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Abstract. This paper describes the GENerator of reduced
Organic Aerosol mechanism (GENOA) that produces semi-
explicit mechanisms for simulating the formation and evolu-
tion of secondary organic aerosol (SOA) in air quality mod-
els. Using a series of predefined reduction strategies and eval-
uation criteria, GENOA trains and reduces SOA mechanisms
from near-explicit chemical mechanisms (e.g., the Master
Chemical Mechanism – MCM) under representative atmo-
spheric conditions. As a consequence, these trained SOA
mechanisms can preserve the accuracy of detailed gas-phase
chemical mechanisms on SOA formation (e.g., molecular
structures of crucial organic compounds, the effect of “non-
ideality”, and the hydrophilic/hydrophobic partitioning of
aerosols), with a size (in terms of reaction and species num-
bers) that is manageable for three-dimensional (3-D) aerosol
modeling (e.g., regional chemical transport models). Applied
to the degradation of sesquiterpenes (as β-caryophyllene)
from MCM, GENOA builds a concise SOA mechanism (2 %
of the MCM size) that consists of 23 reactions and 15 species,
with 6 of them being condensable. The generated SOA mech-
anism has been evaluated regarding its ability to reproduce
SOA concentrations under the varying atmospheric condi-
tions encountered over Europe, with an average error lower
than 3 %.

1 Introduction

Atmospheric aerosols have attracted attention due to their
effects on climate and human health: they change the
Earth’s radiation balance and cloud formation processes (Ra-

manathan et al., 2001; McNeill, 2017), and they trigger a
wide variety of acute and chronic diseases (Breysse et al.,
2013). Because the effects of aerosols on health depend on
their size and composition (Schwarze et al., 2006), adequate
representations of aerosol composition, mass, and number
concentrations are required in air quality models (AQMs).

Besides being directly emitted, aerosols can be secondary,
i.e., formed in the atmosphere through chemical reactions
and gas–particle mass transfer. Based on their chemical com-
position, they can be further divided into secondary inorganic
aerosol (SIA) and secondary organic aerosol (SOA). SOA,
which represents a significant fraction of aerosols (e.g., Ge-
lencsér et al., 2007), is largely formed by the condensation
of the oxidation products from the degradation of volatile or-
ganic compounds (VOCs). As SOA formation involves mul-
tiple processes such as the emission of SOA precursor gases,
VOC gas-phase chemistry, and gas-to-particle partitioning
(Kanakidou et al., 2005; Hallquist et al., 2009), great com-
plexity and uncertainty are involved in accurately predicting
SOA formation with the simplified representations currently
used in air quality models (Porter et al., 2021).

The state of knowledge on VOC chemistry can be re-
flected by explicit gas-phase chemical mechanisms that con-
tain all known essential reaction pathways of VOC degrada-
tion. For instance, Jenkin et al. (1997) and Saunders et al.
(2003) developed the near-explicit Master Chemical Mech-
anism (MCM), which describes detailed gas-phase chemi-
cal processes related to VOC oxidation. Another example is
the Generator for Explicit Chemistry and Kinetics of Organ-
ics in the Atmosphere (GECKO-A) (Aumont et al., 2005),
which uses a prescribed protocol to assign complete reac-
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tion pathways and kinetic data to the degradation of VOCs.
Explicit mechanisms represent the current understanding of
atmospheric chemistry, including information about reac-
tion pathways, kinetics data, and chemical structures (which
may be used to deduce thermodynamic properties based on
structure–activity relationships).

The MCM mechanism has been used by two-dimensional
(2-D) Lagrangian models to simulate the chemical evolution
of major air pollutants and some SOAs in plumes (e.g., Ev-
tyugina et al., 2007; Sommariva et al., 2008; Zhang et al.,
2021). Moreover, it has been used for simulating the for-
mation of more complex SOAs at a regional level in three-
dimensional (3-D) models over a few weeks (e.g., modified
MCM with 4642 species and 13 566 reactions in the sim-
ulations of Ying and Li, 2011, and with 5727 species and
16 930 reactions in the simulations of Li et al., 2015). Even
so, explicit mechanisms of that size are too computationally
intensive to be widely employed in 3-D AQMs for SOA for-
mation.

For computational efficiency, AQMs generally use implicit
gas-phase chemical mechanisms. Two major approaches are
frequently adopted to build implicit chemical mechanisms:

– the lumped-species approach, which gathers com-
pounds with analogous formulas and properties into one
surrogate (e.g., SAPRC-07, Carter, 2010; RACM2, Go-
liff et al., 2013);

– the carbon-bond or lumped-structure approach, which
assumes that organic molecules have chemical behav-
iors equivalent to those of their decomposed functional
groups (e.g., CB05, Sarwar et al., 2008).

Implicit gas-phase mechanisms have been developed and val-
idated to simulate the concentrations of oxidants and other
conventional air pollutants such as ozone and NO2. In these
mechanisms, VOCs have been grouped into a limited number
of model species because of computational considerations,
and the SOA formation is usually not considered.

To complete implicit gas-phase mechanisms, implicit SOA
mechanisms have been developed (Kim et al., 2011) that
model the SOA formation specifically without modifying
ozone and radical concentrations. In 3-D modeling, implicit
SOA mechanisms or parameterizations are usually added
to implicit gas-phase mechanisms, conserving the oxidant
chemistry of the implicit gas-phase mechanism.

Implicit SOA mechanisms are often established based on
experimental data from smog chamber experiments to repre-
sent the formation and evolution of SOA, such as the two-
product empirical SOA model (Odum et al., 1996) and the
volatility basis set (VBS) that splits VOC oxidation products
into a uniform set of volatility “bins” (Donahue et al., 2006).
In the VBS approach, the successive evolution of oxidation
products by aging is determined regardless of the chemical
composition and structure of the species. Another approach
is based on the molecular surrogate approach (e.g., Griffin

et al., 2003; Pun et al., 2006; Couvidat et al., 2012). Sim-
ilarly to the gas-phase chemistry lumped-species approach,
the VOC oxidation products are represented via the forma-
tion of a few SOA surrogates that are attached to a molecular
structure (assumed to be representative of a myriad of semi-
volatile compounds). By attaching a molecular structure to
the surrogate, several processes otherwise not accounted for
(like “non-ideality”, hygroscopicity, and condensation on the
aqueous phase of particles) can be represented in this ap-
proach. However, the choice of adequate molecular struc-
tures, which could be highly uncertain, is crucial and requires
a precise estimation.

Moreover, the computation of thermodynamic properties
of aerosol (e.g., hydrophilicity, hydrophobicity, and viscos-
ity) requires knowing the molecular composition to take the
whole complexity of the gas–particle partitioning into ac-
count (Kim et al., 2019). Therefore, tracking the whole com-
plexity of the formation and aging of SOA with implicit SOA
mechanisms can be problematic as it may not account for
(or may oversimplify) some processes, such as non-ideality.
These processes may be particularly important for explain-
ing the non-linear relationship between the emissions of pol-
lutants and the formation of aerosols (Huang et al., 2020).

As the current SOA representations in AQMs are im-
plicit and may not accurately reflect the true SOA forma-
tion process, there is a need for improvement. This has led
to the development of semi-explicit mechanisms of con-
densed sizes. The development of semi-explicit mechanisms
is a compromise between the high computational time of ex-
plicit mechanisms and the lack of accuracy in the represen-
tation of chemical phenomena in the implicit SOA mech-
anisms. They are generated by reducing explicit mecha-
nisms to a level of complexity suitable for the computa-
tional constraints of AQMs. Recent developments of reduced
mechanisms include the Common Representative Intermedi-
ates (CRI) mechanism (Jenkin et al., 2008; Watson et al.,
2008; Khan et al., 2017) from the MCM reduction (Szopa
et al., 2005) and the volatility basis set – Generator for Ex-
plicit Chemistry and Kinetics of Organics in the Atmosphere
(VBS-GECKO) (Lannuque et al., 2018) from a GECKO-
A reduction. However, the reduced mechanisms mentioned
above do not track the detailed molecular structure of surro-
gates, rather only considering some of their specific proper-
ties:

– CRI characterizes surrogates by their number of carbon-
carbon and carbon–hydrogen bonds, which are reactive
in the NO-to-NO2 conversions concerning ozone forma-
tion.

– VBS-GECKO groups organic surrogates by their
volatility, as in the VBS approach (Donahue et al.,
2006).

This study presents the development of the first version
of the GENerator of reduced Organic Aerosol mechanism
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(GENOA) that generates customized semi-explicit chemi-
cal mechanisms appropriate for AQMs from explicit mecha-
nisms, using surrogates assigned to molecular structures. As
described in Sect. 2, the new reduced mechanisms can effec-
tively and efficiently reproduce the complexity of gas-phase
oxidation, by training under various atmospheric conditions,
and the non-ideality of gas–particle partitioning, using a
molecular-structure-preserving approach. GENOA also pro-
vides practical user-defined options, enabling users to spec-
ify the required reduction scale or accuracy. For gas–particle
partitioning, a 0-D box model “SSH-aerosol” (Sartelet et al.,
2020) is modified and coupled with GENOA to simulate
aerosol concentrations. With SSH-aerosol, the effects of
mass transfer between the gas-phase and the organic/aque-
ous phases, hygroscopicity, and non-ideality are taken into
account in the reduction.

The application of GENOA to the MCM degradation
scheme of β-caryophyllene (BCARY) (Jenkin et al., 2012)
is described in Sect. 3. β-Caryophyllene is selected to
demonstrate the GENOA algorithm because it is one of
the most abundant and representative sesquiterpenes (SQTs).
Sesquiterpenes are a well-known source of SOAs (Hellén
et al., 2020; Tasoglou and Pandis, 2015), and their degrada-
tion mechanism (as BCARY) is well documented in the near-
explicit MCM mechanism (Jenkin et al., 2012). Studies have
also compared SOA yields simulated using the MCM mech-
anism to chamber data for sesquiterpenes (e.g., Xavier et al.,
2019). BCARY is, therefore, an ideal candidate for model
development and demonstration of the reduction methodol-
ogy. In this paper, the near-explicit MCM BCARY degrada-
tion scheme serves as a reliable benchmark for GENOA. The
experiment data from Tasoglou and Pandis (2015) and Chen
et al. (2012) are also compared to the newly developed re-
duced mechanism in Appendix A. Finally, conclusions are
drawn in Sect. 4.

2 Model development

The GENerator of reduced Organic Aerosol mechanism
(GENOA) is an algorithm that generates semi-explicit chem-
ical mechanisms focusing on SOA formation. The generated
semi-explicit mechanisms are designed to preserve the accu-
racy of explicit mechanisms for SOA formation while also
keeping the number of reactions/species low enough to be
suitable for large-scale modeling, particularly in 3-D AQMs.
The focus of the semi-explicit mechanism is solely on the
accurate modeling of SOA. Because ozone, major radicals,
and other inorganics are also affected by inorganic and other
VOC chemistry, their concentrations are not tracked with the
semi-explicit mechanism. Instead, they are simulated using
existing implicit gas-phase chemical mechanisms.

