Articles | Volume 15, issue 24
https://doi.org/10.5194/gmd-15-8999-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-8999-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A method for transporting cloud-resolving model variance in a multiscale modeling framework
Walter Hannah
CORRESPONDING AUTHOR
Lawrence Livermore National Laboratory, Livermore, CA, USA
Kyle Pressel
Pacific Northwest National Laboratory, Richland, WA, USA
Related authors
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Jungmin Lee, Walter M. Hannah, and David C. Bader
Geosci. Model Dev., 16, 7275–7287, https://doi.org/10.5194/gmd-16-7275-2023, https://doi.org/10.5194/gmd-16-7275-2023, 2023
Short summary
Short summary
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate models. In this study, we propose three methods to represent land–atmosphere coupling in the Energy Exascale Earth System Model (E3SM) with the Multi-scale Modeling Framework (MMF) approach. In this study, we introduce spatially homogeneous and heterogeneous land–atmosphere interaction processes within the cloud-resolving model domain. Our 5-year simulations reveal only small differences.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Walter Hannah, Kyle Pressel, Mikhail Ovchinnikov, and Gregory Elsaesser
Geosci. Model Dev., 15, 6243–6257, https://doi.org/10.5194/gmd-15-6243-2022, https://doi.org/10.5194/gmd-15-6243-2022, 2022
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
Naser Mahfouz, Hassan Beydoun, Johannes Mülmenstädt, Noel Keen, Adam C. Varble, Luca Bertagna, Peter Bogenschutz, Andrew Bradley, Matthew W. Christensen, T. Conrad Clevenger, Aaron Donahue, Jerome Fast, James Foucar, Jean-Christophe Golaz, Oksana Guba, Walter Hannah, Benjamin Hillman, Robert Jacob, Wuyin Lin, Po-Lun Ma, Yun Qian, Balwinder Singh, Christopher Terai, Hailong Wang, Mingxuan Wu, Kai Zhang, Andrew Gettelman, Mark Taylor, L. Ruby Leung, Peter Caldwell, and Susannah Burrows
EGUsphere, https://doi.org/10.5194/egusphere-2025-1868, https://doi.org/10.5194/egusphere-2025-1868, 2025
Short summary
Short summary
Our study assesses the aerosol effective radiative forcing in a global cloud-resolving atmosphere model at ultra-high resolution. We demonstrate that global ERFaer signal can be robustly reproduced across resolutions when aerosol activation processes are carefully parameterized. Further, we argue that simplified prescribed aerosol schemes will open the door for further process/mechanism studies under controlled conditions.
Katherine M. Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golaz, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautam Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordoñez
Geosci. Model Dev., 18, 1613–1633, https://doi.org/10.5194/gmd-18-1613-2025, https://doi.org/10.5194/gmd-18-1613-2025, 2025
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed-layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer bias reduction in temperature, salinity, and sea ice extent in the North Atlantic; a small strengthening of the Atlantic meridional overturning circulation; and improvements to many atmospheric climatological variables.
Jungmin Lee, Walter M. Hannah, and David C. Bader
Geosci. Model Dev., 16, 7275–7287, https://doi.org/10.5194/gmd-16-7275-2023, https://doi.org/10.5194/gmd-16-7275-2023, 2023
Short summary
Short summary
Representing accurate land–atmosphere interaction processes is overlooked in weather and climate models. In this study, we propose three methods to represent land–atmosphere coupling in the Energy Exascale Earth System Model (E3SM) with the Multi-scale Modeling Framework (MMF) approach. In this study, we introduce spatially homogeneous and heterogeneous land–atmosphere interaction processes within the cloud-resolving model domain. Our 5-year simulations reveal only small differences.
