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Abstract. On 24 September 2021, JEDI-MPAS 1.0.0, a new
data assimilation (DA) system for the Model Prediction
Across Scales – Atmosphere (MPAS-A) built on the soft-
ware framework of the Joint Effort for Data assimilation In-
tegration (JEDI) was publicly released for community use.
Operating directly on the native MPAS unstructured mesh,
JEDI-MPAS capabilities include three-dimensional varia-
tional (3DVar) and ensemble–variational (EnVar) schemes as
well as the ensemble of DA (EDA) technique. On the ob-
servation side, one advanced feature in JEDI-MPAS is the
full all-sky approach for satellite radiance DA with the in-
troduction of hydrometeor analysis variables. This paper de-
scribes the formulation and implementation of EnVar for
JEDI-MPAS. JEDI-MPAS 1.0.0 is evaluated with month-
long cycling 3DEnVar experiments with a global 30–60 km
dual-resolution configuration. The robustness and credible
performance of JEDI-MPAS are demonstrated by establish-
ing a benchmark non-radiance DA experiment, then incre-
mentally adding microwave radiances from three sources:
Advanced Microwave Sounding Unit-A (AMSU-A) temper-
ature sounding channels in clear-sky scenes, AMSU-A win-
dow channels in all-sky scenes, and Microwave Humidity
Sounder (MHS) water vapor channels in clear-sky scenes.
JEDI-MPAS 3DEnVar behaves well with a substantial and

significant positive impact obtained for almost all aspects
of forecast verification when progressively adding more mi-
crowave radiance data. In particular, the day 5 forecast of the
best-performing JEDI-MPAS experiment yields an anomaly
correlation coefficient (ACC) of 0.8 for 500 hPa geopoten-
tial height, a gap of roughly a half day when compared to
cold-start forecasts initialized from operational analyses of
the National Centers for Environmental Prediction, whose
ACC does not drop to 0.8 until a lead time of 5.5 d. This
indicates JEDI-MPAS’s great potential for both research and
operations.

1 Introduction

Based upon probability theory, data assimilation (DA) seeks
to find the optimal estimate of a model state by combin-
ing observations and prior information of the state (typically
from a short-term model forecast) as well as the associated
error characterizations (Tarantola, 2005). DA systems are an
integral part of numerical weather prediction (NWP), as they
provide initial conditions for numerical forecasts at opera-
tional forecast centers. Some DA systems are openly avail-
able and widely used by the community, e.g., the Data As-
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similation Research Testbed (DART) (Anderson et al., 2009)
and the Weather Research and Forecasting model’s data as-
similation (WRFDA) system (Barker et al., 2012) developed
by the National Center for Atmospheric Research (NCAR)
and the Gridpoint Statistical Interpolation (GSI) DA system
(Shao et al., 2016) developed at the National Centers for En-
vironmental Prediction (NCEP). While DART implements
the ensemble Kalman filter (EnKF) and variants, WRFDA
and GSI mainly emphasize variational algorithms. Those DA
systems are mainly programmed in Fortran.

Since 2018, the Joint Effort for Data assimilation Inte-
gration (JEDI) project (Trémolet and Auligné, 2020) led by
the Joint Center for Satellite Data Assimilation (JCSDA)
has been developing a community DA framework centered
on generic, model-agnostic components, which can be inter-
faced to a variety of models such as those for atmosphere,
ocean, land, and atmospheric chemistry. JEDI adopts object-
oriented and generic programming and uses a mix of C++
and Fortran (Trémolet, 2020).

There are four main generic components in the JEDI
framework. The Object-Oriented Prediction System (OOPS;
https://github.com/JCSDA/oops, last access: 21 October
2022) defines the abstract representations of elements of sev-
eral DA algorithms, including three- and four-dimensional
variational (3D/4DVar) (e.g., Lorenc, 1986; Rabier et al.,
2007; Liu et al., 2020) and 3D/4D ensemble–variational
(3D/4DEnVar) (e.g., Wang et al., 2013; Kleist and Ide,
2015) techniques with several minimization algorithms im-
plemented. OOPS is mainly programmed in C++ using tem-
plates. The System-Agnostic Background Error Representa-
tion (SABER; https://github.com/JCSDA/saber, last access:
21 October 2022) repository hosts background error co-
variance models. All experiments discussed here employ
the Background error on an Unstructured Mesh Package
(BUMP) (Ménétrier, 2020) from SABER, which estimates
and applies background error-covariance-related operators,
defined on an unstructured mesh. Two observation-related
components are the Unified Forward Operator (UFO; https:
//github.com/JCSDA/ufo, last access: 21 October 2022) and
the Interface for Observation Data Access (IODA; https:
//github.com/JCSDA/ioda, last access: 21 October 2022)
(Honeyager et al., 2020). UFO implements observation op-
erators for various types of observations. In addition, UFO
implements other observation-space functionality, including
quality control, data thinning, and bias correction. IODA pro-
vides functionality for input, output, and in-memory data
access of observations. In addition to those model-agnostic
components of JEDI described above, there are model-
specific implementations of interfaces to those generic com-
ponents that allow for the realization of model-specific DA
systems within the JEDI framework (Holdaway et al., 2020).

Ha et al. (2017) developed a DA system for the Model
for Prediction Across Scales – Atmosphere (MPAS-A) (Ska-
marock et al., 2012) based upon DART (i.e., MPAS-DART).
MPAS-DART can only perform ensemble analysis with the

ensemble Kalman filter and variants and lacks variational
DA capability for deterministic analysis, which must be ad-
dressed, especially given the pervasive use of variational DA
systems at operational centers. We also think that it is ben-
eficial to implement different DA schemes for both deter-
ministic and ensemble analyses to meet a variety of needs
for research and operational applications using MPAS DA.
JEDI provides such a software framework with various DA
algorithms and standardizes to some extent the model in-
terfaces to different components of JEDI. Therefore, we
decided to develop a new DA system for MPAS-A based
upon the JEDI framework at a similar time in 2018. In
the past more than 3 years, we have developed the JEDI-
MPAS DA system, which consists of MPAS interfaces to
JEDI (https://github.com/JCSDA/mpas-jedi, last access: 21
October 2022) and the four model-agnostic JEDI compo-
nents. The first-release JEDI-MPAS 1.0.0 was made publicly
available in September 2021. JEDI-MPAS capabilities in-
clude three-dimensional variational (3DVar) and ensemble–
variational (EnVar) schemes for deterministic analyses, the
ensemble of DA (EDA) technique to produce ensembles of
analyses, and dual resolution, where the analysis increment
and the input forecast ensemble are at a lower resolution
than that of the background and analysis, thus decreasing
computational requirements. Moreover, JEDI-MPAS oper-
ates directly on the native MPAS unstructured mesh and can
be applied without code modifications to all MPAS meshes,
whether uniform, variable resolution, global, or regional. On
the observation side, one advanced feature in JEDI-MPAS is
the full all-sky approach for satellite radiance DA with the
introduction of hydrometeor analysis variables.

