Articles | Volume 15, issue 20
https://doi.org/10.5194/gmd-15-7859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7859-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Data assimilation for the Model for Prediction Across Scales – Atmosphere with the Joint Effort for Data assimilation Integration (JEDI-MPAS 1.0.0): EnVar implementation and evaluation
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
Chris Snyder
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
Jonathan J. Guerrette
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
Byoung-Joo Jung
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
Junmei Ban
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
Steven Vahl
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
now at: Joint Center for Satellite Data Assimilation, Boulder, USA
National Center for Atmospheric Research, Boulder, Colorado 80301, USA
now at: Shenzhen Institute of Meteorological Innovation, Shenzhen, China
Yannick Trémolet
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
Thomas Auligné
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
Benjamin Ménétrier
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
Anna Shlyaeva
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
Stephen Herbener
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
Emily Liu
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
now at: NOAA National Centers for Environmental Prediction, College Park, USA
Daniel Holdaway
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
now at: NASA Goddard Space Flight Center, Greenbelt, USA
Benjamin T. Johnson
Joint Center for Satellite Data Assimilation, Boulder, Colorado 80301, USA
Related authors
Tao Sun, Jonathan J. Guerrette, Zhiquan Liu, Junmei Ban, Byoung-Joo Jung, Ivette Hernández Baños, and Chris Snyder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2079, https://doi.org/10.5194/egusphere-2025-2079, 2025
Short summary
Short summary
We evaluated a new ensemble data assimilation system that uses satellite observations in all weather conditions for global weather forecasts. The results show that including cloud- and precipitation-affected satellite data improves forecasts of moisture, wind, and clouds, especially in the tropics. This work highlights the potential of this new ensemble data assimilation system to enhance global weather forecasts.
Qing Zheng, Wei Sun, Zhiquan Liu, Jiajia Mao, Jieying He, Jian Li, and Xingwen Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-12, https://doi.org/10.5194/egusphere-2025-12, 2025
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer high temporal resolution observations with strong sensitivity to the lower atmosphere, making them valuable for data assimilation. However, their assimilation has traditionally focused on retrieved profiles. This study implemented the direct assimilation of brightness temperatures from MWRs with a machine learning-based bias correction scheme. The results show improvements in the low-level atmospheric structure and precipitation predictions.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142, https://doi.org/10.5194/gmd-16-7123-2023, https://doi.org/10.5194/gmd-16-7123-2023, 2023
Short summary
Short summary
We demonstrate an ensemble of variational data assimilations (EDA) with the Model for Prediction Across Scales and the Joint Effort for Data assimilation Integration (JEDI) software framework. When compared to 20-member ensemble forecasts from operational initial conditions, those from 80-member EDA-generated initial conditions improve flow-dependent error covariances and subsequent 10 d forecasts. These experiments are repeatable for any atmospheric model with a JEDI interface.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Tao Sun, Jonathan J. Guerrette, Zhiquan Liu, Junmei Ban, Byoung-Joo Jung, Ivette Hernández Baños, and Chris Snyder
EGUsphere, https://doi.org/10.5194/egusphere-2025-2079, https://doi.org/10.5194/egusphere-2025-2079, 2025
Short summary
Short summary
We evaluated a new ensemble data assimilation system that uses satellite observations in all weather conditions for global weather forecasts. The results show that including cloud- and precipitation-affected satellite data improves forecasts of moisture, wind, and clouds, especially in the tropics. This work highlights the potential of this new ensemble data assimilation system to enhance global weather forecasts.
Qing Zheng, Wei Sun, Zhiquan Liu, Jiajia Mao, Jieying He, Jian Li, and Xingwen Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2025-12, https://doi.org/10.5194/egusphere-2025-12, 2025
Short summary
Short summary
Ground-based microwave radiometers (MWRs) offer high temporal resolution observations with strong sensitivity to the lower atmosphere, making them valuable for data assimilation. However, their assimilation has traditionally focused on retrieved profiles. This study implemented the direct assimilation of brightness temperatures from MWRs with a machine learning-based bias correction scheme. The results show improvements in the low-level atmospheric structure and precipitation predictions.