As illustrated in Fig. 1, the processes in GENOA can be di-
vided into two main sections: training and testing. The train-

ing section, as detailed in Fig. 1, can be divided into two
parts:

– parameter selection, where the parameters to be used
in the reduction cycle are selected automatically by
GENOA from user-defined or preset values;

– reduction cycle, where the actual reduction of the mech-
anism occurs.

In the parameter selection, GENOA first assigns the error
tolerance, defined as the largest acceptable error induced by
each change in the mechanism (see Sect. 2.5), and then em-
ploys one of the reduction strategies along with its required
parameters (see Sect. 2.2).

Afterward, in the reduction cycle, GENOA searches for
potential reductions according to the selected reduction strat-
egy. The new mechanism with the first found reduction is
then simulated over the conditions from the training dataset
(a limited set of conditions used through all of the reduc-
tion processes; see Sect. 2.3.1) or from the pre-testing dataset
(a more extensive set of conditions used only at the end of
the reduction process; see Sect. 2.3.2). The simulated to-
tal SOA concentrations are then compared with those sim-
ulated with the reference mechanism, where the differences
are used to evaluate the potential reduction (see Sect. 2.5).
If the SOA differences are under the predefined error toler-
ances, the mechanism with the current reduction is accepted
and serves as the basis for the next search for reduction. If the
reduction is refused, the following reduction attempt starts
with the previously validated mechanism. Once no further re-
duction is found, the current reduction cycle ends. The next
step is either selecting the subsequent error tolerance and/or
reduction strategy in the next parameter selection or termi-
nating the GENOA training section. Finally, the performance
of the final reduced mechanism is evaluated under a variety
of environmental conditions, denoted as the testing dataset
(see Sect. 2.3.3). The 0-D aerosol model SSH-aerosol is used
to simulate the SOA concentration and composition, which is
required in all of the GENOA sections (e.g., the initialization
of reduction parameters and the evaluation of the reduced
mechanism).

2.1 Prereduction

A prereduction process is conducted on the original MCM
mechanism before it is used as the reference mechanism for
the reduction. This process skips extremely fast unimolecu-
lar reactions (i.e., the reaction rate constant of 106 s−1 corre-
sponding to a lifetime of 1 µs) to avoid numerical problems.
For computational efficiency, the process also combines el-
ementary reactions with the same reactants into combined
reactions with non-integer stoichiometric coefficients.

An example is shown in Table 1, where the original MCM
reaction nos. 1 to 7 have first been merged into the combined
reaction nos. 8 to 10. The prereduction compacts the reaction
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Figure 1. Flow chart indicating the three major procedures in GENOA and illustrating the main execution of the training section. a GENOA
uses the first value of the targeted variables for initialization and then passes to the next values for subsequent parameter updates. b Simulation
with the pre-testing dataset is only activated under certain circumstances.

list (from 1 626 to 1 242 reactions), improving the reduction
efficiency. The prereduction also skips two biradicals (i.e.,
BCALOOA and CH2OOF) that are extremely reactive and
disintegrate instantaneously with a kinetic rate coefficient of
106 s−1. As a result, reaction nos. 8 to 10 can then be re-
pented by one reaction, reaction no. 11, whose kinetic rate
coefficient corresponds to that of the reaction producing the
skipped species (in this case, the ozonolysis of BCAL, reac-
tion no. 9).

2.2 Reduction strategies

GENOA supports four types of reduction strategies:

– removal – reactions, species, or gas–particle partition-
ing with negligible effects on SOA formation are re-
moved from the mechanism;

– jumping – one compound is substituted by its oxidation
product, as if the compound had been “jumped over” in
the reaction pathway;

– lumping – compounds with similar properties are com-
bined to form a new compound;

– replacement – one compound is replaced by another ex-
isting compound with similar properties.

The reduction strategies are illustrated with examples from
the BCARY reduction in Sect. 2.2.1 to 2.2.4. A detailed list
of all of the options and parameters controlling the BCARY
reduction is summarized in the Supplement.

For the BCARY reduction, the reduction strategies are em-
ployed in the following order: removing reactions, jumping,
lumping, replacement, removing species, and finally remov-
ing gas–particle partitioning. The reduction strategies are or-

dered based on their potential influences on the mechanism.
The first applied strategies, removing reactions and jump-
ing, trim trivial reactions and species without altering the
properties of the species. They are followed by lumping and
replacement (as an extension to lumping), which refine the
mechanisms considerably by merging the species and reac-
tions involved. Afterward, the removing species strategy at-
tempts to delete all merged and unmerged species. Finally,
the strategy of removing gas–particle partitioning is applied
in order to remove the partitioning of condensable species,
which cannot be removed by removing species. This cur-
rent order has been tested and found to be efficient for the
BCARY mechanism, but it can be changed by the user along
with other user-defined parameters.

2.2.1 Removal strategy

The removal strategy assumes that chemical reactions and/or
species with a low probability of contributing to the forma-
tion and evolution of SOA can be eliminated from the mech-
anism. In general, three types of removal are applied depend-
ing on the removed subject:

– removing reactions;

– removing compounds in both the gaseous and parti-
cle phases (completely removing a species from the
scheme);

– removing the gas–particle partitioning of semi-volatile
compounds (consider the semi-volatile compounds as
VOCs that do not condense to the particle phase but re-
tain their gas-phase chemistry).

There is no particular restriction to exclude species from the
reduction attempt via the strategy of removing species or re-
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Table 1. Reactions before and after prereduction, where the MCM (v3.3.1) species BCALOOA and CH2OOF are skipped over by their
degradation products. The molecular structures of all mentioned MCM species can be found in Fig. C1.

No. Reaction Kinetic rate coefficienta

1 BCAL+O3→BCALOOA+HCHO 1.1× 10−16
× 0.670

2 BCAL+O3→BCLKET+CH2OOF 1.1× 10−16
× 0.330

3 BCALOOA→BCALOO 1.0× 106
× 0.500

4 BCALOOA→C146O2+OH 1.0× 106
× 0.500

5 CH2OOF→CH2OO 1.0× 106
× 0.370

6 CH2OOF→CO 1.0× 106
× 0.500

7 CH2OOF→HO2+CO+OH 1.0× 106
× 0.130

8
BCAL+O3→ 0.67 BCALOOA+ 0.33 BCLKET

1.1× 10−16
+ 0.33 CH2OOF+ 0.67 HCHO

9 BCALOOA→ 0.5 BCALOO+ 0.5 C146O2+ 0.5 OH 1.0× 106

10 CH2OOF→ 0.37 CH2OO+ 0.63 CO+ 0.13 HO2+ 0.13 OH 1.0× 106

11
BCAL+O3→ 0.5 BCALOO+ 0.5 C146O2+ 0.37 CH2OO

1.1× 10−16+BCLKET+HCHO+ 0.13 HO2
+ 0.63 CO+ 1.13 OH

a The kinetic rate coefficients are given in units of per second (s−1) for unimolecular reactions and in units of cubic centimeters
per molecule per second (cm3 molec.−1 s−1) for bimolecular reactions.

moving gas–particle partitioning. However, for removing re-
actions, a threshold on the branching ratio of the reaction is
applied to the reduction. The branching ratio is defined as the
ratio of the destruction rate of one reaction to the sum of the
destruction rates of all reactions of the targeted species. In
the BCARY reduction, a maximum branching ratio (Brm) is
defined as a restriction criterion. All reactions with an hourly
branching ratio (averaged over the training conditions) under
this value (reactions that are likely to have a minimal effect
on SOA formation) are considered candidates for removal.

To avoid over-reduction, a small Brm is applied at the be-
ginning of reduction. After going through the reductions for
all reduction strategies, the value of Brm is then incremented.
In the reduction of BCARY, an ascending list of Brm values
equal to 5 %, 10 %, and 50 % is employed, which is changed
to 10 %, 50 %, and 100 % at the late stage (explained in
Sect. 2.5). When Brm equals 100 %, GENOA evaluates the
removal of each reaction.

2.2.2 Jumping strategy

The jumping strategy relies on the assumption that com-
pounds can be skipped in successive reactions, as long as
they do not adversely impact the SOA concentration. In other
words, the predecessor of an organic compound may directly
form its destruction products. The jumping strategy is per-
fectly suited to intermediate compounds whose fast degrada-
tion may cause numerical stiffness, commonly including rad-
icals, such as oxy radicals (RO) or alkoxy radicals (ROO), as
well as Criegee intermediates.

As shown in Table 2, the Criegee intermediate BCALOO,
formed during the ozonolysis of BCAL (reaction no. 11

in Table 1), is jumped over to its only destruction product
BCLKET. Consequently, reaction nos. 12 to 16 are removed,
and reaction no. 11 is updated to Reaction (R1) (“R” for re-
action after reduction strategy).

There are similarities between reduction by jumping and
prereduction in the sense that both can jump reactions with-
out affecting organic compounds. However, the two pro-
cesses serve different purposes, as prereduction is intended to
provide a reliable reference mechanism for training, whereas
jumping is used in training to search for possible reductions.
On the one hand, the current prereduction only reduces very
fast degraded radicals that undergo a single unimolecular re-
action with a constant kinetic rate coefficient (e.g., no tem-
perature effect). In this case, one species may lead to sev-
eral degradation products. As these reactions are extremely
fast and independent of atmospheric conditions, they only
cause numerical issues in simulation and should be removed
from the reference mechanism. On the other hand, jumping
may be relatively slow or affected by environmental condi-
tions; therefore, an evaluation is necessary. Jumping is cur-
rently limited from one species to another at a time. The
difference in carbon numbers between reduced species can
not exceed three in order to prevent significant differences
in organic mass before and after jumping. As shown in Ta-
ble 2, the degradation of BCALOO into BCLKET involves
five bimolecular reactions, which may affect SOA formation
under different atmospheric conditions (e.g., with different
inorganic concentrations and relative humidity, RH).
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Table 2. Reactions before and after the jumping strategy, where the MCM species BCALOO is jumped over by its degradation product
BCLKET.

No. Reaction Kinetic rate coefficienta

12 BCALOO+CO→BCLKET 1.2× 10−15

13 BCALOO+NO→BCLKET+NO2 1.0× 10−14

14 BCALOO+NO2→BCLKET+NO3 1.0× 10−15

15 BCALOO+SO2→BCLKET+SO3 7.0× 10−14

16 BCALOO→BCLKET+H2O2 1.4× 10−17
×[H2O]

R1b
BCAL+O3→ 1.5 BCLKET+ 0.5 C146O2

1.1× 10−16+ 0.37 CH2OO+HCHO
+ 0.13 HO2+ 0.63 CO+ 1.13 OH

a [H2O] is the concentration of H2O. b Reaction (R1) is updated from reaction no. 11 in Table 1.

Table 3. Explicit reactions of the MCM species BCAO2, BCBO2, and BCCO2 in the degradation scheme of β-caryophyllene (BCARY).

