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Abstract. An unphysical checkerboard pattern has recently
been identified in the multiscale modeling framework config-
uration of the Energy Exascale Earth System Model (E3SM-
MMF) that is hypothesized to be associated with the inabil-
ity of large-scale dynamics to transport fluctuations within
the embedded cloud-resolving model (CRM) on the global
grid. To address this issue, a method is presented to facil-
itate the large-scale transport of CRM variance in E3SM-
MMF. Simulation results show that the method is effective
at reducing the occurrence of unphysical checkerboard pat-
terns on a range of timescales from days to years. This re-
sult is confirmed both subjectively through visual inspection
and quantitatively with a previously developed pattern cate-
gorization technique. The CRM variance transport does not
significantly alter the model climate, although it does tend to
reduce temporal variance on fields associated with convec-
tion on the global grid.

1 Introduction

The multiscale modeling framework (MMF) is an innova-
tive method to explicitly represent clouds in an atmospheric
general circulation model (GCM) by coupling each GCM
column to a cloud-resolving model (CRM) (Grabowski and
Smolarkiewicz, 1999; Grabowski, 2001; Randall et al., 2003;
Khairoutdinov et al., 2005). The two models cover vastly dif-
ferent scale ranges and are coupled via forcing and feedback
tendencies that are formulated such that the domain mean
state of the CRM cannot drift away from the state of the par-
ent GCM column (Grabowski, 2004; Randall et al., 2016).
This coupling approach leaves a “gap” in the total range of

scales simulated by the coupled system where neither model
can provide an explicit representation. Typically, this gap oc-
curs at the scale of mesoscale convective systems. Despite
filtering out potentially important weather systems, the scale
gap can be leveraged to improve computational performance
through hardware acceleration with GPUs (Hannah et al.,
2020) and algorithmic CRM mean state acceleration (Jones
et al., 2015).

The MMF scale gap has also been implicated in causing
a “checkerboard” signal on the grid of the parent GCM by
Hannah et al. (2022) in which neighboring grid cells system-
atically exhibit more or less convective activity. This results
in a subtle, yet persistent checkerboard pattern being im-
printed on the long-term mean of certain cloud-related quan-
tities such as liquid water path and precipitation (see inset in
Fig. 1b). A pattern detection method was developed to quan-
tify the extent and persistence of the checkerboard pattern in
E3SM-MMF, and a comparison with satellite data supported
the intuitive conclusion that the signal was unphysical. The
checkerboard detection method also revealed that Energy Ex-
ascale Earth System Model version 2 (E3SMv2) exhibits a
checkerboard pattern, albeit weaker. The checkerboard sig-
nal in E3SMv2 operates through a different mechanism that
is directly linked to the revised trigger for deep convection
that relies on convective available potential energy (CAPE)
generation by dynamics (DCAPE).

Another consequence of the MMF scale gap is that small-
scale fluctuations associated with convective circulations
within the CRM cannot be advected by the large-scale flow
represented by the GCM. This is because the CRM only
communicates to larger scales through the coupling of the
CRM domain mean (Pritchard et al., 2011). Thus, variance
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Figure 1. Maps of 10-year mean precipitation for using data from Integrated Multi-satellite Retrievals for GPM (IMERG) (a), E3SM-MMF
(b), E3SM-MMF with bulk variance transport (BVT, c), and E3SM-MMF with filtered variance transport (FVT, d). The red outline indicates
the region shown in the inset map that highlights a region that typically has a noticeable checkerboard pattern in E3SM-MMF without
variance transport.

at the scale of convective elements can effectively become
“trapped” within the CRM. This might not seem like a prob-
lematic feature of the MMF given that cloud life cycles are
typically short compared to the GCM time step on the order
of 10–30 min. However, the checkerboard problem in E3SM-
MMF suggests that this peculiarity of the MMF approach can
lead to an unphysical feedback cycle that allows the pattern
to persist. Jansson et al. (2022) also explored this issue, and
while they did not detect anything like the checkerboard pat-
tern in E3SM-MMF, they showed how the lack of small-scale
advection inherent to the MMF coupling strategy can lead to
unnatural dissipation of a cloud field.

Another way to think about the variance trapping problem
is to consider the CRM simply as a GCM parameterization of
sub-grid scale (SGS) processes with a higher-order closure.
The CRM is exactly solving for the GCM–SGS variance and
ignoring horizontal transport which forces the system to pro-
duce a local balance between the production and dissipation
of GCM–SGS variance. In the case of water vapor, a sig-
nificant pathway of variance dissipation is precipitation, but
because precipitation can only dry the system, it leads to an
anomalous effect on the CRM mean, which can in fact be
transported, and sets up the checkerboard.

An ideal solution to this issue is to allow the CRM fluctu-
ations to be advected by the flow of the large-scale model,
since this interaction between scales happens naturally in
the real atmosphere. The quasi-3D framework of Jung and
Arakawa (2014) is one way to enable this type of scale inter-
action, but this method is still in an experimental phase and
not well suited to being implemented into the current E3SM
infrastructure. Another potential solution that has been pro-
posed in our discussions is to relax the requirement of cyclic
horizontal boundary conditions in the CRM. Several versions
of how this could be achieved have been discussed and we

have conducted experiments with one approach (not shown),
but all of these involve problematic compromises that dis-
courage a detailed exploration.

