) between EXP and CTL and (c, f, i) between EXP_COR and CTL. The crossed areas are significant at the 95 % level.

on the Earth (Klein and Hartmann, 1993; Hartmann, 1994).
Compared with the CTL run, the middle and high clouds on
the TP are dramatically decreased in the EXP_COR run. Es-
pecially for high clouds, the decrease in the EXP_COR run
is much larger than that in the EXP run.

The simulations of the total cloud water path (vertically
integrated cloud liquid and ice water content, CWP) are
shown in Fig. 10d–f. A higher cloud water content reflects
more solar radiation. The EXP run increases the total CWP
over southern China and along the Bay of Bengal. North-
ern China, the TP and southeastern Russia feature CWP de-
creases. In the EXP_COR run, the simulated CWP is fur-
ther decreased on the TP and over northern China, while it is
increased in southern China and along 45–60◦ N, especially
over the Eurasian continent. The spatial distribution of the
total ice water path (IWP) changes resembles that of the total
CWP changes (Fig. 10g–i).

Generally, the radiative effect of clouds is quantified by
cloud radiative forcing (CRF) (the difference in the sur-
face net flux between all-sky and clear-sky conditions). It
includes shortwave cloud forcing (SWCF) and longwave
cloud forcing (LWCF). Realistic simulation of the CRF is
another important measure of the performance of climate
models (Sun et al., 2016). SWCF is negative, and a smaller
value indicates a stronger reflection of solar shortwave ra-

diation. The strengthened SWCF over the central US, the
Eurasian continent along 45–60◦ N and southern China in
EXP_COR (Fig. 10c) originates from the increased cloud
water (Fig. 10f) and low clouds (Fig. 9c). Similarly, the
decreased SWCF over northern China, the TP and south-
eastern Russia is due to their reductions. LWCF is posi-
tive, and a larger value means a stronger warming effect on
the land surface. The LWCF increases over southern China
and decreases over northern China in EXP_COR (figure not
shown). The distribution of the net CRF (figure not shown)
resembles that of the SWCF, which implies that the SWCF
changes dominate the CRF variations.

The simulation of the net surface shortwave flux is demon-
strated in Fig. 11. Globally, the RMSE and COR values
are similar to each other in the three simulations. In the
EXP_COR run, the underestimation over the TP in both the
CTL and EXP runs is alleviated, although it slightly de-
grades the simulation over eastern China. The negative bi-
ases over southeastern Russia in EXP_COR are also larger
than those in EXP. The changes in the net surface shortwave
flux (Fig. 11e and f) are very consistent with those in SWCF
(Fig. 10b and c) implying that the net surface radiation fluxes
are mainly controlled by the shortwave radiation reflected by
the adjustment of clouds as a result of the altered PBL heat-
ing rates and the associated changes in local convection.
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Figure 10. The same as Fig. 9 but for (a–c) shortwave cloud radiative forcing (W m−2), (d–f) total cloud water path (g m−2) and (h–k) ice
water path (g m−2).

In response to the adjustment of the surface energy bud-
get, the global distributions of JJA mean 2 m air temperature
from CRU and the difference between the observations and
the three experiments are shown in Fig. 12. The three simu-
lations have comparable CORs and RMSEs globally. Com-
pared with the CTL run, the EXP run alleviates the overes-
timations in the middle and high latitudes, although the per-
formance over central Africa and northern South America is
slightly degraded (Fig. 12b, c and e). In the EXP_COR run,
the overestimations over the central US and the Eurasian con-
tinent are further alleviated, while the negative biases over
central Africa and the positive biases over southern South
America are worsened (Fig. 12b, d and f). The simulated
2 m air temperature over northern China and the TP is in-
creased, reintroducing some positive biases. In short, in the
EXP_COR run the decreased net surface shortwave flux as-
sociated with the increases in low clouds and cloud water
content over southern China, over the central US, over the
Eurasian continent along 45–60◦ N and along the Bay of
Bengal might contribute to local cooling, while the warming
over the TP and northern China is attributed to the opposite
changes accordingly (Figs. 9–11).