No. Reaction a Kinetic rate coefficientb

17c BCARY+OH→ 0.408 BCAO2+ 0.222 BCBO2+ 0.37 BCCO2 1.97× 10−10

18 BCAO2+HO2→BCAOOH KAHO2=KRO2HO2× 0.975
19 BCAO2+NO→ 0.753 BCAO+ 0.753 NO2+ 0.247 BCANO3 KANO=KRO2NO
20 BCAO2+NO3→BCAO+NO2 KANO3=KRO2NO3
21 BCAO2+RO2→ 0.7 BCAO+ 0.3 BCAOH KARO2= 9.2× 10−14

22 BCBO2+HO2→BCBOOH KBHO2=KRO2HO2× 0.975
23 BCBO2+NO→ 0.753 BCBO+ 0.753 NO2+ 0.247 BCBNO3 KBNO=KRO2NO
24 BCBO2+NO3→BCBO+NO2 KBNO3=KRO2NO3
25 BCBO2+RO2→ 0.6 BCBO+ 0.2 BCAOH+ 0.2 BCBCO KBRO2= 8.8× 10−13

26 BCCO2+HO2→BCCOOH KCHO2=KRO2HO2× 0.975
27 BCCO2+NO→ 0.753 BCCO+ 0.753 NO2+ 0.247 BCCNO3 KCNO=KRO2NO
28 BCCO2+NO3→BCCO+NO2 KCNO3=KRO2NO3
29 BCCO2+RO2→ 0.7 BCCO+ 0.3 BCCOH KCRO2= 9.2× 10−14

a Species RO2 represents the sum of all peroxy radicals. b The same symbols are used to demonstrate the reduction strategies shown in
Tables 4 and 5. The precise values of kinetic rate coefficients (i.e., KRO2HO2, KRO2NO, and KRO2NO3) can be found on the MCM website
(v3.3.1, http://mcm.york.ac.uk/home.htt, last access: 25 April 2022) (in cm3 molec.−1 s−1). c Reaction no. 17 shows the production of
BCAO2, BCBO2, and BCCO2, whereas the other reactions (nos. 18 to 29) depict their destruction processes.

2.2.3 Lumping strategy

The lumping strategy (i.e., lumping different compounds into
a single surrogate compound) assumes that organic com-
pounds with similar chemical structures may exhibit similar
properties and undergo similar physicochemical processes
and may, therefore, be lumped together. With lumping, both
the number of species and reactions decrease.

The lumping strategy is illustrated by the comparison of
Table 3 (reactions before lumping) and Table 4 (reactions af-
ter lumping). In this example, a total of 13 chemical reac-
tions (nos. 17 to 29) involving three organic compounds are
reduced to five reactions (a production reaction, Reaction R2,
and four destruction reactions , Reactions (R3) to (R6), of the
new surrogate).

As demonstrated in the tables, the organic compounds
BCAO2, BCBO2, and BCCO2 from the original MCM

scheme are the peroxy radicals formed from the OH-initiated
oxidation of β-caryophyllene (Table 3). It is evident from
their structures (shown in Fig. C1) that they are isomers and
may share similar chemical properties. When applying the
lumping strategy, BCAO2, BCBO2, and BCCO2 are merged
into a new surrogate named “mBCAO2” (Table 4). Addi-
tional lumping examples are provided in Appendix C1, de-
scribing the lumping of compounds with differing structural
groups derived from different oxidation reactions.

The key parameter that drives the reduction accuracy is
the “weighting ratio” of lumping (fw), corresponding to the
weight of the original species in the new surrogate com-
pound. As detailed in Table 4, fw is computed as a function
of the chemical lifetime τ following the computation of Se-
infeld and Pandis (2016), and the reference concentrationsCr
that are the arithmetic mean concentrations calculated from
0-D simulations using the reference mechanism. Both τ and
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Table 4. Reduced reactions of Table 3 via the lumping strategy, in the case of lumping BCAO2, BCBO2, and BCCO2 into a new surrogate
mBCAO2. The name of the new surrogate contains the letter “m” for “merged” and the name of the relatively dominant lumped species. This
notation of lumping is used hereafter.

No.a Lumpedb Reaction Kinetic rate coefficient

R2 17 BCARY+OH→mBCAO2 1.97× 10−10

R3 18, 22, 26 mBCAO2+HO2→ fw,a BCAOOH+ fw,b BCBOOH+ fw,c BCCOOH fw,a KAHO2+ fw,b KBHO2+ fw,c KCHO2

R4 19, 23, 27 mBCAO2+NO→ 0.753× (fw,a BCAO+ fw,b BCBO+ fw,c BCCO) fw,a KANO+ fw,b KBNO+ fw,c KCNO
+ 0.247× (fw,a BCANO3+ fw,b BCBNO3
+ fw,c BCCNO3)+ 0.753× (fw,a+ fw,b+ fw,c) NO2

R5 20, 24, 28 mBCAO2+ NO3→ fw,a BCAO+ fw,b BCBO+ fw,c BCCO fw,a KANO3+ fw,b KBNO3+ fw,cKCNO3
+ (fw,a+ fw,b+ fw,c) NO2

R6 21, 25, 29 mBCAO2+ RO2→ 0.7×fw,a BCAO+ 0.8×fw,b BCBO+ 0.7×fw,c BCCO fw,a KARO2+ fw,b KBRO2+ fw,cKCRO2
+ 0.2×fw,b BCBCO+ (0.3×fw,a+ 0.2×fw,b) BCAOH
+ 0.3×fw,c BCCOH

Symbolc Meaning Computation

Cr,a Reference concentration of BCAO2d Average BCAO2 concentrations from 5 d 0-D simulations under the training dataset
Cr,b Reference concentration of BCBO2 Average BCBO2 concentrations from 5 d 0-D simulations under the training dataset
Cr,c Reference concentration of BCCO2 Average BCCO2 concentrations from 5 d 0-D simulations under the training dataset
τa Chemical lifetime of BCAO2e 1/(KAHO2 [HO2]+KANO [NO]+KANO3 [NO3]+KARO2 [RO2])
τb Chemical lifetime of BCBO2 1/(KBHO2 [HO2]+KBNO [NO]+KBNO3 [NO3]+KBRO2 [RO2])
τc Chemical lifetime of BCCO2 1/(KCHO2 [HO2]+KCNO [NO]+KCNO3 [NO3]+KCRO2 [RO2])
fw,a Weighting ratio of BCAO2 τaCr,a/(τaCr,a +τbCr,b +τcCr,c)
fw,b Weighting ratio of BCBO2 τbCr,b/(τaCr,a+ τbCr,b+ τcCr,c)
fw,c Weighting ratio of BCCO2 τcCr,c/(τaCr,a+ τbCr,b+ τcCr,c)

a The reaction number after lumping, where Reactions (R3) to (R6) preserve the destruction of BCAO2, BCBO2, and BCBO2, and Reaction (R2) presents the production. b The reaction numbers before
lumping as presented in Table 3. c The subscript letters a, b, and c stand for BCAO2, BCBO2, and BCCO2, respectively. d The calculation method also applies to other BCARY-derived organics. e [X] in
the calculations is the reference concentration of radical and other inorganic species, where X is HO2, NO, NO3, or RO2 in this case. For radicals derived from the SOA precursor, the reference
concentration is the produced concentration without considering their rapid destruction.

Cr are based on the averages of simulations across all training
conditions. The properties of the new surrogate compound
(e.g., molecular structure, saturation vapor pressure, molar
mass, and degradation kinetics) are estimated by weighing
the properties of the initial compounds, whereas the stoichio-
metric coefficients and the kinetic rate coefficient of the new
reaction are obtained by weighing those of the initial reac-
tions.

Chemical lifetimes and reference concentrations may be
close for species that share similar structures and undergo
analogous reactions. In cases where these species origi-
nate from the same reaction, they can be lumped directly,
with the branching ratios of the formation reaction serving
as weighting ratios. As an example, BCAO2, BCBO2, and
BCCO2 undergo equivalent reactions, with the exception of
the RO2 reaction of BCBO2. As the BCARY degradation is
not very sensitive to RO2, BCAO2, BCBO2, and BCCO2 can
be lumped together with fw,a, fw,b, and fw,c equal to the
branching ratios of reaction no. 17, i.e., 0.408, 0.222, and
0.37, respectively.

Most lumping involves species that are not isomers and
undergo different reactions, which makes lumping multiple
species at the same time highly uncertain. Therefore, in prac-
tice, GENOA attempts to lump only two species in a single
reduction in order to ensure the effectiveness of computation.
A lumping of multiple species can be achieved by combining

several reductions (e.g., first lumping BCAO2 with BCCO2
to form mBCAO2 and then lumping BCBO2 into mBCAO2).

In BCARY reduction, lumping is subject to certain restric-
tions:

– There should be no lumping between a compound and
its oxidation products.

– Compounds with specific structural groups sharing
common chemical behavior may be more appropriately
merged together. Thus, compounds containing peroxy-
acetyl nitrate (PAN), organic nitrate (RONO2), organic
radical (R), oxy radical (RO), peroxy radical (RO2),
carboxylic acid (RC(O)OH), and peroxycarboxylic acid
(RC(O)OOH) functional groups can only be lumped
with compounds containing the same groups.

– The difference in the molecular weight should be negli-
gible (i.e., smaller than 100 g mol−1).

– The difference in the carbon number should be no more
than two.

– The difference in the chemical lifetime should be less
than 10-fold.

– Lumping is not considered for biradicals (ROO) that de-
grade rapidly into closed-shell molecules, as jumping is
considered to be more appropriate for these compounds.

https://doi.org/10.5194/gmd-15-8957-2022 Geosci. Model Dev., 15, 8957–8982, 2022



8964 Z. Wang et al.: GENerator of reduced Organic Aerosol mechanism (GENOA v1.0)

The difference in saturation vapor pressure between
“lumpable” condensables is not explicitly restricted in
BCARY reduction. However, it is implicitly considered, as
GENOA searches and attempts to lump species with sim-
ilar saturation vapor pressures first. Nonetheless, the user
can activate the option to limit the range of saturated vapor
pressure differentials between lumpable condensables, along
with other user-defined reduction options listed in the Sup-
plement.

2.2.4 Replacement strategy

The replacement strategy assumes that a compound with a
negligible contribution to SOA formation can be substituted
by a compound with a similar structure or undergoing the
same reactions. In comparison to lumping, the replacement
strategy reduces the number of reactions/species without cre-
ating new surrogate species.

Table 5 illustrates a reduction occurring via the replace-
ment strategy (to be compared to the original mechanism
in Table 3), assuming that BCAO2 is predominant in SOA
formation. By substituting both BCBO2 and BCCO2 with
BCAO2, the OH reaction of BCARY only leads to the pro-
duction of BCAO2. The MCM reaction nos. 17 to 29 can
then be reduced to Reactions (R2′) to (R6′) via replacement.

The replacement strategy (Table 5) is expected to reduce
the computational time more than the lumping strategy (Ta-
ble 4), as all reactions originating from the replaced species
are removed from the mechanism. Hence, it does not re-
quire the computation of weighting ratios and new surro-
gates. However, as a compromise, replacement could be less
accurate than lumping, as replacement may discard some
compounds and part of the mechanism, thereby leading to
more error.

