Articles | Volume 15, issue 19
https://doi.org/10.5194/gmd-15-7489-2022
https://doi.org/10.5194/gmd-15-7489-2022
Methods for assessment of models
 | 
11 Oct 2022
Methods for assessment of models |  | 11 Oct 2022

TriCCo v1.1.0 – a cubulation-based method for computing connected components on triangular grids

Aiko Voigt, Petra Schwer, Noam von Rotberg, and Nicole Knopf

Related authors

Sensitivity of ice cloud radiative heating to optical, macro- and microphysical properties
Edgardo I. Sepulveda Araya, Sylvia C. Sullivan, and Aiko Voigt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3212,https://doi.org/10.5194/egusphere-2024-3212, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Atmospheric cloud-radiative heating in CMIP6 and observations and its response to surface warming
Aiko Voigt, Stefanie North, Blaž Gasparini, and Seung-Hee Ham
Atmos. Chem. Phys., 24, 9749–9775, https://doi.org/10.5194/acp-24-9749-2024,https://doi.org/10.5194/acp-24-9749-2024, 2024
Short summary
A dynamic approach to three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: the dynamic TenStream solver v1.0
Richard Maier, Fabian Jakub, Claudia Emde, Mihail Manev, Aiko Voigt, and Bernhard Mayer
Geosci. Model Dev., 17, 3357–3383, https://doi.org/10.5194/gmd-17-3357-2024,https://doi.org/10.5194/gmd-17-3357-2024, 2024
Short summary
Uncertainties in cloud-radiative heating within an idealized extratropical cyclone
Behrooz Keshtgar, Aiko Voigt, Bernhard Mayer, and Corinna Hoose
Atmos. Chem. Phys., 24, 4751–4769, https://doi.org/10.5194/acp-24-4751-2024,https://doi.org/10.5194/acp-24-4751-2024, 2024
Short summary
Sea-ice thermodynamics can determine waterbelt scenarios for Snowball Earth
Johannes Hörner and Aiko Voigt
Earth Syst. Dynam., 15, 215–223, https://doi.org/10.5194/esd-15-215-2024,https://doi.org/10.5194/esd-15-215-2024, 2024
Short summary

Related subject area

Climate and Earth system modeling
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024,https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024,https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024,https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024,https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024,https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary

Cited articles

Ardila, F., Baker, T., and Yatchak, R.: Moving Robots Efficiently Using the Combinatorics of CAT(0) Cubical Complexes, SIAM J. Discrete Math., 28, 986–1007, https://doi.org/10.1137/120898115, 2014. a, b
Baumgart, M., Ghinassi, P., Wirth, V., Selz, T., Craig, G. C., and Riemer, M.: Quantitative View on the Processes Governing the Upscale Error Growth up to the Planetary Scale Using a Stochastic Convection Scheme, Mon. Weather Rev., 147, 1713–1731, https://doi.org/10.1175/MWR-D-18-0292.1, 2019. a
Bradski, G.: The OpenCV Library, Dr. Dobb's Journal of Software Tools, 25, 120–123, 2000. a
Bridson, M. R. and Haefliger, A.: Metric spaces of non-positive curvature, in: Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, ISBN 3540643249, 1999. a
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.: Introduction to Algorithms, 3rd edn., The MIT Press, ISBN 9780262270830, 2009. a
Download
Short summary
In climate science, it is helpful to identify coherent objects, for example, those formed by clouds. However, many models now use unstructured grids, which makes it harder to identify coherent objects. We present a new method that solves this problem by moving model data from an unstructured triangular grid to a structured cubical grid. We implement the method in an open-source Python package and show that the method is ready to be applied to climate model data.