3.3 Mean states

The analyses presented above demonstrate that the introduc-
tion of the subgrid heat flux schemes (EXP and EXP_COR)
improves the simulations of summer precipitation in eastern
China in EXP and additional TP regions in EXP_COR com-
pared to the default model. The improvements and degrada-
tions in simulated surface heat fluxes, cloud properties and
2 m air temperature in boreal summer at the global scale are
also discussed. The precipitation improvements over eastern
China are mainly from the consideration of subgrid varia-
tions in surface heat fluxes (i.e., the EXP run where the sam-
pled subgrid sensible and latent heat fluxes are stochastically
paired with each other), while the improved precipitation
simulations on the southern and eastern margins of the TP
are attributed to the further inclusion of the partitioning of
the subgrid surface heat fluxes (the EXP_COR run). A thor-
ough evaluation of the global annual and seasonal means of
those variables is necessary because from the perspective of
climate model development, the incorporation of a new pa-
rameterization scheme to improve some aspects should not
obviously cause the degradation of other aspects (Wang et al.,
2021b). As presented in Table 1 (global distributions shown
in Figs. S3–S9), the overall simulation statistics of the EXP
and EXP_COR runs are comparable to those of the CTL run,
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Figure 11. Spatial distributions of the JJA-mean net surface shortwave flux in (a) CERES-EBAF (downward positive); the biases of (b) CTL,
(c) EXP, and (d) EXP_COR with respect to CERES-EBAF; and the differences (e) between EXP and CTL and (f) between EXP_COR and
CTL. The crossed areas are significant at the 95 % level. The averaged spatial COR and RMSE values for the three simulations are given in
(b)–(d).

although they are slightly different in some seasons. When
focusing on East Asia (Table S1 in the Supplement), the new
schemes outperform the default scheme, implying the impor-
tance of parameterizing the subgrid land surface heat fluxes
to the atmosphere in GCMs in regions with complex terrain
(e.g., the TP) and multiple surface types (e.g., eastern China).

The zonal means of temperature and specific humidity
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA-Interim reanalysis dataset and the
model biases are shown in Fig. 13. In the CTL run, the tem-

perature is overestimated at lower levels in the tropics and
midlatitudes in the SH, whereas it is underestimated at higher
levels in other latitudes (Fig. 13a). The EXP run reverses the
positive biases to negative biases with an excessive reduction
at lower levels, and the negative biases at higher altitudes
are further exacerbated (Figs. 13b and S10b). In contrast, the
biases in the EXP_COR run are comparable to those in the
CTL run (Fig. 13a and c). The low-latitude overestimations
in the lower troposphere and the high-latitude underestima-
tions across the troposphere are alleviated (Fig. S10c). In
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Figure 12. Spatial distributions of the JJA-mean 2 m temperature in (a) CRU, the biases of (b) CTL, (c) EXP and (d) EXP_COR with respect
to CRU. The differences (e) between EXP and CTL and (f) between EXP_COR and CTL are also shown. The crossed areas are significant
at the 95 % level. The averaged spatial COR and RMSE values for the three simulations are given in (b)–(d).

the simulation of specific humidity, the main positive biases
occur in the low latitudes and midlatitudes below 400 hPa.
For the midlatitudes, there are negative biases in the lower
troposphere (Fig. 13d). In general, there are no significant
differences among the three simulations (Fig. 13d–f). In the
EXP run, the positive biases in the lower and middle tropo-
sphere are alleviated (Fig. S10e). In contrast, the EXP_COR
run is similar to the CTL run, with negligible differences
(Fig. S10f). In summary, the performance of the mean state
simulations does not change significantly when using the two
modified schemes (the EXP and EXP_COR runs).

4 Discussion

Despite the uncertainties in the observations, the overesti-
mated rainfall on the southern and eastern margins of the
Tibetan Plateau in the GCMs is widely acknowledged when
comparing multisource observations (Mehran et al., 2014; Yu
et al., 2015). The uncertainties for the evaluations of other
modeled variables are discussed below. The CERES-EBAF
datasets provide long-term global Earth radiation budget
records from the surface to the top of the atmosphere (TOA)
together with the associated cloud and aerosol properties. Ex-
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Table 1. The COR and RMSE values in the CTL, EXP and EXP_COR runs. MAM is for March–April–May, JJA is for June–July–August,
SON is for September–October–November, and DJF is for December–January–February. The best performance among the three experiments
is highlighted in bold.

Variables Period COR RMSE

CTL EXP EXP_COR CTL EXP EXP_COR

Precipitation MAM 0.82 0.82 0.81 1.55 1.55 1.61
JJA 0.78 0.80 0.79 2.11 2.03 2.04
SON 0.85 0.85 0.85 1.53 1.52 1.53
DJF 0.85 0.84 0.84 1.62 1.65 1.73
Annual 0.86 0.86 0.86 1.29 1.27 1.30

2 m temperature MAM 0.98 0.98 0.98 2.57 2.50 2.49
JJA 0.95 0.95 0.95 2.70 2.66 2.67
SON 0.98 0.98 0.98 2.64 19.94 2.61
DJF 0.99 0.99 0.99 4.01 3.76 3.80
Annual 0.98 0.98 0.98 2.50 5.86 2.42