Soyoung Ha, Jonathan J. Guerrette, Ivette Hernández Baños, William C. Skamarock, and Michael G. Duda
Geosci. Model Dev., 17, 4199–4211, https://doi.org/10.5194/gmd-17-4199-2024, https://doi.org/10.5194/gmd-17-4199-2024, 2024
Short summary
Short summary
To mitigate the imbalances in the initial conditions, this study introduces our recent implementation of the incremental analysis update (IAU) in the Model for Prediction Across Scales – Atmospheric (MPAS-A) component coupled with the Joint Effort for Data assimilation Integration (JEDI) through the cycling system. A month-long cycling run demonstrates the successful implementation of the IAU capability in the MPAS–JEDI cycling system.
Byoung-Joo Jung, Benjamin Ménétrier, Chris Snyder, Zhiquan Liu, Jonathan J. Guerrette, Junmei Ban, Ivette Hernández Baños, Yonggang G. Yu, and William C. Skamarock
Geosci. Model Dev., 17, 3879–3895, https://doi.org/10.5194/gmd-17-3879-2024, https://doi.org/10.5194/gmd-17-3879-2024, 2024
Short summary
Short summary
We describe the multivariate static background error covariance (B) for the JEDI-MPAS 3D-Var data assimilation system. With tuned B parameters, the multivariate B gives physically balanced analysis increment fields in the single-observation test framework. In the month-long cycling experiment with a global 60 km mesh, 3D-Var with static B performs stably. Due to its simple workflow and minimal computational requirements, JEDI-MPAS 3D-Var can be useful for the research community.
Jonathan J. Guerrette, Zhiquan Liu, Chris Snyder, Byoung-Joo Jung, Craig S. Schwartz, Junmei Ban, Steven Vahl, Yali Wu, Ivette Hernández Baños, Yonggang G. Yu, Soyoung Ha, Yannick Trémolet, Thomas Auligné, Clementine Gas, Benjamin Ménétrier, Anna Shlyaeva, Mark Miesch, Stephen Herbener, Emily Liu, Daniel Holdaway, and Benjamin T. Johnson
Geosci. Model Dev., 16, 7123–7142, https://doi.org/10.5194/gmd-16-7123-2023, https://doi.org/10.5194/gmd-16-7123-2023, 2023
Short summary
Short summary
We demonstrate an ensemble of variational data assimilations (EDA) with the Model for Prediction Across Scales and the Joint Effort for Data assimilation Integration (JEDI) software framework. When compared to 20-member ensemble forecasts from operational initial conditions, those from 80-member EDA-generated initial conditions improve flow-dependent error covariances and subsequent 10 d forecasts. These experiments are repeatable for any atmospheric model with a JEDI interface.
Cheng-Hsuan Lu, Quanhua Liu, Shih-Wei Wei, Benjamin T. Johnson, Cheng Dang, Patrick G. Stegmann, Dustin Grogan, Guoqing Ge, Ming Hu, and Michael Lueken
Geosci. Model Dev., 15, 1317–1329, https://doi.org/10.5194/gmd-15-1317-2022, https://doi.org/10.5194/gmd-15-1317-2022, 2022
Short summary
Short summary
This article is a technical note on the aerosol absorption and scattering calculations of the Community Radiative Transfer Model (CRTM) v2.2 and v2.3. It also provides guidance for prospective users of the CRTM aerosol option and Gridpoint Statistical Interpolation (GSI) aerosol-aware radiance assimilation. Scientific aspects of aerosol-affected BT in atmospheric data assimilation are also briefly discussed.
Xinghong Cheng, Zilong Hao, Zengliang Zang, Zhiquan Liu, Xiangde Xu, Shuisheng Wang, Yuelin Liu, Yiwen Hu, and Xiaodan Ma
Atmos. Chem. Phys., 21, 13747–13761, https://doi.org/10.5194/acp-21-13747-2021, https://doi.org/10.5194/acp-21-13747-2021, 2021
Short summary
Short summary
We develop a new inversion method of emission sources based on sensitivity analysis and the three-dimension variational technique. The novel explicit observation operator matrix between emission sources and the receptor’s concentrations is established. Then this method is applied to a typical heavy haze episode in North China, and spatiotemporal variations of SO2, NO2, and O3 concentrations simulated using a posterior emission sources are compared with results using an a priori inventory.