This article describes MPAS-specific aspects of JEDI-
MPAS, emphasizing its implementation of EnVar, and doc-
uments JEDI-MPAS performance in global cycling experi-
ments. The implementation and evaluation of JEDI-MPAS’s
EDA and 3DVar algorithms will be presented in separate arti-
cles. The next section provides a brief introduction to MPAS-
A and modifications made for JEDI-MPAS. Section 3 de-
scribes the formulation and implementation of JEDI-MPAS’s
EnVar, followed by the experimental design in Sect. 4. The
results of global cycling experiments are presented in Sect. 5,
and the paper is concluded with Sect. 6.

2 MPAS-A model

MPAS-A is a nonhydrostatic model discretized horizon-
tally on an unstructured centroidal Voronoi mesh with C-
grid staggering of state variables (Skamarock et al., 2012).
It is run-time configurable to use either quasi-uniform or
variable-resolution meshes and for either global or regional
applications (Skamarock et al., 2018). MPAS-A adopts a
height-based terrain-following vertical coordinate ζ follow-
ing Klemp (2011), in which the coordinate surfaces are pro-
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gressively smoothed to remove smaller-scale terrain struc-
ture.

MPAS-A’s prognostic equations employ flux variables that
are coupled with density; that is, the prognostic variables in
the discretized equations are

X = (U,W,2m,Qj , ρ̃d)= (ρ̃du, ρ̃dw,ρ̃dθm, ρ̃dqj , ρ̃d), (1)

where ρd is the density of dry air, ρ̃d = ρd(∂ζ/∂z)
−1, u is

the normal component of horizontal velocity at cell edges, w
is the vertical velocity at cell centers, qj represents the mix-
ing ratio of the respective water species (water vapor, cloud
liquid water, cloud ice, rain, snow, graupel, hail) denoted
by (qv,qc,qi,qr,qs,qg,qh), and θm = θd[1+ (Rv/Rd)qv] is
a modified moist potential temperature, with θd the dry po-
tential temperature and Rd and Rv the gas constants for dry
air and water vapor, respectively. The continuous prognostic
equation set can symbolically be expressed as

∂X
∂t
= F(p,

ρd

ρm
,X, . . .. . .), (2)

where pressure p is obtained diagnostically from the equa-
tion of state, and ρm = ρd(1+qv+qc+qi+qr+qs+qg+qh)

is the density of moist air.
The fully compressible nonhydrostatic equations are

solved using the time-split integration technique described
by Klemp et al. (2007). To reduce the truncation error as-
sociated with the horizontal pressure gradient terms and the
roundoff error associated with the right-hand-side terms in
the vertical momentum equation, the governing equations are
rewritten in terms of perturbation thermodynamic variables
(ρ′d, 2

′
m, p

′) relative to a hydrostatically balanced reference
state that is only a function of the geometric height z.

JEDI-MPAS not only uses MPAS as the forecast model for
cycling data assimilation, but also leverages and extends cer-
tain capabilities within MPAS. Crucially, JEDI-MPAS shares
with MPAS the data structures for MPAS fields and ac-
companying utilities for manipulating those fields, such as
construction of new instances, parallel decomposition across
processors, and reading from or writing to files. JEDI-MPAS
also depends on MPAS initialization steps that occur be-
fore a model integration, in which input variables are con-
verted to the MPAS prognostic variables given by Eq. (1)
and additional thermodynamic variables, such as p or ρd,
are diagnosed as needed. In addition, JEDI-MPAS modi-
fies MPAS routines for reading files by splitting static and
time-varying fields into separate files and reducing the num-
ber of time-varying fields retained (relative to a restart file).
These enhancements build on a two-stream input approach
for MPAS data assimilation developed by Soyoung Ha with
William Skamarock, which was expanded and implemented
for JEDI-MPAS cycling experiments. All changes necessary
for JEDI-MPAS 1.0.0 are in a modified version of MPAS-
A (https://github.com/JCSDA/MPAS-Model, last access: 21
October 2022) that is based upon the latest MPAS-A ver-
sion 7.1.

The methodology of JEDI-MPAS DA in updating the
MPAS model variables using the EnVar technique is given
in the next section.

3 Methodology of JEDI-MPAS EnVar

3.1 Incremental variational analysis

The non-quadratic form of the cost function for a variational
analysis is expressed as

J (x)=
1
2
(x− xb)

TB−1(x− xb)

+
1
2
[h(x)− y]TR−1

[h(x)− y], (3)

where the column vector x represents the model analysis
variables distributed in a model’s horizontal grid and ver-
tical coordinate (and at different times if it is for a four-
dimensional analysis), the subscript “b” indicates a back-
ground field which is typically from a short-term model fore-
cast, and the column vector y is the various types of obser-
vations irregularly distributed in space and time. h is the ob-
servation operator that interpolates the model fields to ob-
servation locations and transforms the analysis variables x

to the observed quantities. B and R are the background and
observation error covariance matrices, respectively. The su-
perscripts “−1” and “T” denote the inverse of a matrix and
the transpose of a column vector, respectively.

With the introduction of a first-guess variable xg and let-
ting δx = x−xg and δxg = xb−xg, Eq. (3) can be rewritten
in the incremental form (Courtier et al., 1994) as

J (δx)=
1
2
(δx− δxg)

TB−1(δx− δxg)

+
1
2
(Hδx− d)TR−1(Hδx− d), (4)

where d = y−h(xg) is the first-guess departure to observa-
tions (also called “the innovation vector”), and H is the lin-
earized version of h in the vicinity of xg. The gradient of the
cost function with respect to δx

∇δxJ (δx)= B−1(δx− δxg)+HTR−1(Hδx− d) (5)

shall vanish at the value δxa that minimizes the cost function,
which leads to

(B−1
+HTR−1H)δxa = B−1δxg+HTR−1d. (6)

Equation (6) is a linear algebra system Aδxa = b that can be
solved iteratively with a minimization algorithm. The anal-
ysis of the full field can be found with xa = xg+ δxa . It is
common practice that the minimization iterations (also re-
ferred to as “inner loop”) start from xg = xb and δxg = 0.
Multiple outer loops can be used with the first-guess xg (and
thus δxg) updated from the analysis of the previous outer
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loop. In each outer loop, d is recalculated, and H is re-
linearized using the updated xg.

Several minimization algorithms are available in OOPS,
and the most extensively tested one in JEDI-MPAS is
the Derber–Rosati Inexact Preconditioned Conjugate
Gradient (DRIPCG) algorithm (Golub and Ye, 1999;
Derber and Rosati, 1989), which is documented in
https://jointcenterforsatellitedataassimilation-jedi-docs.
readthedocs-hosted.com/en/latest/inside/jedi-components/
oops/algorithmic_details/solvers.html (last access: 21 Octo-
ber 2022). It is important to note that the DRIPCG algorithm
introduces an additional initial vector δ̂xg = B−1δxg at
the beginning of the inner loop so that the application of
B−1 can be avoided if the initial guess is taken as δxg = 0
(the case of the first outer loop) or if both δxg and δ̂xg
are retained from a previous outer loop. In each iteration
of minimization, DRIPCG only requires the application of
the background error covariance matrix B, which will be
described in the next subsection.