Sensible heat flux MAM 0.67 0.65 0.65 34.08 34.73 34.43
JJA 0.55 0.56 0.56 30.67 30.57 30.89
SON 0.86 0.86 0.86 23.40 25.79 23.92
DJF 0.88 0.87 0.87 23.71 24.42 24.42
Annual 0.74 0.73 0.73 22.71 23.72 23.28

Latent heat flux MAM 0.89 0.88 0.88 15.84 16.37 16.23
JJA 0.82 0.82 0.81 24.24 23.18 23.40
SON 0.88 0.88 0.88 17.34 17.57 17.33
DJF 0.92 0.91 0.92 15.99 16.93 16.44
Annual 0.90 0.90 0.90 13.92 14.17 14.15

Net surface shortwave flux MAM 0.92 0.91 0.91 21.89 23.20 23.47
JJA 0.83 0.83 0.83 29.75 29.84 30.21
SON 0.96 0.96 0.96 20.35 26.06 21.10
DJF 0.96 0.96 0.97 24.28 24.51 24.32
Annual 0.93 0.93 0.93 19.35 21.04 20.05

tensive validation has been conducted for both TOA and sur-
face radiation in CERES-EBAF using TOA consistency tests
and direct comparisons of surface fluxes with ground-based
measurements over both land and ocean (Loeb et al., 2007,
2012). Although some weaknesses are noted (e.g., LW cloud
radiative effects at the surface on the TP are overestimated
due to poor sampling of clear sky scenes during the night),
they are widely used for climate model evaluations (Loeb et
al., 2018; Hinkelman, 2019), and this flaw does not affect
the conclusions in this study. For surface sensible and latent
heat fluxes, there are few observations covering the whole
TP. Instead, among various reanalysis datasets, GLDAS has
been evaluated and investigated extensively (Novick et al.,
2018; Sun et al., 2018; Laloyaux et al., 2016). For instance,
Jiménez et al. (2011) conducted a global intercomparison
of monthly mean land surface heat flux products, including
space-based observations and reanalyses including GLDAS.
They demonstrated that the spatial distributions related to the
major climatic regimes and geographical features are well re-
produced by GLDAS. With comprehensive validations, the
GLDAS product has been widely used in evaluating model-

based studies (Saha et al., 2014; Xia et al., 2019), such as wa-
ter resource management (Zaitchik et al., 2010) and drought
monitoring and prediction (Hao et al., 2016). The CRU grid-
ded dataset for 2 m air temperature has undergone a series of
technical validations, such as quality control of input data,
comparisons between versions and with alternative datasets,
and cross-validation of the interpolated anomalies (Osborn et
al., 2017; Harris et al., 2020).

In addition to subgrid variation and partitioning of surface
heat fluxes, other factors can impact the precipitation simula-
tion on the TP as well. For instance, subgrid topographic ef-
fects have large effects on latent heat and sensible heat fluxes.
Parameterizing them in GCMs influences the simulated sur-
face energy balance, boundary conditions and precipitation
on the TP (Lee et al., 2019; Hao et al., 2021, 2022). Alter-
natively, the accurate representation of land cover types and
soil properties is vital to the realistic simulation of surface
radiative fluxes and heat fluxes and thus TP rainfall (Liu et
al., 2021; Yue et al., 2021).

With 208 CPU cores in total for each simulation, the total
run time per step (∼ 0.50 s) in the EXP_COR run is almost
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Figure 13. Annual and zonal mean cross sections of the (a–c) temperature and (d–f) specific humidity differences for (a, d) CTL-ERAI, (b,
e) EXP-ERAI and (c, f) EXP_COR-ERAI.

twice that in the CTL run (∼ 0.26 s) as a result of calling the
PBL and convective parameterizations 16 times and the re-
sulting extra communication cost (Table S2). However, com-
pared with the additional computational costs of the four-
mode version of the Modal Aerosol Module (MAM4) up-
dated from MAM3 and the Cloud Layers Unified by Bi-
normals (CLUBB) scheme, instead of the CAM5 bound-
ary layer turbulence, shallow convection, and cloud macro-
physics schemes, respectively, in CESM2 (CESM version
2), the increased computational cost in EXP_COR relative to
CTL is much smaller and thus acceptable. Given the heavy
computational cost of CLUBB, this could be challenging for
computational efficiency if using this scheme in CESM2.
Therefore, further improvements are needed. For example,
according to the number of PFTs in each grid cell, the num-
ber of multiple calls (up to 16) of the CLUBB can be varied
in different grid cells. Alternatively, this can be done only
when the number of PFTs is larger than a threshold. In the

meantime, parallel optimization should be applied to multi-
ple calls.