Cited articles
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Avellano, A.: The Data Assimilation Research Testbed: A Community Facility,
B. Am. Meteorol. Soc., 90, 1283–1296,
https://doi.org/10.1175/2009bams2618.1, 2009. a
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for
satellite data in a numerical weather prediction system, Q. J.
Roy. Meteor. Soc., 133, 631–642, https://doi.org/10.1002/qj.56, 2007. a
Barker, D., Huang, X.-Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S.,
Ajjaji, R., Bourgeois, A., Bray, J., Chen, Y., Demirtas, M., Guo, Y.-R.,
Henderson, T., Huang, W., Lin, H.-C., Michalakes, J., Rizvi, S., and Zhang,
X.: The Weather Research and Forecasting Model's Community
Variational/Ensemble Data Assimilation System: WRFDA, B. Am. Meteorol. Soc., 93, 831–843,
https://doi.org/10.1175/bams-d-11-00167.1, 2012. a
Brown, B., Jensen, T., Gotway, J. H., Bullock, R., Gilleland, E., Fowler, T.,
Newman, K., Adriaansen, D., Blank, L., Burek, T., Harrold, M., Hertneky, T.,
Kalb, C., Kucera, P., Nance, L., Opatz, J., Vigh, J., and Wolff, J.: The
Model Evaluation Tools (MET): More than a Decade of Community-Supported
Forecast Verification, B. Am. Meteorol. Soc., 102,
E782–E807, https://doi.org/10.1175/bams-d-19-0093.1, 2021. a
Chen, F. and Dudhia, J.: Coupling an Advanced Land
Surface–Hydrology Model with the Penn State–NCAR
MM5 Modeling System. Part II: Preliminary Model Validation, Mon. Weather Rev., 129, 587–604,
https://doi.org/10.1175/1520-0493(2001)129<0587:caalsh>2.0.co;2, 2001. a
Choi, H.-J. and Hong, S.-Y.: An updated subgrid orographic parameterization for
global atmospheric forecast models, J. Geophys. Res.-Atmos., 120, 12445–12457, https://doi.org/10.1002/2015jd024230, 2015. a
Courtier, P., Thépaut, J.-N., and Hollingsworth, A.: A strategy for
operational implementation of 4D-Var, using an incremental approach,
Q. J. Roy. Meteor. Soc., 120, 1367–1387,
https://doi.org/10.1002/qj.49712051912, 1994. a
Dee, D. P. and Uppala, S.: Variational bias correction of satellite radiance
data in the ERA-Interim reanalysis, Q. J. Roy. Meteor. Soc., 135, 1830–1841, https://doi.org/10.1002/qj.493, 2009. a
Derber, J. and Rosati, A.: A Global Oceanic Data Assimilation System, J. Phys. Oceanogr., 19, 1333–1347,
https://doi.org/10.1175/1520-0485(1989)019<1333:agodas>2.0.co;2, 1989. a
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two and
three dimensions, Q. J. Roy. Meteor. Soc., 125,
723–757, https://doi.org/10.1002/qj.49712555417, 1999. a
Geer, A. J. and Bauer, P.: Observation errors in all-sky data assimilation,
Q. J. Roy. Meteor. Soc., 137, 2024–2037,
https://doi.org/10.1002/qj.830, 2011. a, b
Geer, A. J., Baordo, F., Bormann, N., Chambon, P., English, S. J., Kazumori,
M., Lawrence, H., Lean, P., Lonitz, K., and Lupu, C.: The growing impact of
satellite observations sensitive to humidity, cloud and precipitation,
Q. J. Roy. Meteor. Soc., 143, 3189–3206,
https://doi.org/10.1002/qj.3172, 2017. a
Geer, A. J., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K., Zhu, Y., Liu,
E. H., Collard, A., Bell, W., Migliorini, S., Chambon, P., Fourrié, N.,
Kim, M.-J., Köpken-Watts, C., and Schraff, C.: All-sky satellite data
assimilation at operational weather forecasting centres, Q. J. Roy. Meteor. Soc., 144, 1191–1217, https://doi.org/10.1002/qj.3202,
2018. a
Golub, G. H. and Ye, Q.: Inexact Preconditioned Conjugate Gradient Method with
Inner-Outer Iteration, SIAM J. Sci. Comput., 21,
1305–1320, https://doi.org/10.1137/s1064827597323415, 1999. a
Ha, S., Snyder, C., Skamarock, W. C., Anderson, J., and Collins, N.: Ensemble
Kalman Filter Data Assimilation for the Model for Prediction Across Scales