3.2 Background error covariance model for EnVar

The modeling of the background error covariance matrix
B is a key component of variational DA systems. OOPS’s
hybrid-EnVar follows the original form of Hamill and Sny-
der (2000), in which B in Eq. (4) is the weighted sum of the
static background error covariance Bs and an ensemble-based
covariance Be; i.e.,

B= βsBs+βeL ◦Be, (7)

where βs and βe are the scalar weights with βs+βe = 1, and
L◦Be denotes the Schur product (element by element) of the
localization matrix L and the sample covariance matrix Be
of the ensemble. Note that L is a correlation matrix, with di-
agonal elements being 1 and off-diagonal elements smaller
than 1 that reduce to zero for a certain distance between two
model grid points. Localization ameliorates the detrimental
effects of sampling noise in Be by reducing spurious corre-
lations between state variables separated by large distances
and by increasing the rank of the localized sample covariance
relative to Be (Hamill et al., 2001; Houtekamer and Mitchell,
2001).

The modeling of the static covariance Bs for JEDI-MPAS
will be presented in a separate paper. This article only de-
scribes the pure EnVar algorithm, in which the weight of the
static covariance is zero with βs = 0 and βe = 1. In each it-
eration of DRIPCG minimization, Brk is calculated, where
rk = b−Aδxk is the residual vector at the kth iteration, and
A and b are defined by Eq. (6). In the case of pure EnVar with
B= L ◦Be, Brk is actually evaluated in OOPS in the form

(L ◦Be)r =

Ne∑
m=1

x′
m ◦

[
L(x′

m ◦ r)
]
, (8)

where Ne is the ensemble size, and x′m is (Ne−1)−1/2 times
the deviation of the mth member from the ensemble mean.

That is, (L◦Be)r is given by taking the Schur product of each
x′m with r , passing the result through L, taking the Schur
product of the result again with x′m, and finally summing over
m.

To see that Eq. (8) is correct, write (L ◦Be)ij =

Lij
∑Ne
m=1x

′

imx
′

jm and so the ith element of the vector (L ◦
Be)r

[(L ◦Be)r]i =

Nx∑
j=1

Ne∑
m=1

Lijx
′

im x
′

jmrj

=

Ne∑
m=1

x′im

Nx∑
j=1

Lij x
′

jmrj

=

Ne∑
m=1

x′im[L(x
′
m ◦ r)]i, (9)

where Nx is the dimension of the state vector. This gives
Eq. (8). It is worth mentioning that OOPS does not take the α
control variable form of the hybrid-EnVar cost function used
in other DA systems (e.g., Lorenc, 2003; Wang, 2010; Wang
et al., 2013; Schwartz et al., 2015), which do not perform the
explicit calculation of Eq. (8).

Since the dimension of the localization matrix L is Nx ×
Nx , in-memory storage of the full matrix L is prohibitive,
and the multiplication of L with a vector of size Nx can
be computationally expensive for a high-resolution setting
of the model. JEDI-MPAS 1.0.0 adopts the Normalized In-
terpolated Convolution from an Adaptive Subgrid (NICAS)
method to model L such that

L= NSCSTNT, (10)

where the correlation matrix C is defined on a coarse grid
(i.e., subgrid), S is an interpolation operator to transform
C on the coarse grid to L on the full grid, and the diago-
nal normalization matrix N ensures that resulting L has di-
agonal entries equal to 1. The local resolution of the sub-
grid in NICAS adapts to the correlation length-scale to re-
duce computational cost while retaining a reasonable approx-
imation of the underlying continuous correlation function.
Therefore, the convolution of L with a vector becomes a se-
quence of computationally less expensive operations with re-
duced memory usage compared to the use of the full matrix
L. NICAS is available in the BUMP part of the SABER code
repository.

BUMP/NICAS is implemented based upon an unstruc-
tured mesh that is naturally suited for JEDI-MPAS (also
built on an unstructured mesh). This is a key feature that en-
ables JEDI-MPAS to work seamlessly for global or regional
domains with a quasi-uniform or variable-resolution MPAS
mesh. More details about BUMP and NICAS are given
by Ménétrier (2020) (https://github.com/benjaminmenetrier/
nicas_doc/blob/master/nicas_doc.pdf, last access: 21 Octo-
ber 2022).
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To further reduce the computational cost, a dual-resolution
capability is implemented in JEDI-MPAS’s EnVar, in which
the background and analysis (thus first-guess departure cal-
culation) are at the same resolution as that for the model fore-
cast, but the analysis increment and ensemble input (thus in-
ner loop minimization) are at a lower resolution. While this
study evaluated 3DEnVar, JEDI-MPAS can be run with the
4DEnVar mode, which assimilates observations at more ap-
propriate times by having the background and analysis files
as well as the ensemble input at multiple times within the
assimilation time window.

3.3 Analysis variables and variable transforms

One important aspect in designing a DA system is the choice
of analysis variables (i.e., x). JEDI-MPAS uses as analysis
variables the cell-center values of temperature (T ), specific
humidity (q), zonal and meridional components of horizon-
tal velocity (v), and surface pressure (ps). Optionally, mix-
ing ratios of five hydrometeors (cloud liquid water, cloud
ice, rain, snow, and graupel) can also be included as analysis
variables when assimilating cloud-/precipitation-affected ob-
servations. We chose these analysis variables because of our
experience with modeling background-error covariances for
similar variables in WRFDA and because use of T rather than
θ will reduce nonlinearity in the observation operators for
many conventional observations and for satellite radiances.

After obtaining the analysis increment for (T , q, v, ps) by
iteratively solving Eq. (6), several additional steps are fol-
lowed to arrive at a full-field analysis for variables closer to
the MPAS prognostic variables:

1. Transform the cell-center v increments to increments of
u, the normal component of horizontal velocity at cell
edges, by averaging the corresponding component of
the v increment from the cells adjacent a given edge.
Obtain the full-field analysis of u by adding increments
to the first guess.

2. Get the full-field analyses of T , q, and ps (and option-
ally hydrometeors) by adding analysis increments to the
first guess. Calculate the water vapor mixing ratio anal-
ysis with qv = q/(1− q).

3. Diagnose the full-field analyses of 3D pressure p and
dry-air density ρd using T , qv, and ps by applying the
hypsometric equation p(z2)= p(z1)exp(− g

Rd

∫ z2
z1

dz
Tv
)

and the equation of state of moist air ρd = p/[(1+qv+

. . .)RdTv]with virtual temperature Tv = (1+0.608qv)T .
Note that the hypsometric equation, which implies hy-
drostatic balance, is applied upward layer by layer, start-
ing from the ground with the analysis field of ps.

4. Update dry potential temperature θd = T

(
p0
p

)Rd/cp

,

with cp the specific heat of dry air at constant pressure
and p0 = 1000 hPa a reference pressure.

Sensitivity experiments showed that the hydrostatic balance
constraint in Step 3 is important for JEDI-MPAS to cycle
stably by allowing surface pressure observations to constrain
upper-air fields.