The most tractable solution for transporting CRM fluctua-
tions, or variance, is to encode these fluctuations into a set of
massless tracer fields that can be advected by the large-scale
dynamics. Developing this method requires defining how the
variance will be encoded, as well as how the variance trac-
ers on the GCM grid will be coupled to the actual variance
within the CRMs. In this study we present such a method for
transporting cloud-scale variance in E3SM-MMF. The gen-
eral variance transport method is detailed in Sect. 2 along
with a discussion of possible variations on the method. This
is followed by a description of model experiments, satellite
data, and checkerboard detection method used to validate the
variance transport in Sect. 3. Discussion of the results and
conclusions are presented in Sects. 4 and 5.

2 MMF variance transport method

2.1 MMF coupling review

The canonical MMF coupling involves forcing and feedback
tendencies of some quantity q between a large-scale model
(GCM) and small-scale model (CRM, Grabowski, 2004).
The values of q are defined independently for each model,
but the tendencies must be formulated such that the q fields
of each model maintain equality at the end of each time step.
This coupling procedure starts with a provisional time step
where the GCM updates the GCM variable denoted qG with
a tendency BG which includes things like advection over the
GCM time step 1tG. So we write

q̃n+1
G = qnG+BG1tG (1)
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so that

BG =
q̃n+1

G − qnG
1tG

. (2)

The tilde denotes a provisional value, and Eq. (1) represents
a partial time step. The corresponding CRM variable qC is
updated using the CRM time step 1tC:

qm+1
C − qmC
1tC

= BC+

 q̃n+1
G −〈qC〉

n

1tG

 . (3)

The subscripts m and m+ 1 denote successive CRM time
steps. The termBC represents the processes calculated within
the CRM, such as microphysics. The quantity 〈qC〉

n is the
CRM domain average of qC at the beginning of the GCM
time step. The last term of Eq. (3) is the mechanism that com-
municates the tendencies of the GCM to the CRM. In other
words, it is the forcing of the CRM by the GCM.

After taking enough CRM time steps to span the length of
the GCM time step, the GCM variables are updated with a
feedback tendency:

qn+1
G − qnG
1tG

= BG+
〈qC〉

n+1
− q̃n+1

G
1tG

(4)

= BG+
〈qC〉

n+1
− qnG+BG1tG

1tG
(5)

=
〈qC〉

n+1
− qnG

1tG
. (6)

Here 〈qC〉
n+1 represents the horizontal mean qC at the end of

the CRM integration or at GCM time n+ 1.
Comparing the two sides of Eq. (6), we see that

qn+1
G = 〈qC〉

n+1,

which indicates that the two model states are identical at the
end of the GCM time step, or, equivalently, at the beginning,
and guarantees that the two model states cannot drift apart.

2.2 CRM variance coupling

To implement the coupling of variance between CRMs in the
MMF we can largely follow the coupling scheme for an arbi-
trary tracer as described above. However, since we are only
concerned with fluctuations about the CRM mean state, we
do not want the forcing tendencies to have any impact on the
CRM mean state. Thus, the CRM forcing must only operate
on local perturbations from the horizontal mean. For cou-
pling back to the GCM we use a bulk measure of the vari-
ance within the CRM to provide feedback tendencies to a
set of massless variance tracers advected on the global grid.
The GCM variance tracers are only used to move the CRM
variance around, analogous to how clouds and small-scale

turbulence can be advected by large-scale flows in the real
world.

The CRM variance feedback tendency of some quantity
q at a given vertical level of the CRM that is applied to the
GCM can be formulated analogous to Eq. (4):

Qn+1
−Qn

1tG
=
q ′q ′

n+1
− Q̃n+1

1tG
, (7)

whereQ represents the massless variance tracer on the GCM
grid and q ′ is the perturbation from the horizontal mean on
the CRM grid. The quantity q ′q ′

n+1
is the total variance of q

at the end of the CRM time integration.
Since the CRM columns do not have any specific location

within the parent GCM column, the forcing or “injection”
of variance into the CRM cannot be constrained to any par-
ticular spatial pattern. Thus, we rely on scaling the existing
perturbations from the horizontal mean at each time step so
that the existing spatial structure of variance within the CRM
is preserved. To do this we calculate a scaling factor α at
each CRM time step to scale the existing perturbations and
increase or decrease the existing variance to be consistent
with the variance forcing.

In order to constrain the scaling factor α, the total variance
forcing applied to the CRM can be formulated analogous to
Eq. (3):

q ′q ′
m+1
− q ′q ′

m

1tC
=

(
Q̃n+1− q ′q ′

n

1tG

)
(8)

so that

q ′q ′
m+1
= q ′q ′

m
+1tC

(
Q̃n+1− q ′q ′

n

1tG

)
. (9)

Note that we are ignoring the internal CRM processes that
will affect the variance, but this is not important for formu-
lating α.