The GCM used to test the schemes is CESM1.2, in which
the land model is CLM4. Similar to CLM4, CLM5 (CLM
version 5) in CESM2 and other land surface models in the
GCMs use the PFT structure as well. Additionally, the pa-
rameterization of subgrid heat fluxes proposed in this study
is not dependent on the specific parameterizations of the PBL
and convection processes. Therefore, it is conveniently ap-
plied to other GCMs.

5 Conclusions

In this study, a parameterization of the subgrid variations and
partitioning of the land surface heat fluxes to the atmosphere
was developed and implemented in the NCAR CESM1.2.
The modification to the Sun et al. (2021) scheme is based on
the fact that energy redistribution between the land surface
and the PBL plays an essential role in global and regional en-
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Figure 14. Schematic diagram summarizing the climate impacts of parameterizing subgrid variations and partitioning of land surface heat
fluxes to the atmosphere.

ergy cycles (Liu et al., 2014; Chakraborty and Lee, 2019; Wei
et al., 2021). Three experiments were conducted to evaluate
the updated scheme (CTL, EXP and EXP_COR). The precip-
itation improvements over eastern China using the original
scheme (EXP) are retained in the new scheme (EXP_COR),
although slight dry biases are reintroduced over southern
China. In addition, the stubborn overestimations of precip-
itation on the southern and eastern margins of the TP are al-
leviated.

The causes are briefly summarized in Fig. 14a. The sub-
grid variations of the land surface heat fluxes increase (de-
crease) PBL heating over southern (northern) China. With
the further introduction of the partitioning of subgrid sur-
face heat fluxes, the increase (decrease) in PBL heating
over southern (northern) China is elevated, thus destabiliz-
ing (stabilizing) the lower atmosphere. As a result, local
convection is promoted (suppressed) over southern (north-
ern) China. The changes in convective precipitation domi-
nate the changes in total precipitation over eastern China and
the eastern margin of the TP. The altered large-scale circu-
lation associated with the easterly anomaly along 25–30◦ N
partly blocks moisture transport from the ocean in the south
to the southern margin of the TP. Accordingly, the decrease
in large-scale precipitation is responsible for the reduced pre-
cipitation there.

The links among clouds, net surface shortwave flux and
2 m air temperature over eastern China are shown in Fig. 14b.
As PBL heating decreases in northern China, the lower at-
mosphere stabilizes and local convection is suppressed. Ac-
cordingly, middle and high clouds and the associated CWP
decrease (Figs. 9 and 10). Thus, SWCF decreases over north-
ern China, which increases the net surface shortwave flux. As
the surface gains more energy, the near-surface air tempera-
ture warms. In contrast, southern China features the opposite
changes.

The Sun et al. (2021) scheme offers a novel method
of parametrizing the subgrid heterogeneity of surface heat
fluxes to the atmosphere in GCMs. As a further modifica-
tion, the significance of the correlation coefficients between
the subgrid-scale sensible and latent heat fluxes is considered
for a more realistic interpretation of the energy exchange pro-
cesses. The findings of these two studies highlight the impor-
tance of the energy variation and redistribution between the
land surface and the lower atmosphere at the subgrid scale.

Code and data availability. The CESM1.2.1–CAM5.3 source
code can be downloaded through the official CESM website
https://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/
x290.html#download_ccsm_code (CESM Soft Engineering Group,
2022). The modified CESM code and the CAM5 output for all sim-
ulations in the study are both provided in an open repository on Zen-
odo (https://doi.org/10.5281/zenodo.6606418, Yin et al., 2022). The
TRMM data are available from https://gpm.nasa.gov/data/directory
(Huffman et al., 2014). The MERRA-2 data files are avail-
able from https://doi.org/10.5067/2E096JV59PK7 (GMAO,
2015a) and https://doi.org/10.5067/0JRLVL8YV2Y4 (GMAO,
2015b). The CERES EBAF data are available from
https://climatedataguide.ucar.edu/climate-data/ceres-ebaf-clouds-
and-earths-radiant-energy-systems-ceres-energy-balanced-
and-filled (Loeb et al., 2012). The GLDAS-2.1 data are
available from https://doi.org/10.5067/LWTYSMP3VM5Z
(Beaudoing et al., 2020). The CRU data are available from
https://crudata.uea.ac.uk/cru/data/hrg/?_ga=2.162163900.
162961233.1636977076-620633058.1635581908 (Harris et
al., 2020).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-16-135-2023-supplement.
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