3.4 Observation handling and all-sky radiance DA

In JEDI-MPAS, observation I/O and in-memory storage are
handled through IODA, which is one of model-agnostic com-
ponents of JEDI and reads specific netCDF4 (based on hdf5)
format observation input files and outputs DA feedback files.
UFO, another model-agnostic component of JEDI, consists
of nonlinear observation operators and associated tangent
linear and adjoint (TL/AD) (and/or Jacobian) operators. At
the time of this study, quality control (QC) procedures and
radiance bias correction algorithms within the UFO are still
under development, and thus the GSI DA system (Shao et al.,
2016) is used as a data preprocessor to perform QC of obser-
vations and radiance bias correction. GSI observation feed-
back files in the so-called gsi-ncdiag format are converted
into the IODA-v2 format and then assimilated into JEDI-
MPAS. Therefore, mainly two QC filters are applied in JEDI-
MPAS experiments (see Sect. 4). One uses QC flags gen-
erated by GSI, and another is the “background check” fil-
ter, which discards observations with first-guess departures
larger than 3 times the observation error standard deviation.
For surface pressure (ps) data, additional QC is applied to re-
ject observations with differences between the model terrain
height and station elevation larger than 200 m. Terrain cor-
rection is also applied to ps data following Ingleby (2014).

In recent years, leading operational NWP centers as-
similate increasingly more satellite radiance data under
cloudy situations, with most successes in using all-sky mi-
crowave radiances (e.g., Geer et al., 2017, 2018; Zhu et al.,
2016, 2019; Migliorini and Candy, 2019). JEDI-MPAS al-
lows the assimilation of all-sky radiance data with the intro-
duction of hydrometeor analysis variables, cloudy radiance
observation operator via the Community Radiative Trans-
fer Model (CRTM) (Liu and Weng, 2006), and situation-
dependent all-sky observation error models (Geer and Bauer,
2011). While all-sky radiance DA in JEDI-MPAS can be ap-
plied to data from both microwave and infrared sensors, this
study evaluates only microwave all-sky radiance DA from
Advanced Microwave Sounding Unit-A (AMSU-A) window
channels 1–4 and 15 over water. The AMSU-A all-sky ra-
diance error model follows Zhu et al. (2016), in which the
observation error is a piecewise-linear ramp function (see
Sect. 4) of the model–observation-averaged cloud liquid wa-
ter path (cobs+ cfg)/2 retrieved from the AMSU-A channel
1’s and 2’s brightness temperatures. Zhu et al. (2016) assim-
ilated AMSU-A window channels only for non-precipitating
clouds due to the lack of precipitation variables in the mi-
crophysics scheme used in their study. In contrast, with the
WSM6 microphysics scheme (Hong and Lim, 2006) used in
this study and all five hydrometeor variables included in the
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analysis variables, JEDI-MPAS assimilates AMSU-A win-
dow channel radiances in both non-precipitating and precip-
itating cloudy situations with a full all-sky approach. Note
that microwave radiances are assimilated in terms of bright-
ness temperature in units of kelvin. For the sake of simplicity,
we will interchangeably use radiance and brightness temper-
ature throughout the article.

4 Experimental design

We evaluate JEDI-MPAS 3DEnVar’s performance with
month-long (15 April–14 May 2018) cycling experiments.
Although this is not an observational impact study, incremen-
tally adding satellite radiance data and evaluating their im-
pact is informative about the implementation correctness and
the robustness and performance of the system. In this regard,
four 6-hourly cycling dual-resolution 3DEnVar experiments
are conducted with a global quasi-uniform 30 km mesh for
high-resolution analysis/background and a 60 km mesh for
low-resolution increment and ensemble input. The first anal-
ysis is at 00:00 UTC, 15 April 2018, with the background be-
ing a 6 h forecast initialized from the NCEP’s Global Fore-
cast System (GFS) analysis at 18:00 UTC, 14 April. From
the second analysis through the final analysis at 18:00 UTC,
14 May, the background is a 6 h forecast initialized from the
previous cycle’s JEDI-MPAS analysis. The first-guess depar-
ture is computed using the 30 km background, and the min-
imization is performed on the 60 km mesh. Each DA analy-
sis uses two outer loops, each with 60 inner iterations. The
20-member ensemble input on the 60 km mesh is generated
from 6 h MPAS model forecasts initialized from the NCEP’s
20-member Global Ensemble Forecast System (GEFS) en-
semble analysis (Zhou et al., 2017).

The four experiments differ from each other by assimilat-
ing different sets of observations, as listed in Table 1. The
conv experiment assimilates temperature, specific humidity,
and zonal and meridional wind components from radioson-
des and aircraft; GPS refractivity; atmospheric motion vec-
tors (AMVs) retrieved from geostationary and polar-orbiting
satellite sensors; and surface pressure (ps). In addition to
the observations used in conv, the clrama experiment as-
similates clear-sky AMSU-A radiances (channels 5–9) from
six satellites (NOAA-15/18/19, Metop-A/B, Aqua; omitting
platforms and channels that had failed before the experimen-
tal period). The cldama experiment further adds over-water
AMSU-A window channels (channels 1–4 and 15) all-sky ra-
diances from five satellites. Note that Aqua AMSU-A chan-
nels 1 and 2, which are needed for the all-sky observation
error model (see Sect. 3.4), are not available, and thus Aqua
AMSU-A window channels are excluded in cldama. We use
the fourth experiment, clrmhs, to evaluate the additional ben-
efit of assimilating three water vapor channels from the Mi-
crowave Humidity Sounder (MHS) on board four satellites
(NOAA-18/19, Metop-A/B) under clear-sky conditions. Data

Figure 1. All-sky observation error model for NOAA-19 AMSU-
A channel 15. The magenta curve is the statistics of the standard
deviation of O minus B (left y axis) as a function of the model–
observation-averaged cloud liquid water path (x axis). The cyan
curve gives the number of observations (right y axis) used in each
bin’s statistics (0.01 kg m−2 bin interval). The dashed black curve
is the fitted piecewise-linear ramp function of the magenta curve,
serving as the all-sky observation error model. Variables in the title
are those of Eq. (11) in Sect. 4.

thinning is applied to AMSU-A and MHS radiance data with
a 145 km thinning mesh. All four experiments use a ±3 h
time window.

All-sky observation error statistics were computed sepa-
rately for five AMSU-A sensors using the observations minus
the CRTM-simulated brightness temperatures from the 6 h
forecast background fields (i.e., O minus B) of the clrama
experiment over the month-long period. Figure 1 gives an
example of the all-sky observation error model for NOAA-
19 AMSU-A channel 15 at 89 GHz. The blue curve is the
statistics of the standard deviation of O minus B as a func-
tion of the model–observation-averaged cloud liquid water
path c = (cobs+ cfg)/2. The red curve gives the number of
observations (the right y axis) used in each bin’s statistics
(0.01 kg m−2 bin interval). The dashed black curve is the fit-
ted piecewise-linear ramp function of the blue curve in the
form (Geer and Bauer, 2011)

σo =


σclr, if c ≤ cclr
σclr+ (σcld− σclr)

c−cclr
ccld−cclr

, if cclr < c ≤ ccld
σcld, if c > ccld

, (11)

which serves as the observation error model for this partic-
ular channel with cclr = 0.03, ccld = 0.24, σclr = 6.33, and
σcld = 19.24. The four numbers for each of channels 1–4 and
15 of five AMSU-A sensors are provided in the supplemen-
tal configuration file of JEDI-MPAS (jedi_mpas.yaml in
the Supplement), which specifically describes the configura-
tion for the clrmhs experiment.
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Table 1. Observations assimilated in the four cycling 3DEnVar experiments.