At each time step the adjusted variance can be formulated
in terms of the variance of the scaled perturbations or by scal-
ing the total variance by α2:

q ′q ′
m+1
= αq ′αq ′

m
= α2q ′q ′

m
. (10)

By combining Eqs. (9) and (10) we can solve for α as

α = 1+
F1tC

q ′q ′
m , (11)

where F =

(
Q̃n+1−q ′q ′

n
)

1tG
represents the variance forcing pro-

vided by the GCM (i.e., advective tendencies).
In practice, the variance forcing is applied at each CRM

time step by calculating the perturbations of q from the hor-
izontal mean and the corresponding value of α at each ver-
tical level. The existing q perturbations are then scaled by
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α and converted into a tendency to be applied back to the
full state. This allows alternate definitions of the perturba-
tions such that the variance transport can be restricted to a
certain scale range (see discussion below). In certain rare cir-
cumstances the variance forcing can be too strong and lead
to instability within the CRM. Since we are not concerned
about preserving the cloud-scale variance of thermodynamic
tracers globally, we can address this issue with a simple lim-
iter. We find that restricting α between 0.90 and 1.10 works
well for these edge cases and does not qualitatively affect the
model behavior (not shown).

Another important step for implementing the variance
transport method is to decide which quantities will be af-
fected. Currently, the CRM in E3SM-MMF uses liquid–ice
static energy and total non-precipitating water as the main
prognostic thermodynamic quantities. These are the only
two thermodynamic quantities directly affected by variance
transport in E3SM-MMF. Note that the variance transport
does not affect the mean state of the CRM and, thus, does
not affect energy or mass conservation. The single-moment
microphysics scheme employed by the CRM allows cloud
liquid and ice to be diagnosed from the total water, so there is
no need to consider the variance of cloud condensate. We ini-
tially avoided transporting variance of the horizontal momen-
tum field due to concerns about complications arising from
the use of the anelastic approximation. However, we have
since enabled momentum variance transport and found that
it results in a notable contribution to suppressing the checker-
board pattern (not shown), so the simulations discussed here
include horizontal momentum variance transport.

2.3 Alternative approaches

Jansson et al. (2022) used a different approach to facilitate
variance transport in which only total water anomalies were
scaled to force the CRM cloud water to match the corre-
sponding fields of the parent model. They showed that this
approach effectively allows the spatial variability of the cloud
field to be advected between columns of the parent model,
but they also reported a curious problem where the cloud
water added by their scaling was rapidly dissipated over the
course of the CRM integration. We are interested in com-
paring these methods and the dissipation issue, but this is
outside the scope of the current study. Also, E3SM-MMF
currently lacks the infrastructure to output CRM data at the
frequency of the CRM time step which limits our ability to
directly compare their results.

We refer to the variance transport method described above
as “bulk variance transport”, since we lump the CRM fluctua-
tions of all scales together by calculating the total variance at
each vertical level. The bulk approach makes no distinction
as to what scales are most represented in the variance tracers
and because we rely on the existing perturbations in a CRM
when applying the variance forcing, it is possible to transport
relatively large-scale variance in one CRM and inject it into

the smallest scales of another CRM. During the course of
this work we have considered a few alternative approaches
to address this inter-scale variance transport that allow for
some flexibility in choosing which scales are represented in
the variance that is being transported.

One of the earlier ideas was to transport multiple scalars
for each prognostic CRM variable corresponding to the
Fourier transform coefficients obtained from the horizontal
dimension. This idea was appealing because it allowed the
variance at each scale to be transported separately, so there
was no chance of inter-scale variance exchange. However,
experiments with this approach were much less effective at
reducing the checkerboard pattern occurrence. We suspect
this method is fundamentally flawed because it ignores the
important cancellations between Fourier modes that give rise
to a realistic atmospheric state. It is also a more expensive
method due to the larger number of tracers.

Another alternative that we have explored is to use a low-
pass spatial filter to isolate a certain scale range for the pertur-
bations used to define the variance tracers. By using a filtered
CRM state we can restrict the inter-scale variance exchange
to occur only within the bounds defined by the filter. In our
experiments we use a fast Fourier transform (FFT) to serve
as a low-pass filter in the horizontal dimension of the CRM
to isolate the largest few wavenumbers. The resulting filtered
perturbations can be used in the method for variance forcing
and feedback calculations outlined above without modifica-
tion. Experiments using this filtered variance transport tech-
nique were consistent with the bulk variance transport ex-
periments, with some subtle, but unique, changes to certain
climatological features. Further sensitivity experiments show
that the filtered method converges to the bulk method as the
cutoff wavenumber is increased (not shown). Ultimately, our
analysis suggests that the potential inter-scale variance trans-
port is not problematic, so it is preferable to use the bulk
method, but we have included a case with the filtered method
in our analysis below.

3 Data and methods

3.1 Checkerboard detection method

For a quantitative assessment of the checkerboard pattern
we use the pattern detection method developed by Hannah
et al. (2022), which is briefly described here. After several
attempts to automate the detection of a “pure” checkerboard
pattern with alternating anomalies over a large area, it be-
came clear that pure checkerboard instances are rare on short
timescales. More often the data show a “partial” checker-
board due to the coexistence with a synoptic-scale gradient.
Hence, a detection method to study the checkerboard issue is
needed to be able to distinguish various partial checkerboard
patterns.