Marco A. Giorgetta, William Sawyer, Xavier Lapillonne, Panagiotis Adamidis, Dmitry Alexeev, Valentin Clément, Remo Dietlicher, Jan Frederik Engels, Monika Esch, Henning Franke, Claudia Frauen, Walter M. Hannah, Benjamin R. Hillman, Luis Kornblueh, Philippe Marti, Matthew R. Norman, Robert Pincus, Sebastian Rast, Daniel Reinert, Reiner Schnur, Uwe Schulzweida, and Bjorn Stevens
Geosci. Model Dev., 15, 6985–7016, https://doi.org/10.5194/gmd-15-6985-2022, https://doi.org/10.5194/gmd-15-6985-2022, 2022
Short summary
Short summary
This work presents a first version of the ICON atmosphere model that works not only on CPUs, but also on GPUs. This GPU-enabled ICON version is benchmarked on two GPU machines and a CPU machine. While the weak scaling is very good on CPUs and GPUs, the strong scaling is poor on GPUs. But the high performance of GPU machines allowed for first simulations of a short period of the quasi-biennial oscillation at very high resolution with explicit convection and gravity wave forcing.
Walter Hannah, Kyle Pressel, Mikhail Ovchinnikov, and Gregory Elsaesser
Geosci. Model Dev., 15, 6243–6257, https://doi.org/10.5194/gmd-15-6243-2022, https://doi.org/10.5194/gmd-15-6243-2022, 2022
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified, and a solution for one configuration is discussed.
Cited articles
Anjum, M. N., Ding, Y., Shangguan, D., Ahmad, I., Ijaz, M. W., Farid, H. U.,
Yagoub, Y. E., Zaman, M., and Adnan, M.: Performance evaluation of latest
integrated multi-satellite retrievals for Global Precipitation Measurement
(IMERG) over the northern highlands of Pakistan, Atmos. Res., 205,
134–146, https://doi.org/10.1016/J.ATMOSRES.2018.02.010, 2018. a
Benedict, J. J. and Randall, D. A.: Impacts of Idealized Air–Sea Coupling on
Madden–Julian Oscillation Structure in the Superparameterized CAM, J. Atmos. Sci., 68, 1990–2008, https://doi.org/10.1175/JAS-D-11-04.1,
2011. a
DeMott, C. A., Stan, C., Randall, D. A., and Branson, M. D.: Intraseasonal
Variability in Coupled GCMs: The Roles of Ocean Feedbacks and Model Physics,
J. Climate, 27, 4970–4995, https://doi.org/10.1175/JCLI-D-13-00760.1, 2014. a
Elsaesser, G. S., O'Dell, C. W., Lebsock, M. D., Bennartz, R., Greenwald,
T. J., and Wentz, F. J.: The Multisensor Advanced Climatology of Liquid
Water Path (MAC-LWP), J. Climate, 30, 10193–10210,
https://doi.org/10.1175/JCLI-D-16-0902.1, 2017. a, b
Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q.,
Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay‐Davis, X. S., Bader, D. C.,
Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke,
M. A., Brus, S. R., Burrows, S. M., Cameron‐Smith, P. J., Donahue, A. S.,
Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar,
J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop, B. E., Hunke, E. C.,
Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein,
S. A., Larson, V. E., Leung, L. R., Li, H., Lin, W., Lipscomb, W. H., Ma, P.,
Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B.,
Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. J.,
Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger,
A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton,
P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S., Williams,
D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J., Zelinka,
M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K., Zhang, Y., Zheng, X.,
Zhou, T., and Zhu, Q.: The DOE E3SM coupled model version 1: Overview and
evaluation at standard resolution, J. Adv. Model. Earth
Sy., 11, 2089–2129, https://doi.org/10.1029/2018MS001603, 2019. a
Grabowski, W. W.: Coupling Cloud Processes with the Large-Scale Dynamics Using
the Cloud-Resolving Convection Parameterization (CRCP), J.
Atmos. Sci., 58, 978–997,
https://doi.org/10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2, 2001. a
Grabowski, W. W.: An Improved Framework for Superparameterization, J.