Experiments Assimilated obs.

conv radiosondes, aircraft, GPS refractivity, atmospheric motion vectors, surface pressure
clrama obs. in conv+ clear-sky AMSU-A radiances (ch. 5–9) from NOAA-15/18/19, Metop-A/B, Aqua
cldama obs. in clrama+ all-sky over-water AMSU-A radiances (ch. 1–4, 15) from NOAA-15/18/19, Metop-A/B
clrmhs obs. in cldama+ clear-sky MHS radiances (ch. 3–5) from NOAA-18/19, Metop-A/B

BUMP has the ability to diagnose horizontal and vertical
localization length scales with geographical variation. For a
relatively small ensemble size, however, BUMP-diagnosed
localization length scales may not be optimal. Therefore, we
used the fixed localization scale values in this study, which
is not uncommon for ensemble DA. After some sensitivity
testing, we use 1200 and 6 km for the horizontal and vertical
full widths of Gaspari and Cohn (1999) localization function
(Eq. 4.10), respectively. That function reduces the spatial cor-
relation to zero when the distance between two locations is
greater than the full width.

The MPAS-A model is configured with a 30 km quasi-
uniform mesh and 55 vertical levels with a 30 km model
top. The “mesoscale reference” physics suite is used with the
parameterization schemes listed in Table 2. A time step of
180 s is applied for the model time integration. We used the
same “mesoscale reference” physics suite to generate the 6 h
MPAS ensemble forecasts on the 60 km mesh that comprise
the sample ensemble covariances.

5 Evaluation results

5.1 Short-term forecasts

Here we assess the DA cycling performance of the four ex-
periments by examining the first-guess departure (i.e., obser-
vation minus background or OMB) statistics, similar to the
diagnostic commonly monitored at operational NWP cen-
ters (e.g., https://www.ecmwf.int/en/forecasts/charts/obstat/,
last access: 21 October 2022). Additionally, we present er-
ror statistics of 6 h forecast backgrounds with respect to the
NCEP’s GFS analysis to more clearly assess the geographic
and vertical variations of the cycling performance.

5.1.1 Observation space verification

Figure 2 displays time series of mean and root mean square
(rms) values of OMB for AMV zonal and meridional wind
components from the four experiments. Overall the mean
and rms give the consistent performance indication for the
four experiments. For zonal wind, the conv experiment has
the largest bias and root mean square error (RMSE); adding
clear-sky AMSU-A radiances leads to substantial error re-
duction in terms of both bias and RMSE; further adding all-
sky AMSU-A window-channels’ radiances additionally re-

duces the RMSE. The red curves (clrmhs) are basically over-
laid with the green curves (cldama), indicating a neutral im-
pact on 6 h wind forecasts by adding clear-sky MHS water
vapor radiances to all-sky AMSU-A radiances. The statis-
tics of OMB for AMV meridional wind component indicate
similar relative experiment performances overall, except for
a slightly positive impact for clrmhs versus cldama.

Figure 3 compares the 6 h forecast fits to radiosonde obser-
vations from the three radiance DA experiments with those of
the conv experiment. Shown in Fig. 3 are relative differences
between rms of OMB from the three radiance DA experi-
ments and that from the conv experiment, given by

ratio= 100× (rmsEXP− rmsconv)/rmsconv, (12)

where “EXP” can be clrama, cldama, or clrmhs. Negative
ratios indicate positive impacts from EXP relative to conv,
and vice versa. Different magnitudes of ratio among the three
radiance experiments give their relative performance. A 95 %
confidence interval is shown at each pressure level as an error
bar, which is computed using bootstrap resampling (Hamill,
1999), with a resample size of 10 000. The rms difference
between EXP and conv at each cycle is treated as an inde-
pendent sample in the bootstrap. Assimilating clear-sky tem-
perature sounding channels from clrama has small impacts
on humidity (blue curve in Fig. 3b), whereas large positive
impacts on moisture are obtained by adding all-sky AMSU-
A and clear-sky MHS radiances. The impact on virtual tem-
perature (Tv) is mostly from AMSU-A clear-sky tempera-
ture sounding channels, and the additional benefit on Tv from
all-sky AMSU-A and clear-sky MHS radiances is relatively
small (Fig. 3a). The reason we show Tv here instead of T
is that the majority of radiosonde temperature observations
in GSI’s ncdiag files are expressed in terms of Tv. The rms
decreases up to 5 % for zonal wind (Fig. 3c) and 2 % for
meridional wind (Fig. 3d) from clrama, likely caused by the
mass–wind balance implied in the ensemble background er-
ror covariance. The extra benefit on wind fields from AMSU-
A all-sky window channel radiances is confined to 200–
800 hPa. Additional positive impact on winds between 300
and 650 hPa is achieved by adding MHS clear-sky water va-
por channels’ radiances. Each of the three radiance DA ex-
periments exhibit, to a different extent, improvement with re-
spect to the conv experiment for all four observed radiosonde
variables at almost all pressure levels.
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Table 2. Parameterization schemes in the “mesoscale reference” physics suite.

Parameterization Scheme

Convection New Tiedtke (Tiedtke, 1989; Zhang and Wang, 2017)
Microphysics WSM6 (Hong and Lim, 2006)
Land surface Noah (Chen and Dudhia, 2001)
Boundary layer YSU (Hong et al., 2006)
Surface layer Monin–Obukhov (Jiménez et al., 2012)
Radiation, longwave/shortwave RRTMG (Iacono et al., 2008)
Cloud fraction for radiation Xu–Randall (Xu and Randall, 1996)
Gravity wave drag by orography YSU (Choi and Hong, 2015)

Figure 2. Time series (00:00 UTC, 15 April–18:00 UTC, 14 May 2018) of (a, b) mean and (c, d) rms of OMB for AMV (a, c) zonal and (b,
d) meridional wind components (units: m s−1) from the four experiments. The background is a 6 h forecast. Statistics are computed over the
globe and averaged for all vertical levels.

Among the four experiments, both cldama and clrmhs as-
similate AMSU-A all-sky radiances from the window chan-
nels (ch. 1–4 and 15). It is expected a priori that assimilat-
ing MHS water vapor channels’ radiances in clrmhs will
improve background fitting to those AMSU-A all-sky radi-
ances. That is indeed the case in Fig. 4; clrmhs achieves sta-

tistically significant improvement up to 2.5 % at tropical lat-
itudes for AMSU-A channel 1 (Fig. 4a), while positive im-
pacts from MHS radiances are smaller and less significant
for other AMSU-A window channels (Fig. 4b–d). This is be-
cause AMSU-A channel 1 (23.8 GHz) is more sensitive to
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Figure 3. Vertical distributions of relative rms reduction of OMB for radiosondes’ (a) virtual temperature, (b) specific humidity, (c) zonal
wind, and (d) meridional wind. Statistics are computed over the period from 00:00 UTC, 18 April, to 18:00 UTC, 14 May 2018, for the three
radiance DA experiments against the conv experiment. A negative percentage indicates the positive impact from radiance DA experiments
relative to the non-radiance DA experiment.

water vapor and clouds than other AMSU-A window chan-
nels.