Geosci. Model Dev., 15, 8999–9013, 2022 https://doi.org/10.5194/gmd-15-8999-2022



W. Hannah and K. Pressel: Transporting CRM variance in a multiscale modeling framework 9003

To overcome this partial checkerboard complication Han-
nah et al. (2022), limited the scope of the problem to only
consider the eight locally adjacent neighboring grid cells sur-
rounding a given cell (i.e., the neighbors sharing an edge
or corner) and encoded the adjacent values as 0 for values
less than or equal to the central value and 1 otherwise. These
neighborhood values are ordered clockwise around the cen-
tral point, starting with the northernmost edge neighbor for
consistency. Points located adjacent to the cube sphere cor-
ners are omitted, since they only have seven adjacent neigh-
bors. The resulting sequence of eight binary values (ignoring
the center cell) for a given location and time represents 1 of
36 possible unique patterns after considering that certain sets
of patterns are identical when rotated (i.e., rotational sym-
metry). The goal of this pattern detection method is to cata-
logue the occurrence of each unique pattern and compare it
to satellite data to determine if any patterns are occurring too
frequently (see Hannah et al., 2022 for more details).

Using this method, a pure checkerboard pattern shows up
as an alternating sequence of 1s and 0s. This pattern is rela-
tively rare when considering daily mean data, which are what
we use to facilitate the comparison with satellite data. The
rarity of the pure checkerboard is somewhat expected due
to ubiquitous synoptic-scale gradients that can coexist with
the pure checkerboard on short timescales. There is no clear
way to separate these synoptic signals from the underlying
checkerboard, so it is useful to focus on patterns that contain
only a portion of the full checkerboard pattern. To do this we
further identify which of the 36 patterns contain a continu-
ously alternating binary sequence of length four or more and
consider these to be partial checkerboard patterns. Alternate
definitions of partial checkerboard patterns were not found to
qualitatively change our results (not shown).

3.2 E3SM-MMF description

E3SM was originally forked from the NCAR Community
Earth System Model (CESM) (Hurrell et al., 2013) but has
undergone significant development since then (Golaz et al.,
2019; Xie et al., 2018). The dynamical core uses a spectral
element method on a cubed-sphere geometry (Ronchi et al.,
1996; Taylor et al., 2007). Physics calculations are done on a
finite volume grid that is slightly coarser than the dynamics
grid but matches the effective resolution of the dynamics grid
more closely (Hannah et al., 2021).

The MMF configuration of E3SM (E3SM-MMF) was
originally adapted from the super-parameterized Community
Atmosphere Model (CAM) (SP-CAM; Khairoutdinov et al.,
2005). E3SM-MMF has also undergone significant develop-
ment, but the model qualitatively reproduces the general re-
sults published in previous studies (Hannah et al., 2020). The
embedded CRM in E3SM-MMF is adapted from the System
for Atmospheric Modeling (SAM) (Khairoutdinov and Ran-
dall, 2003). Microphysical processes are parameterized with
a single-moment scheme, and sub-grid-scale turbulent fluxes

are parameterized using a diagnostic Smagorinsky-type clo-
sure. Aerosol concentrations are prescribed with present-day
values. Convective momentum transport in the 2D CRM
is handled using the scalar momentum tracer approach of
Tulich (2015).

The embedded CRM in E3SM-MMF uses a two-
dimensional domain with 64 CRM columns in a north–south
orientation and 2 km horizontal grid spacing. The global
model uses a hybrid vertical coordinate that transitions from
terrain following near the surface to a pure pressure coordi-
nate near the top. The CRM employs the anelastic approxi-
mation and uses a height vertical coordinate. The mismatch
in vertical coordinates turns out to be inconsequential for the
MMF coupling scheme because the CRM background pres-
sure and density can be updated with profiles from the GCM
at each coupling step without causing an unphysical shock to
the system.

In order to facilitate better CRM performance when run-
ning on GPU machines, the CRM was completely rewrit-
ten in C++ (SAM++), which provides substantially improved
GPU throughput over the original Fortran code with Ope-
nACC directives. The SAM++ model relies on the perfor-
mance portability library of Yet Another Kernel Launcher
(YAKL). 1 In addition to GPU hardware acceleration, E3SM-
MMF can also leverage algorithmic acceleration through the
mean-state-acceleration scheme of Jones et al. (2015). Addi-
tional refactoring of the MMF physics code enabled the en-
hancement of the hardware acceleration by minimizing data
transfer overheads between CPU and GPU, as well as lever-
age OpenMP threading to maximize the throughput of calcu-
lations outside of the CRM.

E3SM-MMF uses a simple technique to reduce the number
of radiative transfer calculations in order to boost throughput.
Rather than performing radiation calculations on each CRM
column separately, these calculations are performed on the
average state of 4 groups of 16 adjacent CRM columns and
the resulting radiative tendencies are applied homogeneously
back to the same group of columns (Hannah et al., 2020).
This provides a significant boost to the throughput without
qualitatively affecting the general characteristics of radiative
fluxes (not shown). A forthcoming paper will provide a de-
tailed exploration of the model’s sensitivity to how these ra-
diative groups are configured.

Aside from the difference in how convection is treated,
E3SM-MMF differs from the standard configurations of
E3SM in several important ways. The stability of E3SM-
MMF is noticeably improved by reducing the global model’s
physics time step from 30 to 20 min. The 72-layer vertical
grid of E3SMv2 was also found to be problematic for the
performance of E3SM-MMF because thin layers near the
surface necessitate a 5 s CRM time step for numerical stabil-
ity. Therefore, the E3SM-MMF simulation shown here uses

1See https://github.com/mrnorman/YAKL (last access: 1 De-
cember 2022) for more information.
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an alternative 60-layer vertical grid that allows a longer 10 s
CRM time step. A final stability concern has to do with high-
frequency oscillations of temperature, humidity, and wind
near the surface. Both models exhibit these oscillations, but
they render E3SM-MMF much more susceptible to crashing.
A temporal smoothing of surface fluxes with a 2 h timescale
is used to address this problem, which does not have any no-
table impact on the model climate (not shown).