Atmos. Sci., 61, 1940–1952,
https://doi.org/10.1175/1520-0469(2004)061<1940:AIFFS>2.0.CO;2, 2004. a, b
Grabowski, W. W. and Smolarkiewicz, P. K.: CRCP: a Cloud Resolving Convection
Parameterization for modeling the tropical convecting atmosphere, Physica D, 133, 171–178, https://doi.org/10.1016/S0167-2789(99)00104-9,
1999. a
Hannah, W.: E3SMv2 branch used for CRM Variance Transport validation in E3SM-MMF, Zenodo [code], https://doi.org/10.5281/zenodo.6578522, 2022a. a
Hannah, W.: CRM Variance Transport validation in E3SM-MMF – analysis code and condensed data, Zenodo [data set], https://doi.org/10.5281/zenodo.6578574, 2022b. a
Hannah, W. M., Jones, C. R., Hillman, B. R., Norman, M. R., Bader, D. C.,
Taylor, M. A., Leung, L. R., Pritchard, M. S., Branson, M. D., Lin, G.,
Pressel, K. G., and Lee, J. M.: Initial Results From the
Super‐Parameterized E3SM, J. Adv. Model. Earth Sy.,
12, e2019MS001863, https://doi.org/10.1029/2019MS001863, 2020. a, b, c
Hannah, W. M., Bradley, A. M., Guba, O., Tang, Q., Golaz, J.-C., and Wolfe, J.:
Separating Physics and Dynamics Grids for Improved Computational Efficiency
in Spectral Element Earth System Models, J. Adv. Model.
Earth Sy., 13, e2020MS002419, https://doi.org/10.1029/2020MS002419, 2021. a
Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D.,
Kojima, M., Oki, R., Nakamura, K., and Iguchi, T.: The Global Precipitation
Measurement Mission, B. Am. Meteorol. Soc., 95,
701–722, https://doi.org/10.1175/BAMS-D-13-00164.1, 2014. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., Marshall, S., Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay,
J. E., Kushner, P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay,
K., Lipscomb, W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B.,
Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack,
J. J., Kiehl, J., and Marshall, S.: The Community Earth System Model: A
Framework for Collaborative Research, B. Am.
Meteorol. Soc., 94, 1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1,
2013. a
Jansson, F., van den Oord, G., Pelupessy, I., Chertova, M., Grönqvist,
J. H., Siebesma, A. P., and Crommelin, D.: Representing Cloud Mesoscale
Variability in Superparameterized Climate Models, J. Adv.
Model. Earth Sy., 14, e2021MS002892, https://doi.org/10.1029/2021MS002892,
2022. a, b
Jones, C. R., Bretherton, C. S., and Pritchard, M. S.: Mean-state acceleration
of cloud-resolving models and large eddy simulations, J. Adv.
Model. Earth Sy., 7, 1643–1660, https://doi.org/10.1002/2015MS000488, 2015. a, b
Jung, J.-H. and Arakawa, A.: Modeling the moist-convective atmosphere with a
Quasi-3-D Multiscale Modeling Framework (Q3D MMF), J. Adv.
Model. Earth Sy., 6, 185–205, https://doi.org/10.1002/2013MS000295, 2014. a
Khairoutdinov, M. and Randall, D.: Cloud resolving modeling of the ARM summer
1997 IOP: Model formulation, results, uncertainties, and sensitivities,
J. Atmos. Sci., 60, 607–625,
https://doi.org/10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2,
2003. a
Khairoutdinov, M. F., Randall, D. A., and DeMott, C. A.: Simulations of the
atmospheric general circulation using a cloud-resolving model as a
superparameterization of physical processes, J. Atmos.
Sci., 62, 2136–2154,
https://doi.org/10.1175/JAS3453.1, 2005. a, b, c
Kim, K., Park, J., Baik, J., and Choi, M.: Evaluation of topographical and
seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia,
Atmos. Res., 187, 95–105, https://doi.org/10.1016/J.ATMOSRES.2016.12.007,
2017. a
Liebmann, B. and Smith, C. A.: Description of a complete (interpolated)
outgoing longwave radiation datasets, B. Am. Meteorol. Soc., 77,
1275–1277, 1996. a
Matsuno, T.: Quasi-Geostrophic Motions Equatorial Area, J. Meteor. Soc.