Thus, in an effort to prioritize the accuracy of reduction,
GENOA currently employs replacement only after lumping
and exclusively on species from the same reaction. In this
way, species that were not lumped (because lumping was re-
jected or because they do not respect the lumping restric-
tion) can be reduced by replacement. During the training of
BCARY reduction, a restriction is applied on small organic
compounds with a molar mass of less than 100 g mol−1,
which are excluded from replacement. The difference in car-
bon number is no more than three.

Overall, the searches for viable reductions are conducted
in reverse order of the reaction/species list. For removal,
GENOA attempts to remove reactions from the bottom of the
list and moves to the previous reactions. The same reverse
sequence is followed for other strategies. When applied to
the jumping strategy, for instance, GENOA tries to jump the
species that has the highest generation and then move down
to the species that has the lowest generation. Among all re-
duction strategies, only lumping alters the saturation vapor
pressure of condensable species. Therefore, a rank of satura-
tion vapor pressure is used exclusively in lumping to deter-

mine the most appropriate lumpable species. At each reduc-
tion, GENOA attempts to reduce only one species/reaction
via removal or one pair of compounds via lumping/replac-
ing/jumping. This restriction allows exhaustive tracking of
every detailed modification and its effect on SOA concentra-
tions.

2.3 Datasets of atmospheric conditions applied to
reduction

All of the atmospheric conditions applied to the reduction
are extracted from a 3-D simulation spanning the latitudes
from 32 to 79◦ N and the longitudes from 17◦W to 39.8◦ E
over continental Europe in a 1-year period (2015) using
the CHIMERE chemistry transport model. The CHIMERE
model and the configuration used for the simulation are de-
scribed in Lanzafame et al. (2022). The 3-D CHIMERE sim-
ulation was conducted with the implicit gas-phase MEL-
CHIOR2 mechanism (Derognat et al., 2003), which contains
120 reactions and less than 80 lumped species. The MEL-
CHIOR2 mechanism describes the degradation of sesquiter-
penes by three oxidant-initiated reactions (HUMULE reacts
with OH, O3, and NO3, respectively), where the species HU-
MULE represents the lumped class of all sesquiterpenes.

The monthly diurnal profiles of hourly meteorological data
(e.g., temperature and RH) as well as the hourly concentra-
tions of oxidant, radical, and other inorganic species were
extracted from each location. This information is required in
the 0-D simulations with SSH-aerosol (see Sect. 2.4) to re-
produce SOA concentrations and compositions under near-
realistic conditions. As the reduced SOA mechanism focuses
only on SOA formation, the meteorological data and the con-
centrations of oxidants, radicals, and inorganics are assumed
to remain intact during the 0-D SOA simulation. The coordi-
nates and time of each condition are also provided to calcu-
late the solar zenith angle. The concentration of HUMULE
(denoted CSQT as the CHIMERE surrogate for sesquiter-
pene) is used to estimate the SQT concentration. For the pur-
pose of calculating reduction parameters (e.g., the weighting
ratio fw and the branching ratio B) and evaluating the re-
duced mechanisms, a dataset of representative physiochem-
ical conditions extracted from CHIMERE simulation results
is employed in GENOA. Depending on their usage, three
groups of conditions are defined: the training dataset, the pre-
testing dataset, and the testing dataset.

2.3.1 Training dataset

The training dataset is the set of conditions used to initialize
the reduction parameters, estimate the reference concentra-
tions, and evaluate the reduced mechanisms. For a mecha-
nism containing over 1000 reactions and 500 species, a com-
plete reduction may require more than 10 000 SOA simula-
tions to evaluate all of the reduction attempts. To reduce the
number of simulations and the computational cost, a limited
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Table 5. Reduced reactions of Table 3 via the replacement strategy, in the case of replacing BCBO2 and BCCO2 with one existing species –
BCAO2.

No.a Replaced Reaction Kinetic rate coefficient

R2′ 17 BCARY+OH→BCAO2 1.97× 10−10

R3′ 18, 22, 26 BCAO2+HO2→BCAOOH KAHO2
R4′ 19, 23, 27 BCAO2+NO→ 0.753 BCAO+ 0.753 NO2+ 0.247 BCANO3 KANO
R5′ 20, 24, 28 BCAO2+NO3→BCAO+NO2 KANO3
R6′ 21, 25, 29 BCAO2+RO2→ 0.7 BCAO+ 0.3 BCAOH KARO2

a The symbol ′ is used to distinguish the reactions in this table from the corresponding number of lumping reactions in Table 4.

number of conditions can be evaluated at each reduction at-
tempt.

For the reduction of BCARY degradation, a training
dataset of eight conditions is selected, which contains six
chemistry-relevant conditions and two additional meteoro-
logical conditions. The geographic and meteorological infor-
mation of each condition is described in Table 6, where the
conditions cover a broad range in time (summer and win-
ter conditions), temperatures ranging from 260 to 302 K, and
RH values from 39 % to 89 %.

The six chemistry-relevant conditions, which are named
after the dominant oxidants (OH, O3, and NO3), focus on the
influences of chemical regimes on SOA formation under ei-
ther a high-NOx regime (represented by high NO concentra-
tions) or a low-NOx regime (represented by high HO2 con-
centrations). The two additional conditions included in the
training dataset to improve the reduction are referred to as
ADD1 and ADD2.

The chemical regimes of the different conditions can be
illustrated by seven competitive reaction ratios (equations are
listed in Appendix Table C1):

– The reaction ratios of the precursor with the oxidants O3
(RO3 ), OH (ROH), and NO3 (RNO3 ), whose sum equals
1, indicate the relative reactivity of the first-generation
oxidation pathways that lead to the formation of distinct
kinds of RO2 species.

– The reaction ratios of RO2 species with NO (RRO2−NO),
HO2 (RRO2−HO2 ), NO3 (RRO2−NO3 ), and other RO2
species (RRO2−RO2 ), whose sum equals 1, indicate the
relative reactivity of successive reactions with RO2
species.

These ratios indicate the competition between autoxidation
and bimolecular reactions that result in different SOA types.
A combination of these seven reaction ratios determines the
chemical regime and favorable reaction pathways under a
given atmospheric condition.

Figure 2 describes the reaction ratios at midnight (00:00 h)
and noon (12:00 h) for the training conditions. Under the
majority of atmospheric conditions, O3 is the dominant ox-
idant of BCARY due to the carbon–carbon double bonds
that are subject to ozonolysis. The high-O3 training condi-

tions have a RO3 ratio exceeding 98 % at both noon and mid-
night. The bimolecular reactions with NO and HO2 domi-
nate RO2 reactions in the MCM mechanism. Due to the low
kinetic rate constants and low concentrations, the ratios of
OH and NO3 reacting with BCARY are relatively low (un-
der 40 %). The high-OH conditions are determined by the
OH ratio at noon, whereas the high-NO3 conditions are de-
termined by RRO2−NO3 at midnight. One specific exception
is the additional condition ADD2, which is located in the
northern part of Italy, within the Alpine arch, close to the
metropolitan city of Milan. This condition is in the extremely
high NOx regime, as high concentrations of NO are trans-
ported from polluted areas. These high NO concentrations
consume O3 and NO3, causing low concentrations of O3 and
NO3. At night, ADD2 has a high ROH ratio of 95 % at mid-
night that is not due to an abundance of OH but rather to ex-
tremely low concentrations of O3 (2.9× 10−4 ppb) and NO3
(1.1× 10−9 ppb) which lead to an absence of nighttime reac-
tivity.

2.3.2 Pre-testing dataset

The pre-testing dataset contains a greater number of con-
ditions than the training dataset, covering the major atmo-
spheric conditions encountered across the domain. After the
mechanism has been significantly reduced, the pre-testing
dataset is included along with the training dataset in order to
evaluate the reduction attempts at the late-stage reduction. At
this point of reduction, a slight change in the mechanism sig-
nificantly impacts the SOA concentrations; therefore, merely
evaluating reduction based on the training dataset may not
be adequate. Meanwhile, the size of the mechanism has al-
ready been significantly reduced, which makes the evaluation
of each reduction attempt on the pre-testing dataset less com-
putationally expensive.

In principle, the pre-testing dataset should be able to pro-
vide a fairly accurate representation of the testing dataset.
However, this may not always be the case, as the pre-testing
dataset is selected almost randomly from the testing dataset.
Therefore, an adjustment may be required to increase the rep-
resentativeness of the pre-testing dataset by adding or remov-
ing a few conditions. For the application to BCARY, a pre-
testing dataset with 150 atmospheric conditions is selected

https://doi.org/10.5194/gmd-15-8957-2022 Geosci. Model Dev., 15, 8957–8982, 2022



8966 Z. Wang et al.: GENerator of reduced Organic Aerosol mechanism (GENOA v1.0)

Table 6. Geographic and meteorological conditions of the training dataset. The table headings, from left to right, indicate the name, latitude,
longitude, time period, average temperature, average RH, average daily NO reaction ratio, and simulated total SOA concentration of the
training conditions.

Condition name
Lat Long Time Temp. RH RRO2−NO

a SOAb

(◦ N) (◦ E) (month) (K) (%) (%) (µgm−3)

OH NO 36.0 15.4 Jul 299 79 60 4.1
OH HO2 32.0 −9.4 Jul 296 77 20 6.1
NO3 NO 40.25 −3.4 Jul 302 28 69 4.4
NO3 HO2 32.0 36.6 Aug 302 38 29 5.7
O3 NO 69.0 33.8 Jan 261 84 99 5.2
O3 HO2 68.0 18.2 Dec 266 89 25 4.6
ADD1 41.5 −14.2 Dec 289 76 20 5.5
ADD2 45.75 9.0 Dec 279 85 100. 4.4

a The average daily NO reaction ratio is calculated using the RO2 reactivity of NO, HO2, NO3, and RO2. Conditions
with a high RNO ratio are considered in the high-NOx regime. b SOA is simulated with an initial BCARY concentration
of 5 µg m−3.

Figure 2. A bar plot showing the occupancy of seven reaction ratios in the BCARY initiation reactions and RO2 reactions, under the training
conditions at midnight (00:00 GMT+1, top bar) and noon (12:00 GMT+1, bottom bar with hatching). From left to right, six ratios are
presented on each bar in the following order: RO3 , ROH, RNO3 , RRO2−NO, RRO2−HO2 , RRO2−NO3 , and RRO2−RO2 (no display if ratio is
zero). Table C1 provides the equations for calculating the reaction ratios.

from the testing dataset. The pre-testing dataset consists of
50 conditions for each level (low, medium, and high) of SQT
emissions (see Sect. 2.3.3). The locations of the training and
pre-testing conditions are presented in Fig. 3.

2.3.3 Testing dataset

The final reduced mechanism, obtained from training, is
eventually evaluated with a large number of atmospheric con-
ditions in the testing section. This set of conditions for the
final evaluation is referred to as the testing dataset. Among
all datasets, the results on the testing dataset are most likely
to reflect the actual performance of the reduced mechanism
for 3-D modeling.