3.3 E3SM-MMF simulations

All simulations are run for 10 years using 128 nodes of the
Oak Ridge Leadership Computing Facility (OCLF) Summit
machine (768 ranks). The global cubed-sphere grid was set at
ne30pg2 (30× 30 spectral elements per cube face and 2× 2
FV physics cells per element), which roughly corresponds to
an effective grid spacing of 150 km, while the average spac-
ing of spectral nodes for dynamics is closer to 100 km. The
model input data for quantities such as solar forcing, aerosol
concentrations, and land surface types are derived from a 10-
year climatology between 2005–2015 to be representative of
climatological conditions around 2010. Sea surface tempera-
tures were similarly prescribed using monthly climatological
values that are temporally interpolated to give a smooth evo-
lution (Taylor et al., 2000).

3.4 Satellite observation data

Following Hannah et al. (2022), we use the same pattern de-
tection method to assess the occurrence of checkerboard pat-
terns in E3SM-MMF. We will also use satellite data that have
been remapped to the model grid to serve as a benchmark for
how much noise should be tolerated in the model data. The
specific time period of satellite data used for analysis is arbi-
trary. We choose to use daily mean data between 2005–2014
for all datasets. Since the checkerboard pattern is most vis-
ible in cloud liquid water path and precipitation fields, we
use comparable satellite estimates of these fields to provide a
baseline of the spatial distribution of these quantities.

Satellite estimates of cloud liquid water path are provided
by the Multisensor Advanced Climatology of Liquid Water
Path (MAC-LWP) data product (Elsaesser et al., 2017). We
use a daily-resolution version of the product (McCoy et al.,
2020) with LWP estimates provided on a 1.0◦× 1.0◦ equian-
gular grid that is then regridded to the ne30pg2 grid used
by the model. MAC-LWP additionally provides total (cloud
plus precipitating) liquid water path estimates (TLWP), and
we use TLWP to create a gridded quality control mask that
hashes regions for which the ratio of LWP to TLWP is less
than 0.6, broadly following the recommendation of Elsaesser
et al. (2017). Hashed regions envelope grid boxes for which
LWP estimates exhibit substantial uncertainty (and potential
systematic bias) due to errors in isolating and quantifying the
cloud liquid water radiometric signature from that of the total
liquid water radiometric signature in microwave retrievals.

The Global Precipitation Measurement (GPM) mission,
the successor to the Tropical Rainfall Measuring Mission
(TRMM), was launched in 2014 with the goal of producing
accurate and reliable estimates of global precipitation with
all available TRMM and GPM data eras (Hou et al., 2014).
The Integrated Multi-satellite Retrievals for GPM (IMERG)
combines several satellite datasets to produce an integrated
rainfall data product that has proven to perform well in var-
ious regions (Anjum et al., 2018; Kim et al., 2017). Daily
mean IMERG data are available on a 0.1◦× 0.1◦ grid, which
is much finer than the grid used here for the model simula-
tions. To facilitate direct comparison we regrid the IMERG
data to the ne30pg2 model grid and a 1.0◦× 1.0◦ equiangular
grid to match the MAC-LWP data.

Note that the act of data regridding does indeed affect the
results of our checkerboard detection method. This was ex-
plored in more detail by Hannah et al. (2022), and the results
showed a small impact that did not affect the conclusions. It
is important to put the observational data on the model grid
in this case in order to determine the level of naturally occur-
ring noise that should be expected at the scale of the model
grid.

In addition to our checkerboard analysis and mean-state
assessment, we are also interested in characterizing any
change in modes of variability that might occur from en-
abling variance transport. For this we will focus on analyzing
tropical wave variability and will use daily mean outgoing
longwave radiation (OLR) from the National Oceanic and
Atmospheric Administration (NOAA) polar-orbiting satel-
lites (Liebmann and Smith, 1996) as our observational
benchmark.

4 Results

In this section we will compare E3SM-MMF results from
simulations that employ the bulk variance transport (BVT)
and filtered variance transport (FVT) methods described in
Sect. 2 to a control simulation of E3SM-MMF with no vari-
ance transport and satellite data.

4.1 Climatology

Figure 1 shows 10-year mean maps of precipitation from
IMERG and model data on the model’s ne30pg2 physics grid
using shaded polygons to highlight signals at the grid scale.
All simulations exhibit a similar spatial distribution of pre-
cipitation with typical biases relative to observations, such as
too little precipitation over the Amazon, too much precipita-
tion over the northwestern tropical Pacific and Pacific Inter-
Tropical Convergence Zone (ITCZ), and a prominent double
ITCZ.

The control simulation produces a noticeable checker-
board pattern, particularly in subtropical regions, consistent
with the results of Hannah et al. (2022). Similar results can be
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found for other variables related to convection (not shown).
Both BVT and FVT simulations have a smoother climatol-
ogy with no clear checkerboard patterns in the long-term
mean while still retaining the characteristic spatial distribu-
tion. This confirms that the variance transport method is able
to address the variance trapping issue that we hypothesize is
producing checkerboard patterns in E3SM-MMF.

