Articles | Volume 15, issue 24
https://doi.org/10.5194/gmd-15-8957-2022
https://doi.org/10.5194/gmd-15-8957-2022
Model description paper
 | 
14 Dec 2022
Model description paper |  | 14 Dec 2022

GENerator of reduced Organic Aerosol mechanism (GENOA v1.0): an automatic generation tool of semi-explicit mechanisms

Zhizhao Wang, Florian Couvidat, and Karine Sartelet

Related authors

Modeling of street-scale pollutant dispersion by coupled simulation of chemical reaction, aerosol dynamics, and CFD
Chao Lin, Yunyi Wang, Ryozo Ooka, Cédric Flageul, Youngseob Kim, Hideki Kikumoto, Zhizhao Wang, and Karine Sartelet
Atmos. Chem. Phys., 23, 1421–1436, https://doi.org/10.5194/acp-23-1421-2023,https://doi.org/10.5194/acp-23-1421-2023, 2023
Short summary

Related subject area

Atmospheric sciences
Implementation of a satellite-based tool for the quantification of CH4 emissions over Europe (AUMIA v1.0) – Part 1: forward modelling evaluation against near-surface and satellite data
Angel Liduvino Vara-Vela, Christoffer Karoff, Noelia Rojas Benavente, and Janaina P. Nascimento
Geosci. Model Dev., 16, 6413–6431, https://doi.org/10.5194/gmd-16-6413-2023,https://doi.org/10.5194/gmd-16-6413-2023, 2023
Short summary
The capabilities of the adjoint of GEOS-Chem model to support HEMCO emission inventories and MERRA-2 meteorological data
Zhaojun Tang, Zhe Jiang, Jiaqi Chen, Panpan Yang, and Yanan Shen
Geosci. Model Dev., 16, 6377–6392, https://doi.org/10.5194/gmd-16-6377-2023,https://doi.org/10.5194/gmd-16-6377-2023, 2023
Short summary
Rapid O3 assimilations – Part 1: Background and local contributions to tropospheric O3 changes in China in 2015–2020
Rui Zhu, Zhaojun Tang, Xiaokang Chen, Xiong Liu, and Zhe Jiang
Geosci. Model Dev., 16, 6337–6354, https://doi.org/10.5194/gmd-16-6337-2023,https://doi.org/10.5194/gmd-16-6337-2023, 2023
Short summary
Description and evaluation of the new UM–UKCA (vn11.0) Double Extended Stratospheric–Tropospheric (DEST vn1.0) scheme for comprehensive modelling of halogen chemistry in the stratosphere
Ewa M. Bednarz, Ryan Hossaini, N. Luke Abraham, and Martyn P. Chipperfield
Geosci. Model Dev., 16, 6187–6209, https://doi.org/10.5194/gmd-16-6187-2023,https://doi.org/10.5194/gmd-16-6187-2023, 2023
Short summary
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, variational mode decomposition, principal component analysis, and random forest: VMD-PCA-RF (version 1.0.0)
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266, https://doi.org/10.5194/gmd-16-6247-2023,https://doi.org/10.5194/gmd-16-6247-2023, 2023
Short summary

Cited articles

Aumont, B., Szopa, S., and Madronich, S.: Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach, Atmos. Chem. Phys., 5, 2497–2517, https://doi.org/10.5194/acp-5-2497-2005, 2005. a
Breysse, P. N., Delfino, R. J., Dominici, F., Elder, A. C. P., Frampton, M. W., Froines, J. R., Geyh, A. S., Godleski, J. J., Gold, D. R., Hopke, P. K., Koutrakis, P., Li, N., Oberdörster, G., Pinkerton, K. E., Samet, J. M., Utell, M. J., and Wexler, A. S.: US EPA particulate matter research centers: summary of research results for 2005–2011, Air Qual. Atmos. Health, 6, 333–355, https://doi.org/10.1007/s11869-012-0181-8, 2013. a
Carter, W. P.: Development of the SAPRC-07 chemical mechanism, Atmos. Environ., 44, 5324–5335, https://doi.org/10.1016/j.atmosenv.2010.01.026, 2010. a
Chen, Q., Li, Y. L., McKinney, K. A., Kuwata, M., and Martin, S. T.: Particle mass yield from β-caryophyllene ozonolysis, Atmos. Chem. Phys., 12, 3165–3179, https://doi.org/10.5194/acp-12-3165-2012, 2012. a, b, c, d
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11, 9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011. a
Download
Short summary
Air quality models need to reliably predict secondary organic aerosols (SOAs) at a reasonable computational cost. Thus, we developed GENOA v1.0, a mechanism reduction algorithm that preserves the accuracy of detailed gas-phase chemical mechanisms for SOA formation, thereby improving the practical use of actual chemistry in SOA models. With GENOA, a near-explicit chemical scheme was reduced to 2 % of its original size and computational time, with an average error of less than 3 %.