In the BCARY reduction, the testing dataset is selected
based on the concentrations of the CHIMERE sesquiterpene

surrogate. Its maximum hourly concentration CSQT in parts
per billion (ppb) is used to exclude conditions with a neg-
ligible SQT concentration. A testing dataset within a to-
tal of 12 159 conditions is applied (see Sect. 3.2), includ-
ing all conditions (2159 conditions) with a high SQT con-
centration (CSQT ≥ 0.1 ppb), 5000 random select conditions
with a medium SQT concentration (CSQTε between 0.01 and
0.1 ppb), and 5000 random select conditions with a low SQT
concentration (CSQTε (0.001, 0.01]). The conditions with an
extremely low SQT concentration (CSQT < 0.001 ppb) are
not included in the testing dataset. Figure B1 indicates the
locations of the testing dataset as well as the testing results
for BCARY reduction.
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Figure 3. Simulation domain and locations of training (see the fig-
ure legend) and pre-testing (blue scattered dots) datasets applied to
the reduction.

2.4 Settings for SOA simulations

The chemical composition and temporal variation in SOA
due to gas-phase chemistry and condensation/evaporation
are simulated using the 0-D aerosol module SSH-aerosol
(Sartelet et al., 2020). As detailed in Couvidat and Sartelet
(2015), the gas–particle partitioning is estimated with
Raoult’s law (for the partitioning between the gas phase and
the organic phase) and Henry’s law (for the partitioning be-
tween the gas phase and the aqueous phase). Therefore, some
properties of condensable compounds, such as the saturation
vapor pressure Psat and the decomposition into functional
groups, are crucial for modeling. For BCARY-derived organ-
ics, Psat is calculated using UManSysProp (Topping et al.,
2016). The vapor pressure is computed using the method
of Nannoolal et al. (2008) and the boiling point estimation
from Joback and Reid (1987). These methods were selected
because they provide the best performance when compared
with the chamber experiment data of Chen et al. (2012) and
Tasoglou and Pandis (2015), as discussed in Appendix A.
Furthermore, the activity coefficient γ is calculated with
the UNIQUAC Functional-group Activity Coefficients (UNI-
FAC) thermodynamic model (Fredenslund et al., 1975) for
short-range interactions and the Aerosol Inorganic–Organic
Mixtures Functional groups Activity Coefficients (AIOM-
FAC) model for medium-range and long-range interactions
(Zuend et al., 2008).

Unless stated otherwise, two simulations are performed
for each condition starting at midnight (00:00 h) and noon
(12:00 h), considering both the daytime and nighttime chem-
istry. All 0-D simulations are run for 5 d in order to ade-
quately consider SOA formation and aging processes. The
initial BCARY concentration is set to 5 µgm−3 in order to
ensure high SOA production (the SOA concentration is al-
ways greater than 1 µgm−3 under all evaluated conditions).

For optimal computational efficiency, the gas–particle parti-
tioning is assumed to be at thermodynamic equilibrium.

2.5 Settings for evaluation

For the different datasets, the performance of the reduced
mechanism on SOA concentrations is evaluated using the
fractional mean error (FME) computed with Eq. (1), where
Cval,i and Cref,i denote the SOA mass concentration at time
step i simulated with the reduced and the reference mecha-
nisms, respectively.

The error of one simulation is defined as the larger of the
FME on day 1 and the FME on days 2 to 5, in order to ad-
dress the difference in the performance of the reduced mech-
anisms in the early stage of the simulations (SOA formation
dominates) and in the later stage (SOA aging dominates).
This error is used to evaluate reduction by comparing it to
the error tolerance specified in training. For the evaluation
on the training dataset, two errors are estimated compared to
the previously verified reduced mechanism with a tolerance
denoted εpre and to the reference mechanism with a tolerance
denoted εref. The error tolerances are used to restrict both the
maximum and the average (half of the tolerance) errors of the
training conditions. As for the evaluation on the pre-testing
dataset, the error compared to the reference mechanism is
calculated. The error tolerances εave

pre−testing and εmax
pre−testing are

set to the average and maximum errors, respectively.

FME=
2
∑i=1
n abs(Cval,i −Cref,i)

n
∑i=1
n (Cval,i +Cref,i)

(1)

In order to begin with a conservative BCARY reduction, the
initial values of εpre and εref are both set to 1 %. The values of
these error tolerances are then increased to larger values, re-
flecting the looser criteria used throughout the reduction. εref
is used to track the performance of the reduction, while εpre
is used to avoid large errors introduced by one reduction at-
tempt. Therefore, εpre is lower than or equal to εref. For every
1 % increase in εref, εpre is stepped up by 1 % from 1 % to the
value of εref. By doing this, GENOA first accepts reductions
that introduce small errors compared with the previously val-
idated mechanism and then accepts reductions that introduce
larger errors up to εref.

The maximum values for both εref and εpre are set to 10 %.
When εref reaches 3 %, the mechanism is expected to be
largely reduced. From then, the evaluation under the pre-
testing dataset is considered to be added to the reduction.
This means that all subsequent reductions are evaluated using
both the training and pre-testing datasets. The average and
maximum errors (εave

pre−testing and εmax
pre−testing) are restricted

to be lower than 3 % and 20 %, respectively. As a result of
the above error tolerances, a reduced SQT SOA mechanism
with an average inaccuracy on SOA formation lower than
3 % (maximum 20 %) is expected.

Additionally, another error factor noted as the fractional
bias (FB, computed as detailed in Eq. 2) is used to visualize
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the temporal performance of the reduced mechanism at each
simulation time step. As examples, Figs. 8 and 10 show the
average FB at each time step for the pre-testing conditions.

FBi = 2
Cval,i −Cref,i

Cval,i +Cref,i
(2)

When trying to remove reactions, GENOA first removes re-
actions with low hourly branching ratios (Brm ≤ 5 %), as the
removal of reactions with Brm is likely to have a minimal ef-
fect on SOA formation. After no reduction is accepted by all
applied reduction strategies under the defined error tolerance,
the value of Brm is increased to 10 % and then 50 %.

2.6 Settings for aerosol-oriented treatments

In late-stage training, an intense competition between differ-
ent potential reductions is observed, and a minor modifica-
tion may induce significant uncertainty in the mechanism and
prevent further reduction. Moreover, because the formation
of aerosols costs more CPU time than gas-phase chemistry,
specific treatments are employed in the late stage of training
to reduce the number of condensable species preferentially.
These treatments, which reduce species rather than reactions,
are done when the size of the mechanism is below a cer-
tain threshold. For BCARY reduction, the treatments are acti-
vated once the number of condensable species has decreased
to 20. Consequently, late-stage treatments encourage reduc-
tion via the removal of condensable species and are referred
to as aerosol-oriented treatments. The treatments consist of
the following:

– Restriction of the reduction of the number of reac-
tions is applied; thus, strategies that reduce the number
of aerosols are favored to result in fewer condensable
species.

– The evaluation of aerosol-oriented reductions on the
training dataset is bypassed when applied to jumping,
lumping, and replacement. As a result, the aerosol-
oriented reduction is evaluated only on the pre-testing
dataset to avoid being rejected under some of the ex-
treme conditions in the training dataset (which are less
representative of average atmospheric conditions than
the conditions of the pre-testing dataset).

– An additional type of removal is applied – removing
elementary-like reactions.

The additional reduction strategy of removing elementary-
like reactions is targeted at reactions with multiple products.
After rewriting the reaction into a set of elementary-like reac-
tions, each with one oxidation product and integer stoichio-
metric coefficient, GENOA investigates the possibility of re-
moving the elementary-like reactions one by one. In practice,
removing elementary-like reactions is inserted after the strat-
egy of removing reactions and before jumping, when no fur-
ther reduction that reduces condensable species can be found
with the current parameters.

3 Application to the β-caryophyllene mechanism

GENOA is applied to the SQT degradation mechanism of
v3.3.1 of the Master Chemical Mechanism (Jenkin et al.,
2012). Here, β-caryophyllene (BCARY) is considered a
surrogate for SQT primary VOCs. The degradation of β-
caryophyllene in the original MCM mechanism consists of
1626 reactions and 579 species (223 radicals and 356 sta-
ble species). After prereduction, the mechanism contains
1241 reactions and 493 species (137 radicals and 356 sta-
ble species); this is employed as the starting point and the
reference for the reduction (hereafter referred to as MCM).

Moreover, at the beginning of the GENOA training, all of
the stable species are assumed to be condensable (referred to
as condensables), and their saturation vapor pressures and
activity coefficients are calculated based on their molecu-
lar structures (as detailed in Sect. 2). Applying the effective
partitioning coefficients (Kp at 298 K) described by Seinfeld
and Pandis (2016), condensables can be classified into semi-
volatile organic compounds (SVOCs; Kp between 10−2 and
10 m3 µg−1), low-volatility organic compounds (LVOCs; Kp
between 10 and 104 m3 µg−1), and extremely low volatility
organic compounds (ELVOCs; Kp larger than 104 m3 µg−1).

The semi-explicit SQT SOA mechanism “Rdc.” presented
in this section is trained from MCM with GENOA. Detailed
descriptions of the building process and its chemical scheme
are provided in Sect. 3.1. By the end of the training, Rdc.
is reduced from MCM to only 23 reactions and 15 species
(see Appendix B for the reaction and species lists). The size
of the Rdc. mechanism is of the same order of magnitude
as the BCARY degradation scheme of Khan et al. (2017)
(28 reactions and 15 species) used for global modeling. As
presented in Sect. 3.2, the Rdc. mechanism accurately re-
produces the SOA concentration and composition simulated
by MCM with only six condensables. Table B3 summarizes
the new surrogates and the lumped MCM species that are in-
cluded in the final Rdc. mechanism.

3.1 Building of the reduced SOA mechanism

As shown in Fig. 4, the Rdc. mechanism is built from 113
validated reduction steps. In GENOA, a reduction step refers
to all reduction attempts based on the performed reduction
strategy and reduction parameters, while a validated reduc-
tion step indicates at least one reduction attempt has been ac-
cepted at this step. The entire building process can be divided
into three stages:

– Early stage refers to the period from the 1st to the 74th
reduction step. By the end of the 74th reduction step,
the mechanism is reduced to 68 reactions and 41 species
(including 20 condensables). The early-stage reduction
is trained only on the training dataset with the seven pre-
described reduction strategies. After εref reaches 3 %,
the list of Brm is changed from [5 %, 10 %, 50 %] to
[10 %, 50 %, 100 %].
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Figure 4. Reduction process of the Rdc. mechanism showing the
decrease in the number of reactions, species, and condensables; the
evolution of the average error on the pre-testing dataset (εpre−testing,
with an error tolerance εave

pre−testing of 3 %); and the error tolerance
compared with MCM (εref).

– Late stage I spans from the 75th to the 107th reduction
step. By the end of the 107th reduction step, the reduced
mechanism consists of 38 reactions and 19 species (in-
cluding seven condensables), and no further reduction
can be found within εref ≤ 10 % and εpre ≤ 10 %. In this
stage, the reduction is trained on the pre-testing dataset
if condensables are removed with jumping, lumping, or
replacement. For reduction with other types of reduc-
tion strategies, it is first trained on the training dataset
and then on the pre-testing datasets. From all of the re-
duced mechanisms with seven condensables, GENOA
selects the one with the minimum average errors on the
pre-testing dataset (2.44 %) to start the next stage.