Climatological differences of precipitation and liquid wa-
ter path relative to the control simulations reveal that changes
induced by variance transport are not restricted to reduc-
ing the checkerboard signal (Fig. 2). Regional changes in
convective activity include a slight enhancement of precip-
itation in the northwestern tropical Pacific, where there is
often too much precipitation in MMF models (Khairoutdi-
nov et al., 2005). Overall, the magnitude of climatological
changes from variance transport seems relatively small, such
that the net top-of-atmosphere radiative balance in these sim-
ulations differs by less than 1 W m−2 (not shown). Thus, we
conclude that enabling variance transport does not signifi-
cantly alter the model climate.

4.2 Checkerboard noise

The pattern detection method described in Sect. 3.1 yields
36 unique binary sequences that can be catalogued across
specific regions and time periods and normalized by the to-
tal number of valid observations to give a “fractional occur-
rence” for each pattern or set of patterns. Considering the
number of “valid” observations is especially important for
the satellite data because it includes instances of missing
data. In order to further condense these statistics we can es-
timate the “smoothness” of each unique pattern by counting
the number of local extrema in the binary sequence. A local
extreme is identified as either a 1 surrounded by 0 values or
vice versa. The smoothness of a pattern can then be inferred
from the number of local extrema.

Figures 3a and c show the fractional occurrence of the var-
ious unique neighborhood state patterns of liquid water path
and precipitation data from the northwestern tropical Pacific
after combining them based on the number of local extrema.
The difference of each fractional occurrence value relative to
the corresponding satellite data on the ne30pg2 grid is shown
in Fig. 3b, c. This analysis highlights how the pure checker-
board (eight local extrema) is quite rare, and this pattern is
observed too often in the control simulation (red bars). The
control simulation has an even larger prevalence of patterns
with three, four, and five local extrema relative to all other
datasets owing to the fact that instances of partial checker-
board are more prevalent than instances of pure checkerboard
in daily mean data. Inversely, the smoothest patterns with no
local extrema are produced too infrequently in the control.
Both BVT (green) and FVT (blue) cases are more similar
to satellite observations in their distribution of pattern occur-
rence, with the BVT case being the most similar to observa-
tions.

Figure 4 shows a map of partial checkerboard fractional
occurrence using liquid water path data, which is calculated
by averaging the partial checkerboard occurrence after run-
ning the detection algorithm on daily mean data. The spa-
tial distribution of partial checkerboard occurrence is sim-
ilar among all three simulations, but the BVT and FVT
cases show a dramatic reduction in how often these patterns
are observed. However, these cases are still producing more
checkerboard instances compared to satellite data, consistent
with Fig. 3.

In addition to showing the more frequent occurrence of
checkerboard patterns, Hannah et al. (2022) also found that
checkerboard “events” were surprisingly persistent by iden-
tifying periods in which a neighborhood stays in a par-
tial checkerboard state for an extended time period. Fig-
ure 5 shows a histogram of these partial checkerboard event
lengths in liquid water path and precipitation fields using
oceanic data between 60◦ S–60◦ N. In both variables we see
that E3SM-MMF shows a larger number of events of any
length when compared to satellite data, with some events
lasting nearly 100 d. The FVT case also exhibits a tendency
to produce longer partial checkerboard events than is ob-
served in satellite data, whereas the BVT case is very similar
to the satellite data.

The use of daily mean data for pattern detection in the pre-
vious analysis was meant to facilitate the comparison with
satellite data, but it is insightful to consider finer timescales
in order to see how the checkerboard patterns “spin up” at
the start of a simulation. To investigate this question we reran
E3SM-MMF for 10 d with output at every time step (20 min)
and ran each snapshot through our detection algorithm. Fig-
ure 6 shows a time series of the fractional occurrence of par-
tial checkerboard patterns at each model time step from the
beginning of each simulation. Data are restricted to ocean re-
gions between 60◦ S–60◦ N, and the horizontal black dashed
lines indicate the climatological fractional occurrence of par-
tial checkerboard patterns from the corresponding satellite
data for reference. Interestingly, the checkerboard signals are
detectable in the first few time steps for liquid water path but
are slower to spin up in the precipitation field. After the ini-
tial spin-up the occurrence of partial checkerboard patterns
continues to increase over the first 4–5 d before leveling off.
The speed of the initial spin-up is consistent with the au-
thors’ experience that convection within the CRM develops
very quickly after initialization. This further illustrates that
while the CRM variance transport method can ameliorate the
checkerboard pattern persistence and yield a much smoother
climate, the model still produces a relatively noisy solution
on short timescales relative to satellite observations.

4.3 Variance tracer analysis

In this section we look at the CRM variance tracers directly.
We characterize the climatological distribution and how they
are related to precipitation as a measure of convective activ-
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Figure 2. Maps of 10-year mean precipitation and liquid water path differences relative to the E3SM-MMF control simulations for E3SM-
MMF+BVT (a, b) and E3SM-MMF+FVT (c, d).