Japan, 44, 25–43,
https://doi.org/10.2151/jmsj1965.44.1_25,
1966. a
McCoy, D. T., Field, P., Bodas-Salcedo, A., Elsaesser, G. S., and Zelinka,
M. D.: A Regime-Oriented Approach to Observationally Constraining
Extratropical Shortwave Cloud Feedbacks, J. Climate, 33, 9967–9983,
https://doi.org/10.1175/JCLI-D-19-0987.1, 2020. a
Pritchard, M. S., Moncrieff, M. W., and Somerville, R. C. J.: Orogenic
Propagating Precipitation Systems over the United States in a Global Climate
Model with Embedded Explicit Convection, J. Atmos.
Sci., 68, 1821–1840, https://doi.org/10.1175/2011JAS3699.1, 2011. a
Randall, D., DeMott, C., Stan, C., Khairoutdinov, M., Benedict, J., McCrary,
R., Thayer-Calder, K., and Branson, M.: Simulations of the Tropical General
Circulation with a Multiscale Global Model, Meteor. Mon., 56,
15.1–15.15, https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0016.1, 2016. a
Randall, D. A., Khairoutdinov, M., Arakawa, A., and Grabowski, W.: Breaking
the Cloud Parameterization Deadlock, B. Am. Meteorol.
Soc., 84, 1547–1564, https://doi.org/10.1175/BAMS-84-11-1547, 2003. a
Ronchi, C., Iacono, R., and Paolucci, P.: The “Cubed Sphere”: A New Method
for the Solution of Partial Differential Equations in Spherical Geometry,
J. Comput. Phys., 124, 93–114, https://doi.org/10.1006/JCPH.1996.0047,
1996. a
Taylor, K. E., Williamson, D., and Zwiers, F.: The sea surface temperature and
sea-ice concentration boundary conditions for AMIP II simulations, PCMDI
Report, 60, 25,
https://pcmdi.llnl.gov/report/pdf/60.pdf?id=52 (last access: 1 December 2022), 2000. a
Taylor, M. A., Edwards, J., Thomas, S., and Nair, R.: A mass and energy
conserving spectral element atmospheric dynamical core on the cubed-sphere
grid, J. Phys. Conf. Ser., 78, 012074,
https://doi.org/10.1088/1742-6596/78/1/012074, 2007.
a
Tulich, S. N.: A strategy for representing the effects of convective momentum
transport in multiscale models: Evaluation using a new superparameterized
version of the Weather Research and Forecast model (SP-WRF), J.
Adv. Model. Earth Sy., 7, 938–962, https://doi.org/10.1002/2014MS000417,
2015. a
Wheeler, M. and Kiladis, G. N.: Convectively Coupled Equatorial Waves:
Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain,
J. Atmos. Sci., 56, 374–399, 1999. a
Xie, S., Lin, W., Rasch, P. J., Ma, P.-L., Neale, R., Larson, V. E., Qian, Y.,
Bogenschutz, P. A., Caldwell, P., Cameron-Smith, P., Golaz, J.-C., Mahajan,
S., Singh, B., Tang, Q., Wang, H., Yoon, J.-H., Zhang, K., and Zhang, Y.:
Understanding Cloud and Convective Characteristics in Version 1 of the E3SM
Atmosphere Model, J. Adv. Model. Earth Sy., 10,
2618–2644, https://doi.org/10.1029/2018MS001350, 2018. a
Short summary
A multiscale modeling framework couples two models of the atmosphere that each cover different scale ranges. Traditionally, fluctuations in the small-scale model are not transported by the flow on the large-scale model grid, but this is hypothesized to be responsible for a persistent, unphysical checkerboard pattern. A method is presented to facilitate the transport of these small-scale fluctuations, analogous to how small-scale clouds and turbulence are transported in the real atmosphere.
A multiscale modeling framework couples two models of the atmosphere that each cover different...