– Late stage II refers to the period from the 108th to the
113th reduction step. At this stage, the reduction strat-
egy of removing elementary-like reactions is applied to
the training. All reductions that reduce the condensables
are evaluated exclusively on the pre-testing dataset. The
size of the reduced mechanism was reduced to 23 re-
actions and 15 species, among which the number of
condensables is reduced to 6. The average (maximum)
error of the final reduced mechanism Rdc. is 2.65 %
(17.00 %) under the pre-testing dataset compared with
MCM.

The extent of the reduction due to each strategy is sum-
marized in Table 7. Compared with MCM, up to 98 % of
reactions and 97 % of species are reduced in Rdc. As ex-
pected, the reduction strategy of removing reactions con-
tributes the most to the decrease in the number of reactions
(48 %), followed by the strategy of removing species (with
a contribution of 37 %). Meanwhile, both lumping and re-
moving species are significant in the reduction of species (by

Table 7. Reduction accomplished per each reduction strategy dur-
ing the building process of the Rdc. mechanism.

Strategy
No. (fractiona, %)

Reactionb Species Condensables

Removing reactions 594 (48) 38 (8) 26 (7)
Removing elementary-

8 (1) 0 (0) 0 (0)
like reactionsc

Jumping 138 (11) 79 (16) 43 (12)
Lumping 0 (0) 171 (35) 110 (31)
Replacement 25 (2) 39 (8) 31 (9)
Removing species 453 (37) 151 (31) 108 (30)
Removing partitioning 0 (0) 0 (0) 32 (9)

Removed in total 1 218 (98) 478 (97) 350 (98)

a The fraction of the original number (of reactions or species) that is reduced by the
strategy. b The columns, from left to right, are the number (and fraction) of reduced
chemical reactions, reduced total gas-phase species, and reduced gas-phase species that
can condense on the particle phase, compared with MCM with 1241 reactions and 493
species (356 condensables). c This step is only applied in the reduction at late stage II.

35 % and 31 %, respectively). The number of condensables
decreases in proportion to the number of species, except for
the strategy of removing partitioning. In that case, the gas–
particle partitioning is removed and the species remains in
the gas phase with no changes in the chemical mechanism.

As shown in Fig. 5, which describes the chemical scheme
of the Rdc. mechanism, the three oxidants (i.e., O3, OH,
and NO3) initiated reactions, leading to common oxidation
products (e.g., mBCSOZ and mBCALO2) that dominate the
successive oxidations. The different reaction pathways un-
der high- or low-NOx regimes are presented in Rdc. with
reactions with NO or HO2, respectively, which results in the
formation of different types of SOAs: mBCKSOZ, mC133O,
and C131PAN (in the presence of NO2) under high-NOx con-
ditions and mC132OOH under low-NOx conditions. Other
pathways, such as the bimolecular reactions of the Criegee
intermediate BCBOO with water vapor and the RO2 reaction
of mBCALO2, are also preserved in the Rdc. mechanism.
The six condensables in Rdc. can be categorized into one
SVOC, four LVOCs, and one ELVOC, according to the ef-
fective partitioning coefficient calculated on the pre-testing
dataset. The SOA concentration per volatility class is dis-
cussed in Sect. 3.2.

Compared with MCM, Rdc. simplifies a considerable
number of reactions that have small impacts on SOA for-
mation (e.g., photolysis reactions) under the majority of at-
mospheric conditions, and it merges a large number of com-
pounds with similar chemical properties. The main oxida-
tion products from the first two generations of MCM oxida-
tion pathways are preserved mainly through the Rdc. species
mBCSOZ, which is a lumped surrogate of several MCM-
representative BCARY-derived oxidation products: BSCOZ
(the major secondary ozonize with a molar yield of ≥ 65 %,
reported by Jenkin et al., 2012), BCAL (the primary prod-
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Figure 5. Representation of the chemical scheme of the Rdc. mech-
anism. VOCs, LVOCs, and ELVOCs are presented in ellipse, square,
and diamond boxes, respectively. Radicals are written in plain text,
without boxes. Reactions with OH, O3, NO3, NO, HO2, and H2O
are shown using arrows with different colors and heads (see the fig-
ure legend). Other reactants (if any) are labeled near the edges. The
complete species and reaction lists of the Rdc. mechanism are given
in Appendix Tables B1 and B2, respectively.

uct formed from both OH- and O3-initiated chemistry), and
BCKET (from OH-initiated reactions).

3.2 Evaluation of the reduced SOA mechanism

3.2.1 Reproduction of the SOA concentrations

During the testing procedure, the Rdc. mechanism is eval-
uated at 12 159 locations, with two different starting times
(00:00 and 12:00 h). The testing for Rdc. took approximately
2 % of the CPU time consumed for MCM.

Compared with MCM, Rdc. presents a high level of accu-
racy with an average error of 2.66 % and a maximum error
of 17.29 %. The monthly distribution of the number of the
testing conditions as well as the testing errors are described
in Fig. 6. The error is lower than 10 % for more than 99 % of
the simulations. The summer conditions, between June and

Figure 6. Monthly distribution of the testing results (errors com-
pared with MCM) of the Rdc. mechanism in the box plot as well as
the number of testing conditions in the histogram.

September, covering more than half of the testing conditions
(63 %, 7647 conditions), result in an average error of 2.37 %
and a 3rd quartile error of 2.85 %. Compared with the sum-
mer conditions, testing results under winter conditions, from
October to January (19 % of the testing dataset, 2285 con-
ditions), display slightly higher uncertainty, with an average
error of 3.79 % and a 3rd quartile error of 5.36 %.

An error map of testing conditions in July and August is
displayed in Fig. 7. It indicates the locations of testing condi-
tions and the errors of each condition, especially highlighting
outliers during this period. Detailed error maps of all test-
ing conditions can be found in Appendix B. It shows that
the Rdc. mechanism induces low errors (lower than 6 %) for
most of the testing conditions. The conditions with errors
over 6 % are mainly concentrated in northern Africa near
the Atlas Mountains and in the eastern Mediterranean, where
the conditions most likely correspond to a dry Mediterranean
climate with low RH and high temperature. Other conditions
with errors above 6 % are dispersed in the Po Valley of north-
ern Italy and along the coasts of southern Spain. More ac-
curate results could be obtained with stricter parameters for
reduction (e.g., lower error tolerance) or by updating the con-
ditions (e.g., training and pre-testing datasets) covering more
extreme conditions in the training process.

3.2.2 Reproduction of the SOA composition

The SOA concentrations and chemical composition simu-
lated with the Rdc. mechanism and with MCM are compared
in this section. The temporal profiles of the total SOA con-
centrations on an average of the pre-testing dataset and non-
ideal conditions are displayed in Fig. 8. Throughout the en-
tire 5 d simulation period, there is excellent agreement be-
tween hourly SOA concentrations simulated with MCM and
those obtained from the Rdc. mechanism. The SOA concen-
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Figure 7. Geographic distributions of the (a) error and (b) average
SOA concentration of the testing results in July and August sim-
ulated using the Rdc. mechanism. The total number of conditions
displayed is 4717 out of the 12 159 that were tested. The results of
all testing conditions are shown in Appendix B for reference.

tration builds up rapidly in the first few hours, where the re-
sults of the Rdc. mechanism present relatively larger fluctu-
ations (the maximum FB of 3.74 % is observed at 1 h on the
average pre-testing results).

The average SOA concentrations per volatility class on the
pre-testing dataset at two simulation times (8 and 72 h) are
listed in Table 8. At both 8 and 72 h, the Rdc. mechanism ac-
curately reproduces the total SOA mass with a relative differ-
ence lower than 0.1 % compared to MCM. An accumulation
of the SOA mass into the ELVOC class is observed (51 %
of the total SOA mass at 8 h and 66 % at 72 h) with both
the MCM and the Rdc. mechanisms. The aging of SOA pro-
duces compounds of low and extremely low volatility. Re-
garding the volatility classes, the Rdc. mechanism tends to
slightly overestimate the SOA resulting from ELVOCs and
underestimate the SOA resulting from LVOCs, especially at
72 h. This suggests that aging leads to Rdc. condensables of

Figure 8. Temporal variation in the total SOA concentration simu-
lated with the pre-testing dataset using the MCM (red dashed line)
and Rdc. (solid black line) mechanisms under nonideal conditions.
The average (solid blue line) and maximum (blue shading) FB val-
ues between the MCM and the Rdc. mechanisms are also presented.

Table 8. Average SOA concentrations per volatility class simulated
with the MCM and the Rdc. mechanisms on the pre-testing dataset
at 8 and 72 h (in µgm−3).

Conditions SVOCs LVOCs ELVOCs Total

MCM at 8 h 0.18 1.91 2.17 4.26
Rdc. at 8 h 0.13 1.80 2.31 4.24

MCM at 72 h 0.02 1.90 3.69 5.61
Rdc. at 72 h 0.02 1.51 4.12 5.65

slightly lower volatility than the MCM ones; however, the
differences are low (up to 0.4 µgm−3 difference (10 %) at
72 h).

The average SOA composition per functional group simu-
lated on the pre-testing dataset at 72 h is displayed in Fig. 9.
No significant change in the functional group distributions
is found between 8 and 72 h of oxidation. The alkyl (C) and
carbonyl groups (RCO) contribute the most to the SOA mass,
by more than 1 µgm−3, whereas the other functional groups
contribute by less than 1 µgm−3. Overall, the Rdc. mecha-
nism satisfactorily reproduces the composition of the MCM-
simulated SOA composition for most functional groups, ex-
cept for nitrogen-containing groups. In comparison to MCM,
only two condensables containing nitrogen are retained in the
Rdc. mechanism – NBCOOH and C131PAN – leading to an
underestimation of the organic nitrate group (0.31 µgm−3 in
MCM and 0.04 µgm−3 in Rdc.) and an overestimation of the
nitrate mass of the peroxyacetyl nitrate group (0.10 µgm−3

in MCM and 0.30 µgm−3 in Rdc.). To obtain better results
on the reproduction of nitrogen groups, GENOA may be fur-
ther restricted to distinguish nitrogen compounds in training.
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Figure 9. Average SOA mass per functional group simulated with the pre-testing dataset using the MCM (blue bar) and Rdc. mechanisms
(white bar) at 72 h. The figure is divided into two panels, (a) and (b), due to the large gap in mass between the groups. The labels of the
functional groups, from left to right, are as follows: C – carbon bond, RCO – carbonyls (ketone and aldehyde), CO–OH – hydroxy peroxide,
NO3 – organic nitrates, OH – alcohol, COOH – carbonyl acid, CO–OC – peroxide, PAN – peroxyacyl nitrates, C=C – carbon double bond,
COC – ether, RCOO – ester, and COOOH – peroxyacetyl acid.

Additionally, the peroxyacetyl acid group results in an ex-
tremely low SOA mass in MCM (less than 0.01 %); there-
fore, it is not retained in the Rdc. mechanism.