Figure 3. (a, c) Fractional occurrence of neighborhood patterns combined according to the number of local extrema (see text) over the region
0–30◦ N and 140–220◦ E (see inset map) for 10 years of satellite and E3SM-MMF data. Results for IMERG precipitation and MAC liquid
water path were calculated from data regridded to the ne30pg2 grid used by the model for direct comparison. (b, d) Difference of fractional
occurrence relative to satellite data.

ity. We also examine the GCM-to-CRM forcing and CRM-
to-GCM feedback tendencies that are used to couple the two
models in order to explore how CRM variance is produced
and transported. This discussion is meant to provide a broad
sense of how the CRM variance transport works in practice.

Figure 7 shows the zonal mean climatology of all three
CRM variance tracer amounts on the GCM grid (left) along
with the CRM feedback (middle) and GCM forcing (right)
tendencies. For this analysis we only use data from the BVT
case as the control does not have these quantities and results
from the FVT case are effectively identical. The largest CRM
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Figure 4. Maps of fractional occurrence of partial checkerboard patterns (see text) on the ne30pg2 grid for MAC-LWP (a), E3SM-MMF (b),
E3SM-MMF with bulk variance transport (BVT, c), and E3SM-MMF with filtered variance transport (FVT, d).

Figure 5. Histogram of the event length, with events defined as continuous periods with partial checkerboard neighborhood states. Data were
restricted to oceanic points equatorward of 60◦ latitude in both hemispheres for all 5 years available.

variance tracer magnitudes occur in the tropics, which is ex-
pected, since this is where the strongest convective activity
occurs. There is also a noticeable amount of CRM variance
around the upper tropospheric jet regions, which is likely as-
sociated with mid-latitude storm activity. We do not have an
appropriate dataset with which to compare the magnitude of
the CRM variance, but using a global cloud-resolving model
for this sort of comparison might be an insightful avenue for
future refinement of the variance transport method.

The GCM forcing and CRM feedback tendencies are ex-
pected to balance each other. This is similar to any quantity
that is coupled across the two models using the MMF cou-
pling scheme described in Sect. 2.1, and this balance is a
reflection of the way the scheme is designed to not allow the
state of either model to drift away from the other. However,
some aspects of the zonal mean tendency structures are not
immediately intuitive to understand. We might naively ex-

pect the CRM to produce positive variance tracer tendencies
on average as a result of the conversion of available potential
energy that drives turbulence and convection, which would
be balanced by negative tendencies from the advection by
the GCM, but this does not seem to be the case.

The general vertical distribution of forcing and feedback
tendencies also reveals a complicated picture, with the CRM
producing negative feedback tendencies at low levels and
above 500 hPa. Part of the explanation may be that CRM
variance produced in the boundary layer is often advected up-
wards into the free troposphere, leading to an apparent low-
level sink of CRM variance. A full explanation of these ten-
dencies would require a detailed budget calculation to quan-
tify how variance is produced and transported in both the
CRM and GCM, which is outside the scope of the present
study.
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Figure 6. Time series of partial checkerboard occurrence calculated at each model time step from the start of the run. Data were restricted to
oceanic points equatorward of 60◦ latitude in both hemispheres.

Figure 7. 10-year zonal and time-averaged CRM variance transport tracer amount (a, d, g), GCM to CRM forcing tendency (b, e, h), and
CRM to GCM feedback tendency (c, f, i) for the E3SM-MMF+BVT case. These variance amounts and tendency values correspond to the
variance transport of liquid–ice static energy (a, b, c), total non-precipitating water (d, e, f), and horizontal momentum (g, h, i).
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Figure 8. Vertical profiles of CRM variance transport tracer amount (left), CRM feedback (middle), and GCM forcing (right) binned by pre-
cipitation rate for liquid–ice static energy (top row) and total water (bottom row) using 1 year’s daily mean data from the E3SM-MMF+BVT
case.

An alternative way to examine the CRM variance tracers
is to bin daily mean data by the daily mean precipitation rate
to get a sense of how the feedback and forcing tendencies
balance across various convective regimes. This analysis is
shown in Fig. 8 using 1 year of data from the BVT case.
This approach reveals a more consistent picture of how the
CRM variance tracer forcing and feedback tendencies are
balanced. The CRM tendency of liquid–ice static energy is
positive on average when precipitation is being produced,
consistent with our expectations. The CRM tendency of to-
tal water variance shows strong negative values aloft that get
stronger with higher precipitation rates. These negative ten-
dencies are likely explained by the fact that precipitation is
generally a sink of total water variance.

4.4 Does variance transport affect variability?

In this section we provide a cursory look at how the CRM
variance transport affects variability by focusing on convec-
tively coupled waves in the equatorial region. Figures 9a–d

show unnormalized symmetric spectra of top-of-atmosphere
outgoing longwave radiation (OLR) over the region 15◦ S–
15◦ N for NOAA satellite observations, E3SM-MMF, E3SM-
MMF+BVT, and E3SM-MMF+FVT following Wheeler and
Kiladis (1999). Lower panels (e)–(f) show the difference be-
tween each simulation relative to NOAA observations. Pos-
itive and negative wavenumbers indicate eastward and west-
ward propagating modes, respectively. Theoretical disper-
sion lines are shown for equatorial Kelvin and Rossby waves
(Matsuno, 1966).