5.1.2 Model space verification

Similar to Figs. 2–4, Figs. 5–7 evaluate the 6 h forecast back-
grounds in model space relative to GFS analyses. Figure 5
shows the time series of global RMSE of the four experi-
ments for four surface variables. Note that the background
for the first analysis at 00:00 UTC, 15 April 2018, is a 6 h
forecast initialized from the GFS analysis. GFS utilizes a
hybrid-4DEnVar DA technique via the GSI system (Kleist
and Ide, 2015) and includes assimilation of many more satel-
lite observations than those used in our own cycling ex-
periments. Smaller RMSEs for the first 2–3 d come from
the memory of the superior performance of the operational
analysis. Cycling performance quickly converges to a sta-
ble level for the three radiance DA experiments due to the
good global coverage of observations. Gradually increasing
errors are clearly seen in the conv experiment for 2 m tem-

perature (T2), 10 m zonal wind (u10), and ps, which is caused
by sparse coverage of non-radiance data over the Southern
Hemisphere. The impacts of AMSU-A clear-sky and all-sky
radiances and MHS clear-sky radiances are consistent with
those shown in upper-air observation space of Fig. 3.

Similar to Fig. 3, Fig. 6 presents the vertical distribution
of the global percentage RMSE difference of cldama and
clrmhs relative to clrama. Figure 6 yields similar conclu-
sions as Fig. 3, but the magnitudes of improvement in model
space (Fig. 6) are larger than those in observation space
(Fig. 3) because the model space verification covers the en-
tire globe. The most drastic improvement is for water va-
por mixing ratio, with nearly 20 % RMSE decrease at model
level 15 (∼ 2.2 km or ∼ 700 hPa) by assimilating AMSU-A
all-sky radiances and> 20 % improvement at model level 30
(∼ 8.8 km or ∼ 330 hPa) when adding both AMSU-A all-
sky radiances and MHS clear-sky radiances (Fig. 6b). One
noticeable issue is the negative impact for temperature near
the model top (Fig. 6a), which is believed to be related to
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Figure 4. Similar to Fig. 3 but for latitudinal variation of relative rms reduction of OMB for NOAA-19 AMSU-A ch. 1–3 and 15 for clrmhs
versus cldama.

an increasing cold bias during the cycling (not shown). A
biased model top makes radiance DA less effective. Note
that the MPAS-A model currently lacks processes for rep-
resenting O3 chemistry and that a climatological O3 field is
used, leading to inaccurate radiation calculations attributed
to O3. Work is underway to add a parameterized O3 chem-
istry scheme (McCormack et al., 2006) and include O3 as a
prognostic variable in MPAS-A.

Figure 7 is similar to Fig. 6 but depicts the latitudinal varia-
tion of relative RMSE reduction for several variables. For ps,
the greatest impact is between 25–50◦ S (Fig. 7a), and large
RMSE reductions are also seen in North and South Pole re-
gions for the clrmhs experiment (Fig. 7a). The large RMSE
reduction from clrmhs in the Arctic is apparently associ-
ated with a reduction of a ∼ 1 hPa low pressure bias in the
conv, clrama, and cldama experiments (not shown). For the
other three variables, the greatest impact is within tropical re-
gions (Fig. 7b–d). In addition to the large benefit on moisture
from the addition of MHS water vapor channels’ radiances
(Fig. 7b), the impact of MHS radiances on the meridional
wind component (Fig. 7d) is also substantial and significant,

possibly indicating an improved representation of equatorial
convergence–divergence patterns associated with convective
activity.

These observation-space and model-space evaluations of
short-term forecasts demonstrate that the JEDI-MPAS 3DEn-
Var scheme behaves well for the assimilation of clear-sky and
all-sky microwave radiance data. More accurate background
fields are obtained by adding more and more radiance data.

5.2 The 1–10 d forecasts

This subsection examines the 1–10 d forecast performance
relative to GFS analyses, independent radiance data from the
Advanced Himawari Imager (AHI), and a global precipita-
tion product. A total of 27 10 d forecasts initialized each day
at 00:00 UTC from 18 April to 14 May 2018 are used to pro-
duce the error statistics. The first 3 d (15–17 April) is consid-
ered the spin-up period for each experiment to converge from
the GFS climatology to JEDI-MPAS’s own cycling climatol-
ogy and thus are not included in the forecast evaluation. The
three radiance DA experiments significantly outperform the
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Figure 5. Time series (00:00 UTC, 15 April–18:00 UTC, 14 May 2018) of RMSE of cycling background with respect to GFS analyses for
global (a) temperature (units: kelvin) and (b) specific humidity (units: g kg−1) at 2 m, (c) zonal wind component (units: m s−1) at 10 m, and
(d) surface pressure (units: Pa) from the four experiments.

conv experiment. Therefore, we only evaluate the cldama
and clrmhs experiments, from here considering the clrama
experiment as the benchmark.

5.2.1 Model space verification

Figure 8 displays relative RMSE reductions (with respect to
GFS analyses) as a function of forecast lead time for three
surface and three upper-air variables. Due to a temperature
bias at the model top, as described in Sect. 5.1 in relation
to Fig. 6a, the evaluation on temperature is limited to be-
low model level 30. We also exclude the moisture assess-
ment above model level 30, where the air is very dry. In gen-
eral, adding AMSU-A all-sky radiances produces more ac-
curate forecasts for all variables compared to the AMSU-A
clear-sky radiance experiment, and extra MHS clear-sky ra-
diances further reduce forecast errors. Percentage improve-
ments and associated statistical significance decrease with
forecast range but can last up to 10 d, especially for the
clrmhs experiment. Note that forecast errors increase with
forecast lead time, and thus absolute error reduction could be
increased or flat at certain forecast lead times, even with de-
creasing percentage improvement. The greatest improvement

from clrmhs is for upper-air moisture with up to 10 % and
> 1 % RMSE reduction for day 1 and day 10, respectively
(Fig. 8e). The improvement for moisture remains statisti-
cally significant for the whole 10 d forecast range, while that
is not the case for other variables. This result is consistent
with AMSU-A window channels’ and the three MHS chan-
nels’ large sensitivity to water vapor (and clouds for AMSU-
A all-sky radiances). Large impacts are also seen on Q2m
(Fig. 8b), though to a lesser extent than is seen for upper-air
moisture. Conversely, the impact is the smallest on temper-
ature (Fig. 8d), with only ∼ 1 % and 3 % improvement for
the day 1 forecast from cldama and clrmhs, respectively.
The magnitudes of improvement on ps and the zonal wind
are comparable to each other, gradually decreasing from an
initial ∼ 5 % rms reduction for the day 1 forecast.