Moreover, the temporal profiles of the organic mass to or-
ganic carbon mass (OM/OC) ratio as well as the H/C, O/C,
and N/C atomic ratios are presented in Fig. 10. Compara-
ble patterns are observed in the OM/OC (1.65 in MCM and
1.63 in Rdc. on average), the O/C (0.37 in MCM and 0.36 in
Rdc.), and the H/C (1.62 in MCM and 1.60 in Rdc.) ratios.
During the first 8 h of simulation, Rdc. tends to slightly over-
estimate the OM/OC and O/C ratios, while the H/C ratio
remains fairly stable throughout the entire simulation with
a negligible difference (0.02) between MCM and Rdc. The
N/C ratio, however, is underestimated by the Rdc. mecha-
nism by 37 % on average (ratio equal to 0.019 in MCM and
to 0.012 in Rdc.), indicating the over-reduction of organic
nitrites in Rdc. A total of three nitrogen-containing organics
(NBCO2, NBCOOH, and C131PAN) are preserved in Rdc.,
two of which (NBCO2 and NBCOOH) are first-generation
products. Therefore, during the first 10 h, the N/C ratio curve
simulated by Rdc. drops, whereas it increases in MCM as
higher-generation nitrates are produced.

3.2.3 Sensitivity on environmental parameters

The sensitivities of the Rdc. mechanism to temperature, RH,
and SOA mass conditions are investigated with the pre-
testing dataset. The default value of the BCARY concen-
tration is 5 µgm−3, and the default RH and temperature are
set to constant values of 50 % and 298 K, respectively. As
presented in Fig. 11, the SOA yields simulated by the Rdc.
mechanism with different environmental parameters show
a remarkable resemblance to the SOA yields simulated by
MCM.

Under 10 µgm−3, the simulated SOA yields are not af-
fected by the SOA mass loading. This result is consistent
with the large contribution of ELVOCs reported in Table 8. A

discrepancy of 25 % in the average SOA yield at 1 h with an
SOA mass loading of 103 µgm−3 at 1 h and a discrepancy of
8 % at 72 h with an SOA mass loading of 10−3 µgm−3 are ob-
served. The result indicates that the Rdc. mechanism may in-
troduce relatively large uncertainty with extreme SOA load-
ing (larger than 500 µgm−3), which was outside the range
of conditions used for the construction of the Rdc. mech-
anism. SOA formation is affected by RH, due to both the
gas-phase chemistry (reaction with H2O vapors) and the gas–
particle transfer (condensation of hydrophilic SOA precur-
sors on aqueous aerosols). The sensitivity tests show that
the Rdc. mechanism reproduces (differences lower than 2 %)
the SOA yields of MCM well with RH values ranging from
5 % to 95 %. For temperature, the Rdc. mechanism repro-
duces the SOA aging at 72 h very well, but larger discrep-
ancies are observed in the earlier period, when the oxidation
products are more volatile. However, the discrepancies in the
SOA yield stay low: differences up to 7 % (at 1 and 72 h)
and 10 % (at 8 h) are observed for temperatures of 263 and
323 K, respectively. This finding is consistent with the test-
ing results. In summary, the discrepancies suggest that the
reduced mechanism performs quite well, although larger dis-
crepancies with MCM are observed under conditions that are
outside the range of conditions used during training.

4 Conclusions

The development and application of the GENerator of re-
duced Organic Aerosol mechanism (GENOA v1.0) have
been presented in this study. GENOA generates semi-explicit
SOA mechanisms designed for large-scale air quality model-
ing by reducing explicit VOC mechanisms with a series of
automatic training and testing processes. During the training
procedure of GENOA, four types of reduction strategies (re-
moval, jumping, lumping, and replacement) are adopted to
locate the potential reduction in the mechanism. Each reduc-
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Figure 10. Temporal variations in the (a) average organic mass to organic carbon mass (OM/OC) ratio, (b) hydrogen to carbon (H/C) atomic
ratio, (c) oxygen to carbon (O/C) atomic ratio, and (d) nitrogen to carbon (N/C) atomic ratio, simulated with MCM (solid black curves)
and the Rdc. mechanism (dotted red curves) on the pre-testing dataset. The average FB (solid blue line) and the 90 % range of the FB (blue
shading) are also presented.

Figure 11. Dependence of the average SOA yield simulated by the pre-testing dataset with MCM (solid line) and the Rdc. mechanism
(dashed line) on (a) BCARY SOA mass; (b) relative humidity (RH); and (c) temperature at 1 h (red points), 8 h (blue triangles), and 72 h
(green squares).

tion attempt is evaluated against the explicit mechanism un-
der a sequence of near-realistic atmospheric conditions (the
training dataset, and/or the pre-testing dataset at the late stage
of reduction). Finally, the reduced mechanism is evaluated
under various conditions of a testing dataset. Under each con-
dition, two 5 d 0-D simulations starting at midnight and noon
are conducted with the SSH-aerosol model to simulate SOA
concentrations and compositions for reduction evaluation.

GENOA successfully generated semi-explicit SOA chem-
ical mechanisms for the degradation of sesquiterpene, for
which the explicit β-caryophyllene mechanism of the Mas-
ter Chemical Mechanism serves as the reference mechanism
and the starting point. The final reduced SQT SOA mech-

anism contains 23 reactions (down from 1626 reactions in
MCM), 15 gas-phase species (down from 579 gases), and 6
aerosol species (down from 356 aerosols). It reproduces the
SOA formation and aging by introducing an average error
of 2.7 % under conditions over Europe with only 2 % of the
size of MCM. The SOA volatility is well reproduced with
the reduced mechanism, as well as the decomposition into
functional groups, and the OM/OC (1.55 in the Rdc. mech-
anism and 1.60 in MCM), H/C, and O/C ratios. Nitrogen-
containing SOA, which contributes to only 7 % of the to-
tal mass, is not as well represented as other groups, and the
N/C ratio is slightly underestimated in the Rdc. mechanism
(0.016 compared with 0.021 in MCM). The similarity of the
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representation of the functional group decomposition allows
for the similar reproduction of the non-ideality of SOA in
the Rdc. mechanism and in MCM. Additionally, the sensi-
tivity tests on RH, temperature, and organic mass loading
show that the SOA simulated with the Rdc. mechanism is
in good agreement with MCM results under most conditions
(except for conditions with extremely high temperature or
with massive organic aerosol loading where discrepancies in
the SOA yields may reach 8 % (temperature) and 25 % (mas-
sive mass loading)). This indicates that the reduced mecha-
nism performs well for conditions in the training range, but
its performance may deteriorate for conditions outside of this
range. To improve the performance of the semi-explicit SOA
mechanism under conditions outside of the training range,
two methods can be employed: the first is to include the out-
lier conditions in the training procedure if they are consid-
ered influential to SOA formation, and the second is to adopt
strict error tolerance to restrict the reduction.

Appendix A: The computation of saturation vapor
pressure of BCARY SVOCs

The ozonolysis experimental data reported in Tasoglou and
Pandis (2015) and Chen et al. (2012) are used to evalu-
ate the performance of different computation methods for
the saturation vapor pressure of BCARY oxidation prod-
ucts. In our simulations, the saturation vapor pressure is
computed by UManSysProp with the SMILES (Simplified
Molecular Input Line Entry System) structures of organic
compounds. Eight methods are provided in UManSysProp,
including SIMPOL.1 (“sim”) of Pankow and Asher (2008),
EVAPORATION (“evp”) of Compernolle et al. (2011), and
six methods out of the combination of two methods to com-
pute the vapor pressure (“v0”, Myrdal and Yalkowsky, 1997;
and “v1”, Nannoolal et al., 2008) and three methods to com-
pute the boiling point (“b0”, Nannoolal et al., 2004; “b1”,
Stein and Brown, 1994; and “b2”, Joback and Reid, 1987).
As shown in Fig. A1, the SOA distribution simulated with
“v1b2” (thin yellow diamonds) agrees best with the experi-
mental data. Therefore, this method with the vapor pressure
computed by Nannoolal et al. (2008) and the boiling point
computed by Joback and Reid (1987) is used in the BCARY
reduction. The results simulated with the final reduced mech-
anism Rdc. (purple diamonds) is also presented in Fig. A1,
which has a great resemblance to the experimental data.

Figure A1. The SOA yields versus the total SOA mass from the
experimental data reported by Chen et al. (2012) and Tasoglou and
Pandis (2015), simulated in SSH-aerosol with the MCM mechanism
and different saturation vapor pressures methods (see the figure leg-
end) and simulated with the Rdc. mechanism (purple diamonds).
The Rdc. mechanism is trained from the MCM mechanism with the
v1b2 method.
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Appendix B: An overview of the Rdc. mechanism

Table B1. Species list of the Rdc. mechanism. Notice that the species in the reduced case may be different from the MCM species with
identical names.

Surrogatea Typeb Molecular formula MWc P d
sat 1H e

vap H f γ g

BCARY VOC C15H24 204.4
NBCO2 Radical C15H24NO5 298.4
BCBOO Radical C15H24O3 252.3
mBCALO2 Radical C14.68H24.08O4.87 278.5
mBCSOZ VOC C15H24O2.74 248.2
NBCOOH LVOC C15H25NO5 299.4 4.04× 10−12 119 7.63× 106 1.8× 106

mC141CO2H LVOC C14.94H23.85O3.06 252.4 4.43× 10−11 114 2.53× 104 4.95× 107

mBCKSOZ SVOC C14H22O3.9 252.7 2.02× 10−8 91.2 1.89× 105 1.45× 104

mC131CO3 Radical C14.09H21.28O4.91 269.1
mC131O2 Radical C13.14H21.22O4.14 245.5
mC133CO ELVOC C13.42H20.83O4.59 255.6 1.62× 10−12 125 245 1.4× 1011

mC132OOH ELVOC C13.97H23.92O4.59 279.5 4.13× 10−14 136 5.70× 103 2.36× 1011

C131PAN LVOC C14H21NO7 315.3 4.39× 10−11 113 2.07× 104 6.09× 107

mC133O2 Radical C13H21O5.97 272.8
C133O Radical C13H21O5 257.3

a Species with “m” are the new surrogates that merged multiple MCM BCARY species. b VOCs (stable gas-phase species) and radicals (unstable
gas-phase species) are assumed not to undergo gas–particle partitioning. The volatility classes of condensable species are defined in Sect. 3. c Molar
weight (g mol−1). The properties calculated for condensable substances only are as follows: d saturation vapor pressure at 298 K (atm), e enthalpy of
vaporization (kJ mol−1), f Henry’s law constant (mol L−1 atm−1), and g activity coefficient at infinite dilution in water.

Table B2. Reaction list of the Rdc. mechanism.