(MPAS), Mon. Weather Rev., 145, 4673–4692,
https://doi.org/10.1175/mwr-d-17-0145.1, 2017. a
Hamill, T. M.: Hypothesis Tests for Evaluating Numerical Precipitation
Forecasts, Weather Forecast., 14, 155–167,
https://doi.org/10.1175/1520-0434(1999)014<0155:htfenp>2.0.co;2, 1999. a
Hamill, T. M. and Snyder, C.: A Hybrid Ensemble Kalman Filter – 3D
Variational Analysis Scheme, Mon. Weather Rev., 128, 2905–2919,
https://doi.org/10.1175/1520-0493(2000)128<2905:ahekfv>2.0.co;2, 2000. a
Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-Dependent Filtering of
Background Error Covariance Estimates in an Ensemble Kalman Filter, Mon. Weather Rev., 129, 2776–2790,
https://doi.org/10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2, 2001. a
Hogan, R. J., Ferro, C. A. T., Jolliffe, I. T., and Stephenson, D. B.:
Equitability Revisited: Why the “Equitable Threat
Score” Is Not Equitable, Weather Forecast., 25,
710–726, https://doi.org/10.1175/2009waf2222350.1, 2010. a
Holdaway, D., Vernieres, G., Wlasak, M., and King, S.: Status of Model
Interfacing in the Joint Effort for Data Assimilation Integration (JEDI),
JCSDA Quarterly Newsletter, 66, 15–24, https://doi.org/10.25923/RB19-0Q26, 2020. a
Honeyager, R., Herbener, S., Zhang, X., Shlyaeva, A., and Trémolet, Y.:
Observations in the Joint Effort for Data Assimilation Integration (JEDI) –
Unified Forward Operator (UFO) and Interface for Observation Data Access
(IODA), JCSDA Quarterly Newsletter, 66, 24–33, https://doi.org/10.25923/RB19-0Q26,
2020. a
Hong, S.-Y., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an
Explicit Treatment of Entrainment Processes, Mon. Weather Rev., 134,
2318–2341, https://doi.org/10.1175/mwr3199.1, 2006. a
Houtekamer, P. L. and Mitchell, H. L.: A Sequential Ensemble Kalman Filter for
Atmospheric Data Assimilation, Mon. Weather Rev., 129, 123–137,
https://doi.org/10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2, 2001. a
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A.,
and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys.
Res., 113, D13103, https://doi.org/10.1029/2008jd009944, 2008. a
Ingleby, B.: Global assimilation of air temperature, humidity, wind and
pressure from surface stations, Q. J. Roy. Meteor.
Soc., 141, 504–517, https://doi.org/10.1002/qj.2372, 2014. a
Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J.,
Montávez, J. P., and García-Bustamante, E.: A Revised Scheme for
the WRF Surface Layer Formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/mwr-d-11-00056.1, 2012. a
Joint Center for Satellite Data Assimilation and National Center for
Atmospheric Research: JEDI-MPAS Data Assimilation System v1.0.0, Zenodo [code],
https://doi.org/10.5281/ZENODO.6784274, 2021. a
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D.: The NCEP/NCAR 40-year
reanalysis project, B. Am. Meteorol. Soc., 77,
437–472, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996. a
Kleist, D. T. and Ide, K.: An OSSE-Based Evaluation of Hybrid
Variational – Ensemble Data Assimilation for the NCEP GFS. Part
II: 4DEnVar and Hybrid Variants, Mon. Weather Rev., 143, 452–470,
https://doi.org/10.1175/mwr-d-13-00350.1, 2015. a, b, c
Klemp, J. B.: A Terrain-Following Coordinate with Smoothed Coordinate Surfaces,
Mon. Weather Rev., 139, 2163–2169, https://doi.org/10.1175/mwr-d-10-05046.1,
2011. a
Klemp, J. B., Skamarock, W. C., and Dudhia, J.: Conservative Split-Explicit
Time Integration Methods for the Compressible Nonhydrostatic Equations,
Mon. Weather Rev., 135, 2897–2913, https://doi.org/10.1175/mwr3440.1, 2007. a
Liu, Q. and Weng, F.: Advanced Doubling – Adding Method for Radiative
Transfer in Planetary Atmospheres, J. Atmos. Sci., 63,