Figure 9 shows the impact on moisture and zonal wind
over three different regions. The largest impact is over the
tropical region for both variables, which is consistent with
the short-term forecast impact as shown in Fig. 7b and c.
The smallest impact is between 30 and 90◦ N, where con-
ventional observations have good coverage. One interesting
thing is that the impact over the tropics exhibits a clear de-
creasing trend with forecast range, but this decreasing trend
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Figure 6. Vertical distributions of relative RMSE reduction (with respect to GFS analyses) of cycling background for global (a) temperature,
(b) water vapor mixing ratio, (c) zonal wind, and (d) meridional wind (cldama and clrmhs versus clrama). Statistics are for the period from
00:00 UTC, 18 April, to 18:00 UTC, 14 May 2018.

is not always present poleward of 30◦. This might be related
to the different levels of convective weather activity between
low and middle/high latitudes.

Figure 10 more clearly depicts the relative impact of
clrmhs with respect to cldama for four upper-air variables.
Again, the greatest and most significant improvement (up to
7 d) achieved by adding MHS water vapor channels’ radi-
ances is on moisture with 2.5 % RMSE reduction for day 1
and still retaining∼ 1 % for day 7 (Fig. 10b). The magnitude
of MHS radiance impact on temperature (Fig. 10a) is com-
parable with that of moisture but less statistically significant.
The MHS impact on the wind field is smaller, but the per-
centage of improvement remains nearly unchanged, with the
forecast lead time for up to day 8 for zonal wind (Fig. 10c)
and day 6 for meridional wind (Fig. 10d). Similar to the im-

pact on short-term forecasts shown in Fig. 7, the MHS ra-
diance impact on meridional wind (∼ 1.5 %) is 50 % greater
than that for the zonal wind (∼ 1 %) up to day 6.

5.2.2 Verification against AHI radiances

JEDI-MPAS also has the capability of simulating and as-
similating clear-sky and cloudy infrared (IR) radiances such
as those from the geostationary satellite sensor Advanced
Himawari Imager (AHI). CRTM’s cloudy IR radiance sim-
ulation capability with JEDI-MPAS is used to evaluate 1–
10 d forecasts using independent (i.e., not assimilated) AHI
full-disk radiance data centered at 140.7◦ E. Using the JEDI-
MPAS HofX3D application, and in conjunction with UFO,
CRTM takes the forecast temperature, moisture, and hy-
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Figure 7. Similar to Fig. 6 but for latitudinal variations of RMSE reduction for (a) surface pressure, (b) water vapor mixing ratio of model
level 21 to 30, and the whole-column (c) zonal wind and (d) meridional wind.

drometeor profiles at AHI locations to compute modeled AHI
radiances. Then we compare the simulated and observed AHI
brightness temperatures offline. Before being ingested into
JEDI-MPAS, the raw AHI IR channels’ data at 2 km reso-
lution undergo cloud detection at each pixel following Wu
et al. (2020) and are preprocessed into super-observations
averaged over 15×15 pixels. The cloud detection and super-
obbing are carried out offline using WRFDA. These super-
observations better match the model’s 30 km mesh, reducing
representativeness errors. A by-product of cloud detection on
the raw AHI pixels and superobbing is the cloud fraction for
each super-observation, which allows for statistical evalua-
tion separately over clear, partly cloudy, and overcast obser-
vations.

Figure 11 shows the relative RMSE reduction as a function
of forecast range in AHI radiance space for all superobbed

pixels of six channels. Among them, channels 8–10 are wa-
ter vapor (WV) channels sensing the middle-to-upper tropo-
spheric moisture, and bands 13–15 are window channels sen-
sitive to surface properties and clouds. The patterns of the
RMSE reduction across different channels are very similar
and overall consistent with those in the model space variables
shown in Figs. 8 and 9. The impact of cldama and clrmhs
for the higher peaking channel 8 (350–400 hPa) is larger than
that for the lower peaking channel 10 (600–700 hPa), which
is consistent with the vertical distribution of humidity RMSE
reduction shown in Fig. 6b. Improved fitting to the three win-
dow channels (relative to clrama) is most likely evidence of
improved cloud forecasts, with significance at least up to day
4. Figure 12 further splits error statistics into clear, partly
cloudy, and fully cloudy pixels for the lower peaking WV
channel 10. Over the verification period, clear, partly cloudy,
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Figure 8. Relative RMSE reductions (with respect to GFS analyses) as a function of forecast lead time for global (a) surface pressure,
(b) specific humidity at 2 m, (c) zonal wind at 10 m, (d) temperature and (e) water vapor mixing ratio below model level 30, and (f) the
whole-column zonal wind (cldama and clrmhs versus clrama). Statistics are aggregated over all 27 forecasts.

Figure 9. Similar to Fig. 8 but for water vapor mixing ratio below model level 30 and zonal wind over the three regions (30–90◦ N, 30◦ S–
30◦ N, and 30–90◦ S).
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Figure 10. Similar to Fig. 8 but for clrmhs versus clrdma of four upper-air variables.

Figure 11. Similar to Fig. 8 but for RMSE in AHI’s six channels’ brightness temperature space.
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and fully cloudy pixels account for 28 %, 33 %, and 39 % of
observations, respectively. The relative impact from cldama
and clrmhs decreases with more cloudiness. The absolute
RMSE reduction, however, is comparable for the three cate-
gories due to increased RMSE with more cloudiness.

5.2.3 Precipitation forecast verification

The 24 h accumulated precipitation forecasts from the four
experiments are verified against the Climate Prediction Cen-
ter’s morphing technique (CMORPH) 0.25◦ precipitation
product (Xie et al., 2017). Figure 13a gives the Gilbert skill
scores (GSSs) (also known as equitable threat scores, ETSs)
(Hogan et al., 2010) computed for the observed and predicted
24 h accumulated rainfall ≥ 10 mm using the Model Evalua-
tion Tool (MET) (Brown et al., 2021). The GSS ranges from
−1/3 to 1, with ≤ 0 corresponding to no skill and 1 to per-
fect skill. An improvement of 5 %–8 % is gained up to day 7
precipitation forecast from AMSU-A temperature-sounding
radiance DA when compared to the non-radiance DA ex-
periment. A further 5 %–12 % improvement is achieved by
adding AMSU-A all-sky radiances and MHS radiances for
up to day 6 (Fig. 13b). From precipitation forecast verifi-
cation here and other aspects of forecast verification shown
earlier, JEDI-MPAS’s AMSU-A all-sky DA exhibits a larger
positive impact than that at operational centers (e.g., Zhu
et al., 2016; Migliorini and Candy, 2019). This might be
partly related to the use of the full all-sky approach in JEDI-
MPAS, whereas Zhu et al. (2016) and Migliorini and Candy
(2019) assimilated AMSU-A all-sky radiances only under
non-precipitating conditions. Also, obtaining additional ben-
efit above a well-tuned operational system with abundant
satellite observations, as in Zhu et al. (2016) and Migliorini
and Candy (2019), is much harder than for the benchmark
experimental settings used in this study.