No. Reactions Kinetic rate constanta

1 BCARY+NO3→NBCO2+NO3 1.9× 10−11

2 BCARY+O3→ 0.874 BCBOO+ 0.111 mBCALO2+O3 1.19× 10−14

3 BCARY+OH→mBCSOZ+OH 1.97× 10−10

4 NBCO2+HO2→NBCOOH+HO2 2.837× 10−13
× exp( 1300

T
)

5 NBCO2+NO→mBCSOZ+NO 2.7× 10−12
× exp( 360

T
)

6 NBCO2+NO3→mBCSOZ+NO3 2.3× 10−12

7 BCBOO→ 0.5 mC141CO2H+ 0.5 mBCSOZ [H2O]× 4× 10−16

8 BCBOO→mBCSOZ 2× 102

9 mBCSOZ+O3→ 0.915 mBCKSOZ+ 0.085 mBCALO2+O3 1.1× 10−16

10 mBCSOZ+OH→ 0.92 mBCALO2+ 0.08 mC131CO3+OH 7.6× 10−11

11 mC141CO2H+OH→mC131O2+OH 6.494× 10−11

12 mBCALO2+NO→ 0.505 mBCKSOZ+ 0.353 mC131CO3+ 0.099 mC133CO+NO 6.56× 10−12
× exp( 360

T
)

13 mBCALO2→ 0.6 mC131CO3 [RO2]× 1.711× 10−12

14 mBCALO2+HO2→mC132OOH+HO2 1.939× 10−13
× exp( 1300

T
)

15 mBCKSOZ+OH→mC131O2+OH 3.28× 10−11

16 mC131CO3+NO→mC131O2+NO 6.377× 10−12
× exp( 290

T
)

17 mC131CO3+NO2→C131PAN+NO2 0.8502× KFPAN
18 mC131O2+HO2→mC132OOH+HO2 2.288× 10−13

× exp( 1300
T

)
19 mC131O2+NO→mC133O2+NO 2.213× 10−12

× exp( 360
T

)
20 mC133O2+HO2→mC132OOH+HO2 2.695× 10−13

× exp( 1300
T

)
21 mC133O2+NO→ 0.757 C133O+ 0.243 mC133CO+NO 2.61× 10−12

× exp( 360
T

)
22 C133O→mC133CO [O2]× 2.5× 10−14

× exp(−300
T

)
23 C133O→ 2.7× 1014

× exp(−6643
T

)

a [H2O] is the concentration of H2O, [RO2] is the total concentration of the RO2 species pool, [O2] is the concentration of O2, and KFPAN is one of the complex rate
coefficients from the MCM mechanism.
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Table B3. The new surrogates in the Rdc. mechanism and the corresponding lumped species in the original MCM mechanism. Notice that the
Rdc. surrogates may also go through other reductions (i.e., jumping, replacement, and removal) that do not affect their molecular structures.

Rdc. surrogate Lumped MCM species

mBCSOZ BCSOZ, BCAL, BCKET

mC141CO2H C141CO2H, C143CO, C1310CO, BCALCCO, C143OH, BCCOH, BCAOH

mBCALO2 BCALO2, C146O2, C142O2, BCKAO2, C147O2

mBCKSOZ BCKSOZ, BCLKET, BCALOH, BCKBCO, BCKAOH, BCSOZOH

mC131CO3 C131CO3, C141CO3, C1211CO3, C137CO3

mC131O2 C131O2, C144O2, C143O2, BCLKAO2, C152O2, BCLKCO2

mC132OOH C132OOH, BCSOZOOH, C133OOH, C146OOH, C147OOH
C1313OOH, BCLKBOOH, BCLKAOOH, C152OOH, C145OOH
C148OOH, C144OOH, BCALOOH, BCKBOOH, C151OOH

mC133O2 C133O2, C1313O2

mC133CO C133CO, C131CO2H, C148CO, C145OH, C1313OH, BCLKBOH, BCLKAOH
C152OH, C151OH, C147OH, BCLKACO, C148OH, C1211CO2H

Figure B1. Maps of the (a) error and (b) average SOA concentration
of the testing results simulated using the Rdc. mechanism on all
(i.e., 12 159) testing conditions.
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Appendix C: Information related to the reduction

C1 Additional examples of lumping

Besides the example shown in Sect. 2.2.3, two additional ex-
amples have been added from the BCARY reduction: one
illustrates the lumping of two similar compounds formed by
different reactions, and the other illustrates the lumping of
two more distinct compounds. The first example is the MCM
species C1313NO3 and C152NO3 (see Table C2). These
two species come from different reactions. The molecular
structures of both compounds are similar (they contain or-
ganic nitrates, aldehydes, and alcohols), but C152NO3 con-
tains an additional carboxylic acid where C1313NO3 con-
tains an aldehyde. The corresponding reactions before and
after lumping are summarized in Table C2, where the new
surrogate “mC1313NO3” is built from C1313NO3 with a
weighting ratio of 83 % and C152NO3 with a weighting ra-
tio of 17 %. As a result of this lumping, the average error
increase under training conditions is 0.001 % (the tolerance
is 0.01 %).

Table C1. The computation of estimating chemical activity ratios used to display training dataset in Fig. 2.

Namea Reactantb Computationc Kinetic rate coefficientd

ROH OH kOH[OH] / (kOH[OH]+ kO3 [O3]+ kNO3 [NO3]) kOH = 1.97× 10−10

RO3 O3 kO3 [O3] / (kOH[OH]+ kO3 [O3]+ kNO3 [NO3]) kO3 = 1.20× 10−14

RNO3 NO3 kNO3 [NO3] / (kOH[OH]+ kO3 [O3]+ kNO3 [NO3]) kNO3 = 1.90× 10−11

RRO2−NO NO kNO [NO] / (kNO [NO]+ kHO2 [HO2]+ kRNO3 [NO3]+ kRO2 [RO2]) kNO = 2.70× 10−12
× exp( 360

T
)

RRO2−HO2 HO2 kHO2 [HO2] / (kNO [NO]+ kHO2 [HO2]+ kRNO3 [NO3]+ kRO2 [RO2]) kHO2 = 2.91× 10−13
× exp( 1300

T
)

RRO2−RO2 RO2 kRO2 [RO2] / (kNO [NO]+ kHO2 [HO2]+ kRNO3 [NO3]+ kRO2 [RO2]) kRO2 = 9.20× 10−14

RRO2−NO3 NO3+RO2 kNO3 [NO3] / (kNO [NO]+ kHO2 [HO2]+ kRNO3 [NO3]+ kRO2 [RO2]) kRNO3 = 2.30× 10−12

a Names of the reacting ratio of OH radical, O3, and NO3 radical reacted with BCARY (ROH +RO3 +RNO3 = 1) and of the reacting ratio of NO, HO2 radical, RO2 radical, and NO3

radical (in the presence of RO2) reacted with RO2 species (RRO2−NO +RRO2−HO2 +RRO2−RO2 +RRO2−NO3 = 1). b Reactions with those compounds are preferred when the

corresponding reaction ratios are high. c [species_name] (e.g.,[OH]) is the monthly average concentration of oxidant concentrations extracted from CHIMERE. d Kinetic rate coefficients
are provided by MCM, where kOH, kO3 , and kNO3 are the kinetic rate coefficient of first-generation BCARY reaction with OH, O3, and NO3, respectively; kNO, kHO2 , and kRNO3 are
the simple rate coefficients KRO2NO, KRO2HO2, and KRO2NO3, respectively; and kRO2 represents the self-reaction rate coefficients for the tertiary peroxy radicals (e.g., BCAO2 and
BCCO2). T is temperature (K).

Another example of lumping is the MCM species BCAL-
BOC and C1310OH (see Table C3). Unlike the previ-
ous example, these two species are more distinct. Accord-
ing to MCM, BCALBOC is generated through O3-initiated
reactions, whereas C1310OH is generated through high-
generation oxidations. There is less similarity in the struc-
tures or chemical reactions of the two molecules. MCM con-
tains the OH reaction of BCALBOC as well as the O3 and
OH reactions of C1310OH. However, this reduction was ac-
cepted because lumping them only increased the average er-
ror by 0.01 % under training conditions (the tolerance was
1 %). The new surrogate “mBCALBOC” is constructed from
BCALBOC with a weighting ratio of 98 % and C1310OH
with a weighting ratio of 2 %.

As C1310OH has a low weighting ratio, the lumping
would be substituted by replacement (a special case of lump-
ing), where the weighting ratio of BCALBOC is set to 100 %
and the weighting ratio of C1310OH is set to 0 %. In this
case, instead of forming a new surrogate, C1310OH is re-
placed by BCALBOC. In BCARY reduction, this type of re-
placement was not used, but it can be activated by the user
by setting the weighting ratio threshold.
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Figure C1. Molecular structures of the MCM species that are mentioned in the paper. For more information, please visit the MCM website.
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Table C2. Reactions related to the reduction of the MCM species C1313NO3 and C152NO3 via lumping. The exact weighting ratio of
C1313NO3 is 0.82945, and the exact weighting ratio of C152NO3 is 0.17055.

Reactions before lumping Kinetic coefficient

Production

C1313O2+NO→C1313NO3 KRO2NO× 0.134
C152O2+NO→C152NO3 KRO2NO× 0.136

Destruction

C1313NO3+OH→C116CHO+HCHO+NO2 5.59× 10−11

C152NO3+OH→BCLKBOC+HCHO+NO2 1.58× 10−11

Reactions after lumping

Production

C1313O2+NO→ 0.134 mC1313NO3+ 0.866 C1313O+ 0.866 NO2 KRO2NO
C152O2+NO→ 0.136 mC1313NO3+ 0.864 C152O+ 0.864 NO2 KRO2NO

Destruction

mC1313NO3+OH→C116CHO+HCHO+NO2 5.59×10−11
× 0.82945

mC1313NO3+OH→BCLKBOC+HCHO+NO2 5.59×10−11
× 0.17055

Table C3. Reactions related to the reduction of the MCM species BCALBOC and C1310OH via lumping. The exact weighting ratio of
BCALBOC is 0.97675, and the exact weighting ratio of C1310OH is 0.023251.

Reactions before lumping Kinetic coefficient

Production

BCOOA→BCALBOC 1.0× 106
×0.15

C1310O2→C1310OH 2.5× 10−13
× [RO2]× 0.2

Destruction

BCALBOC+O3→ BCBOOA+HCHO 1.1× 10−16
× 0.670

BCALBOC+O3→ BCLKBOC+CH2OOF 1.1× 10−16
× 0.330

BCALBOC+OH→ C152O2 6.98× 10−11

C1310OH+OH→C1310CO+HO2 6.2× 10−11

Reactions after lumping

Production

BCOOA→mBCALBOC 1.0× 106
× 0.15

C1310O2→mBCALBOC 2.5× 10−13
× [RO2]× 0.2

Destruction

mBCALBOC+O3→BCBOOA+HCHO 1.10×10−16
× 0.670× 0.97675

mBCALBOC+O3→BCLKBOC+CH2OOF 1.10×10−16
× 0.330× 0.97675

mBCALBOC+OH→C1310CO+HO2 6.20×10−11
× 0.97675

mBCALBOC+OH→C152O2 6.98×10−11
× 0.023251
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Code and data availability. The source code for GENOA v1.0 is
hosted on GitHub at https://github.com/tool-genoa/GENOA/tree/
v1.0 (last access: 25 April 2022). The associated Zenodo DOI is
https://doi.org/10.5281/zenodo.6482978 (Wang, 2022). The dataset
that we used to run the BCARY MCM reduction is publicly avail-
able online on Zenodo: https://doi.org/10.5281/zenodo.6483088
(Wang et al., 2022).
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