The difference panels in Fig. 9 highlight the fact that
the model produces too much power at almost all regions
of the spectrum. This corresponds to an overall larger tem-
poral variance on daily timescales in quantities associated
with convective activity (not shown). Enabling CRM vari-
ance transport acts to reduce this temporal variance in many
areas of the equatorial region, which is reflected in the spectra
of the BVT and FVT cases. This is a somewhat unexpected
sensitivity but also a welcome result, since it appears to make
the simulated variability slightly more realistic.
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Figure 9. Symmetric wavenumber-frequency power spectra of tropical outgoing longwave radiation between 15◦ S–15◦ N for data from
NOAA polar-orbiting satellites (a), E3SM-MMF (b, e), E3SM-MMF+BVT (c, f), and E3SM-MMF+FVT (d, g) including differences be-
tween each simulation and NOAA data. Positive (negative) wavenumbers indicate eastward (westward) propagation.

The most prominent feature of the observed equatorial
wave spectrum is a peak around 30–90 d periods (0.01–
0.03 d−1) and eastward zonal wavenumbers 1–2, which is the
signature of the Madden–Julian Oscillation (MJO). E3SM-
MMF captures this feature to some extent, but the spectral
power is slightly weaker than observations despite having
stronger power in almost all other bands. Furthermore, the
power in the MJO band decreases slightly when using BVT
and increases slightly when using FVT relative to the control.
The MJO’s sensitivity to CRM variance transport is some-
what surprising as we hoped that the MJO would be im-
proved by allowing CRM states to be advected by the cir-
culation anomalies associated with the MJO. This suggests
that the MJO’s deficiencies in E3SM-MMF are likely due to
other factors such as the lack of ocean coupling (Benedict
and Randall, 2011; DeMott et al., 2014).

5 Conclusions

In this study we have presented a method to address the
variance trapping problem in E3SM-MMF and its associ-
ated checkerboard patterns by allowing cloud-scale fluctu-
ations in the CRM to be transported on the global grid. This

method for CRM variance transport is applied to liquid–ice
static energy, total water, and horizontal momentum within
the embedded CRM. Two implementations of the variance
transport method are implemented in E3SM-MMF that dif-
fer in how perturbations are calculated to obtain the variance
tracer magnitudes. The first method uses simple differences
from the horizontal mean to define a total or bulk variance,
whereas the second uses an FFT as a low-pass filter in space
to define a filtered variance that restricts the transported vari-
ance to only affect the lowest-frequency fluctuations within
the CRM.

Analysis of the model climatology shows that checker-
board patterns are no longer visible when using either
bulk variance transport (BVT) or filtered variance transport
(FVT). The pattern detection method of Hannah et al. (2022)
is used to quantitatively compare the simulations and satellite
observations. These results show that E3SM-MMF is more
similar to observations when variance transport is enabled,
with the BVT method giving the best performance.

Enabling variance transport generally does not have a large
effect on the model climate, although it tends to reduce the
temporal variance of fields associated with convection on
the GCM grid, such as precipitation. A notable example of
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this is the spectra of equatorial outgoing longwave radiation
that show a general overestimation of power in the control
simulation relative to satellite observations, which is reduced
when variance transport is enabled.

While the results of employing CRM variance transport
are encouraging and certainly useful for obtaining a more re-
alistic solution, E3SM-MMF still exhibits a relatively noisy
solution when compared to observations. The occurrence of
partial checkerboard patterns, while significantly reduced, is
still more frequent than observations. It is unclear whether
the variance transport method could be modified to enhance
its effect and, perhaps, “tune” the level of noise in the model,
but this may be an interesting line of future experimentation.

There are other open questions that we have not addressed
here. The bulk variance transport method is general enough
to work with a 3D CRM, but we have not explored 3D exper-
iments in detail due to the high cost. The hardware and al-
gorithmic acceleration techniques available to E3SM-MMF
make this a possible avenue for future work. Another open
question has to do with the importance of inter-scale vari-
ance transport. The comparison between bulk and filtered
cases suggests that this is not a problem. However, if vari-
ance is traversing the scale range via the transport scheme,
we do not have a good way to quantify this and understand
its downstream effects in the global model. It seems plausi-
ble that this issue might be more important as the CRM size
becomes larger or if the CRM numerics are changed to pro-
mote a smoother solution at the smallest scales. An idealized
limited-area MMF model might make these questions more
approachable.

Code and data availability. The E3SM project, code, simulation
configurations, model output, and tools to work with the output are
described on its website (https://e3sm.org, last access: 1 Decem-
ber 2022). Instructions on how to get started with running E3SM
are available on the website (https://e3sm.org/model/running-e3sm/
e3sm-quick-start, last access: 1 December 2022). All code for
E3SM may be accessed on the GitHub repository (https://github.
com/E3SM-Project/E3SM, last access: 1 December 2022). The raw
output data from E3SM-MMF used in this study are archived in
the Oak Ridge Leadership Computing Facility (OLCF) operated by
the Oak Ridge National Laboratory (ORNL) and the Department
of Energy (DOE). The specific branch used to conduct the sim-
ulations can be found at https://github.com/E3SM-Project/E3SM/
tree/whannah/mmf/vt-validation (last access: 1 December 2022)
and is also archived in https://doi.org/10.5281/zenodo.6578522
(Hannah, 2022a). The analysis code and a condensed version of
the data needed to reproduce our results are also archived in
https://doi.org/10.5281/zenodo.6578574 (Hannah, 2022b).
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