3459–3465, https://doi.org/10.1175/jas3808.1, 2006. a
Liu, Z., Ban, J., Hong, J.-S., and Kuo, Y.-H.: Multi-resolution incremental
4D-Var for WRF: Implementation and application at convective scale,
Q. J. Roy. Meteor. Soc., 146, 3661–3674,
https://doi.org/10.1002/qj.3865, 2020. a
Lorenc, A. C.: Analysis methods for numerical weather prediction, Q. J. Roy. Meteor. Soc., 112, 1177–1194,
https://doi.org/10.1002/qj.49711247414, 1986. a
Lorenc, A. C.: The potential of the ensemble Kalman filter for
NWP – a comparison with 4D-Var, Q. J. Roy. Meteor. Soc., 129, 3183–3203, https://doi.org/10.1256/qj.02.132, 2003. a
McCormack, J. P., Eckermann, S. D., Siskind, D. E., and McGee, T. J.: CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models, Atmos. Chem. Phys., 6, 4943–4972, https://doi.org/10.5194/acp-6-4943-2006, 2006. a, b
Migliorini, S. and Candy, B.: All-sky satellite data assimilation of microwave
temperature sounding channels at the Met Office, Q. J. Roy. Meteor. Soc., 145, 867–883, https://doi.org/10.1002/qj.3470, 2019. a, b, c, d
National Centers For Environmental Prediction/National Weather
Service/NOAA/U.S. Department Of Commerce: NCEP ADP Global Upper Air and
Surface Weather Observations (PREPBUFR format), https://doi.org/10.5065/Z83F-N512,
2008. a
National Centers For Environmental Prediction/National Weather
Service/NOAA/U.S. Department Of Commerce: NCEP GDAS Satellite Data
2004-continuing, https://doi.org/10.5065/DWYZ-Q852, 2009. a
National Centers For Environmental Prediction/National Weather
Service/NOAA/U.S. Department Of Commerce: NCEP GFS 0.25 Degree Global
Forecast Grids Historical Archive, https://doi.org/10.5065/D65D8PWK, 2015. a
Rabier, F., Järvinen, H., Klinker, E., Mahfouf, J.-F., and Simmons, A.: The
ECMWF operational implementation of four-dimensional variational
assimilation. I: Experimental results with simplified physics, Q. J. Roy. Meteor. Soc., 126, 1143–1170,
https://doi.org/10.1002/qj.49712656415, 2007. a
Schwartz, C. S., Liu, Z., and Huang, X.-Y.: Sensitivity of Limited-Area Hybrid
Variational-Ensemble Analyses and Forecasts to Ensemble Perturbation
Resolution, Mon. Weather Rev., 143, 3454–3477,
https://doi.org/10.1175/mwr-d-14-00259.1, 2015. a
Shao, H., Derber, J., Huang, X.-Y., Hu, M., Newman, K., Stark, D., Lueken, M.,
Zhou, C., Nance, L., Kuo, Y.-H., and Brown, B.: Bridging Research to
Operations Transitions: Status and Plans of Community GSI, B.
Am. Meteorol. Soc., 97, 1427–1440,
https://doi.org/10.1175/bams-d-13-00245.1, 2016. a, b
Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H., and
Ringler, T. D.: A Multiscale Nonhydrostatic Atmospheric Model Using
Centroidal Voronoi Tesselations and C-Grid Staggering, Mon. Weather Rev., 140, 3090–3105, https://doi.org/10.1175/mwr-d-11-00215.1, 2012. a, b
Skamarock, W. C., Duda, M. G., Ha, S., and Park, S.-H.: Limited-Area
Atmospheric Modeling Using an Unstructured Mesh, Mon. Weather Rev., 146,
3445–3460, https://doi.org/10.1175/mwr-d-18-0155.1, 2018. a
Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter
Estimation, Society for Industrial and Applied Mathematics,
https://doi.org/10.1137/1.9780898717921, 2005. a
Tiedtke, M.: A Comprehensive Mass Flux Scheme for Cumulus Parameterization in
Large-Scale Models, Mon. Weather Rev., 117, 1779–1800,
https://doi.org/10.1175/1520-0493(1989)117<1779:acmfsf>2.0.co;2, 1989. a
Trémolet, Y.: Joint Effort for Data Assimilation Integration (JEDI)
Design and Structure, JCSDA Quarterly Newsletter, 66, 6–14,
https://doi.org/10.25923/RB19-0Q26, 2020. a
Trémolet, Y. and Auligné, T.: The Joint Effort for Data
Assimilation Integration (JEDI), JCSDA Quarterly Newsletter, 66, 1–5,
https://doi.org/10.25923/RB19-0Q26, 2020.
