Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7489-2022
https://doi.org/10.5194/gmd-15-7489-2022
Methods for assessment of models
 | 
11 Oct 2022
Methods for assessment of models |  | 11 Oct 2022

TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids

Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf

Related authors

Sea-ice thermodynamics can determine waterbelt scenarios for Snowball Earth
Johannes Hörner and Aiko Voigt
Earth Syst. Dynam., 15, 215–223, https://doi.org/10.5194/esd-15-215-2024,https://doi.org/10.5194/esd-15-215-2024, 2024
Short summary
Atmospheric cloud-radiative heating in CMIP6 and observations, and its response to surface warming
Aiko Voigt, Stefanie North, Blaz Gasparini, and Seung-Hee Ham
EGUsphere, https://doi.org/10.5194/egusphere-2023-2612,https://doi.org/10.5194/egusphere-2023-2612, 2023
Short summary
A dynamic approach to three-dimensional radiative transfer in numerical weather prediction models: the dynamic TenStream solver v1.0
Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and Bernhard Mayer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2129,https://doi.org/10.5194/egusphere-2023-2129, 2023
Short summary
Uncertainties in cloud-radiative heating within an idealized extratropical cyclone
Behrooz Keshtgar, Aiko Voigt, Bernhard Mayer, and Corinna Hoose
EGUsphere, https://doi.org/10.5194/egusphere-2023-1699,https://doi.org/10.5194/egusphere-2023-1699, 2023
Short summary
How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
Geosci. Model Dev., 16, 3535–3551, https://doi.org/10.5194/gmd-16-3535-2023,https://doi.org/10.5194/gmd-16-3535-2023, 2023
Short summary

Related subject area

Climate and Earth system modeling
CSDMS Data Components: data–model integration tools for Earth surface processes modeling
Tian Gan, Gregory E. Tucker, Eric W. H. Hutton, Mark D. Piper, Irina Overeem, Albert J. Kettner, Benjamin Campforts, Julia M. Moriarty, Brianna Undzis, Ethan Pierce, and Lynn McCready
Geosci. Model Dev., 17, 2165–2185, https://doi.org/10.5194/gmd-17-2165-2024,https://doi.org/10.5194/gmd-17-2165-2024, 2024
Short summary
A generic algorithm to automatically classify urban fabric according to the local climate zone system: implementation in GeoClimate 0.0.1 and application to French cities
Jérémy Bernard, Erwan Bocher, Matthieu Gousseff, François Leconte, and Elisabeth Le Saux Wiederhold
Geosci. Model Dev., 17, 2077–2116, https://doi.org/10.5194/gmd-17-2077-2024,https://doi.org/10.5194/gmd-17-2077-2024, 2024
Short summary
Modelling water isotopologues (1H2H16O, 1H217O) in the coupled numerical climate model iLOVECLIM (version 1.1.5)
Thomas Extier, Thibaut Caley, and Didier M. Roche
Geosci. Model Dev., 17, 2117–2139, https://doi.org/10.5194/gmd-17-2117-2024,https://doi.org/10.5194/gmd-17-2117-2024, 2024
Short summary
Accurate assessment of land–atmosphere coupling in climate models requires high-frequency data output
Kirsten L. Findell, Zun Yin, Eunkyo Seo, Paul A. Dirmeyer, Nathan P. Arnold, Nathaniel Chaney, Megan D. Fowler, Meng Huang, David M. Lawrence, Po-Lun Ma, and Joseph A. Santanello Jr.
Geosci. Model Dev., 17, 1869–1883, https://doi.org/10.5194/gmd-17-1869-2024,https://doi.org/10.5194/gmd-17-1869-2024, 2024
Short summary
Towards variance-conserving reconstructions of climate indices with Gaussian process regression in an embedding space
Marlene Klockmann, Udo von Toussaint, and Eduardo Zorita
Geosci. Model Dev., 17, 1765–1787, https://doi.org/10.5194/gmd-17-1765-2024,https://doi.org/10.5194/gmd-17-1765-2024, 2024
Short summary

Cited articles

Ardila, F., Baker, T., and Yatchak, R.: Moving Robots Efficiently Using the Combinatorics of CAT(0) Cubical Complexes, SIAM J. Discrete Math., 28, 986–1007, https://doi.org/10.1137/120898115, 2014. a, b
Baumgart, M., Ghinassi, P., Wirth, V., Selz, T., Craig, G. C., and Riemer, M.: Quantitative View on the Processes Governing the Upscale Error Growth up to the Planetary Scale Using a Stochastic Convection Scheme, Mon. Weather Rev., 147, 1713–1731, https://doi.org/10.1175/MWR-D-18-0292.1, 2019. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 25, 120–123, 2000. a
Bridson, M. R. and Haefliger, A.: Metric spaces of non-positive curvature, in: Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, ISBN 3540643249, 1999. a
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to Algorithms, 3rd edn., The MIT Press, ISBN 9780262270830, 2009. a
Download
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.