5.2.4 Anomaly correlation coefficient for 500 hPa
geopotential height

Figure 14 provides global anomaly correlation coefficients
(ACCs) of 500 hPa geopotential height as a function of fore-
cast range for the four JEDI-MPAS experiments together
with the cold-start forecast experiment using GFS analyses
as initial conditions (light blue, marked as cold). The clima-
tology derived from the 1980–2010 NCEP/NCAR reanalysis
products (Kalnay et al., 1996) is used in the ACC calculation.
The largest improvement on ACC is from AMSU-A temper-
ature sounding channels, gaining a half day of skill (from 4.5
to 5 d) with respect to the non-radiance experiment for 0.8
ACC level. Further ACC improvement by adding AMSU-
A all-sky window channels and MHS clear-sky WV chan-
nels is visible but much smaller than that gained by AMSU-
A clear-sky temperature-sensitive channels. This could be
understandable with the tight link between temperature and
geopotential height. The cold-start forecasts from GFS anal-

yses reach 5.5 d for 0.8 ACC level and outperforms JEDI-
MPAS’s three radiance DA experiments by half a day. Given
that the operational GFS analysis is produced with a more
advanced hybrid-4DEnVar algorithm (Kleist and Ide, 2015)
at a higher resolution and with ensemble covariances formed
by 80-member ensemble input, plus the assimilation of many
more satellite observations, this half-day gap on ACC is not
surprising with a less advanced pure 3DEnVar algorithm, a
smaller ensemble size, and fewer observations assimilated in
JEDI-MPAS experiments.

6 Conclusions and future perspectives

A new DA system for the MPAS-A model has been de-
veloped based upon the JEDI software framework and was
publicly released as JEDI-MPAS 1.0.0 for community use.
This article describes the EnVar’s formulation and technical
implementation of JEDI-MPAS and evaluates its robustness
and performance through four global cycling 3DEnVar ex-
periments. JEDI-MPAS is robust, with stable cycling over a
month-long period, and behaves well, with positive impacts
obtained when adding more and more microwave radiance
data for most aspects of assessment in both observation and
model space. One advanced feature developed with JEDI-
MPAS is all-sky radiance DA capability along with the in-
troduction of hydrometeor analysis variables, which is first
applied to the assimilation of all-sky radiances from AMSU-
A’s five window channels. Large impacts are achieved from
AMSU-A all-sky DA, especially for moisture, clouds, and
precipitation forecasts. Credible forecast skill is seen from
the assimilation of a subset of conventional and satellite ob-
servations used in operational NWP centers, with a half-day
skill gap relative to forecasts initialized from GFS analyses
for the 0.8 ACC level of 500 hPa geopotential height. It is ex-
pected that the forecast performance can be further improved
to be closer to operational skill using a more advanced DA al-
gorithm such as 4DEnVar, a larger ensemble size, more satel-
lite data, a higher model resolution, and fine tuning of DA
settings, as well as by improving the MPAS model. JEDI-
MPAS can also perform deterministic analyses using 3DVar
and ensemble analyses using the EDA technique. The im-
plementation and evaluation of 3DVar and EDA will be de-
scribed in separate articles. JEDI-MPAS in regional mode
and with a variable resolution will also be evaluated with
higher resolutions.

The general JEDI software framework and more specific
JEDI-MPAS DA system are still undergoing active develop-
ment since the JEDI-MPAS 1.0.0 release. One new devel-
opment specific to JEDI-MPAS is to change the hydrostatic
balance constraint in the full fields to the increment fields,
which can still allow surface pressure observations to con-
strain the upper-air variables but is better suited for the non-
hydrostatic MPAS-A model. Initial tests of this new linear
hydrostatic balance constraint show improvement, especially

Geosci. Model Dev., 15, 7859–7878, 2022 https://doi.org/10.5194/gmd-15-7859-2022
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Figure 12. Similar to Fig. 11 but for AHI channel 10’s error statistics over (a) clear, (b) partly cloudy, and (c) fully cloudy pixels, respectively.

Figure 13. (a) Gilbert skill scores (GSSs) of 24 h accumulated precipitation forecast verified against CMORPH observations for a threshold
of 10 mm. (b) Relative difference of GSSs between cldama/clrmhs and clrama, also for a threshold of 10 mm.

Figure 14. Global anomaly correlation coefficients of 500 hPa
geopotential height as a function of forecast lead time for the four
cycling experiments together with the cold-start forecasts initialized
from GFS analyses (blue).

near the model top. Other ongoing work on the model side is
to introduce a parameterized O3 chemistry scheme (McCor-
mack et al., 2006) and include O3 as a prognostic variable in
MPAS-A, which should reduce temperature bias in the strato-
sphere and also allow for the assimilation of satellite-based
O3 observations. Improving stratosphere processes will al-
low the use of a high model top, which will enable the as-
similation of higher-peaking radiance data. All-sky radiance
DA for both microwave and infrared sensors continues to be
refined with JEDI-MPAS. One important feature missing in
the released JEDI/UFO but available in the “develop” branch
of the UFO is the variational bias correction (VarBC) for
satellite radiance data (Auligné et al., 2007; Dee and Uppala,
2009; Zhu et al., 2013), which is undergoing active testing
and evaluation with JEDI-MPAS at the time of writing. The
quality control procedures of several types of observations
implemented in the UFO are also being tested with assim-
ilation of raw NCEP-bufr converted observation input files,
with the goal of eliminating reliance on GSI for quality con-
trol. Moreover, the computational efficiency of JEDI is be-
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ing improved. We intend to periodically release new and im-
proved versions of JEDI-MPAS in upcoming years.

Code and data availability. JEDI-MPAS 1.0.0 is publicly released
on GitHub, accessible from https://www.jcsda.org/jedi-mpas (last
access: 21 October 2022). It is also available on Zenodo at
https://doi.org/10.5281/zenodo.6784274 (Joint Center for Satel-
lite Data Assimilation and National Center for Atmospheric
Research, 2021). Global Forecast System analysis data are
downloaded from NCAR Research Data Archive https://rda.
ucar.edu/datasets/ds084.1/ (last access: 21 October 2022; Na-
tional Centers For Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department Of Commerce, 2015). Global En-
semble Forecast System ensemble analysis data are downloaded
from https://www.ncei.noaa.gov/products/weather-climate-models/
global-ensemble-forecast (last access: 21 October 2022). Conven-
tional and satellite observations assimilated are downloaded from
https://rda.ucar.edu/datasets/ds337.0/ (last access: 21 October 2022;
National Centers For Environmental Prediction/National Weather
Service/NOAA/U.S. Department Of Commerce, 2008) and https:
//rda.ucar.edu/datasets/ds735.0/ (last access: 21 October 2022; Na-
tional Centers For Environmental Prediction/National Weather Ser-
vice/NOAA/U.S. Department Of Commerce, 2009). CMORPH pre-
cipitation product and AHI radiance data used in the forecast veri-
fication are downloaded from https://www.ncei.noaa.gov/products/
climate-data-records/precipitation-cmorph/ (last access: 21 Oc-
tober 2022; Xie et al., 2019) and https://registry.opendata.aws/
noaa-himawari/ (last access: 21 October 2022), respectively.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-7859-2022-supplement.
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