a
Wang, X.: Incorporating Ensemble Covariance in the Gridpoint Statistical
Interpolation Variational Minimization: A Mathematical Framework, Mon. Weather Rev., 138, 2990–2995, https://doi.org/10.1175/2010mwr3245.1, 2010. a
Wang, X., Parrish, D., Kleist, D., and Whitaker, J.: GSI 3DVar-Based
Ensemble – Variational Hybrid Data Assimilation for NCEP Global
Forecast System: Single-Resolution Experiments, Mon. Weather Rev., 141,
4098–4117, https://doi.org/10.1175/mwr-d-12-00141.1, 2013. a, b
Wu, Y., Liu, Z., and Li, D.: Improving forecasts of a record-breaking rainstorm
in Guangzhou by assimilating every 10-min AHI radiances with WRF 4DVAR,
Atmos. Res., 239, 104912, https://doi.org/10.1016/j.atmosres.2020.104912,
2020. a
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., and Lin, R.:
Reprocessed, Bias-Corrected CMORPH Global High-Resolution Precipitation
Estimates from 1998, J. Hydrometeorol., 18, 1617–1641,
https://doi.org/10.1175/jhm-d-16-0168.1, 2017. a
Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F., Lin, R., and NOAA
CDR Program: NOAA Climate Data Record (CDR) of CPC Morphing Technique
(CMORPH) High Resolution Global Precipitation Estimates, Version 1,
https://doi.org/10.25921/W9VA-Q159, 2019. a
Xu, K.-M. and Randall, D. A.: A Semiempirical Cloudiness Parameterization for
Use in Climate Models, J. Atmos. Sci., 53, 3084–3102,
https://doi.org/10.1175/1520-0469(1996)053<3084:ascpfu>2.0.co;2, 1996. a
Zhang, C. and Wang, Y.: Projected Future Changes of Tropical Cyclone Activity
over the Western North and South Pacific in a 20-km-Mesh Regional Climate
Model, J. Climate, 30, 5923–5941, https://doi.org/10.1175/jcli-d-16-0597.1,
2017. a
Zhou, X., Zhu, Y., Hou, D., Luo, Y., Peng, J., and Wobus, R.: Performance of
the new NCEP Global Ensemble Forecast System in a parallel experiment,
Weather Forecast., 32, 1989–2004, https://doi.org/10.1175/WAF-D-17-0023.1, 2017. a
Zhu, Y., Derber, J., Collard, A., Dee, D., Treadon, R., Gayno, G., and Jung,
J. A.: Enhanced radiance bias correction in the National Centers for
Environmental Prediction's Gridpoint Statistical
Interpolation data assimilation system, Q. J. Roy. Meteor. Soc., 140, 1479–1492, https://doi.org/10.1002/qj.2233, 2013. a
Zhu, Y., Gayno, G., Purser, R. J., Su, X., and Yang, R.: Expansion of the
All-Sky Radiance Assimilation to ATMS at NCEP, Mon. Weather Rev.,
147, 2603–2620, https://doi.org/10.1175/mwr-d-18-0228.1, 2019. a
Short summary
JEDI-MPAS 1.0.0, a new data assimilation (DA) system for the MPAS model, was publicly released for community use. This article describes JEDI-MPAS's implementation of the ensemble–variational DA technique and demonstrates its robustness and credible performance by incrementally adding three types of microwave radiances (clear-sky AMSU-A, all-sky AMSU-A, clear-sky MHS) to a non-radiance DA experiment. We intend to periodically release new and improved versions of JEDI-MPAS in upcoming years.
JEDI-MPAS 1.0.0, a new data assimilation (DA) system for the MPAS model, was publicly released...