Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-7221-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean
Zhanpeng Zhuang
CORRESPONDING AUTHOR
First Institute of Oceanography, and Key Laboratory of Marine Science
and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Quanan Zheng
Department of Atmospheric and Oceanic Science, University of Maryland,
College Park, Maryland 20740–20742, USA
Yongzeng Yang
First Institute of Oceanography, and Key Laboratory of Marine Science
and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Zhenya Song
First Institute of Oceanography, and Key Laboratory of Marine Science
and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Yeli Yuan
First Institute of Oceanography, and Key Laboratory of Marine Science
and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Laboratory for Regional Oceanography and Numerical Modeling, Pilot
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Shandong Key Laboratory of Marine Science and Numerical Modeling,
Qingdao 266061, China
Chaojie Zhou
Hainan Institute of Zhejiang University, Yazhou Bay Science and
Technology City, Sanya 572025, China
Xinhua Zhao
Jiangsu Marine Resources Development Research Institute, Jiangsu Ocean
University, Lianyungang 222005, China
Ting Zhang
First Institute of Oceanography, and Key Laboratory of Marine Science
and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China
Jing Xie
School of Information and Control Engineering, Qingdao University of
Technology, Qingdao 266520, China
Related authors
Xiaole Li, Zhenya Song, Xiongbo Zheng, Zhanpeng Zhuang, Fangli Qiao, Haibin Zhou, and Mingze Ji
EGUsphere, https://doi.org/10.5194/egusphere-2025-2636, https://doi.org/10.5194/egusphere-2025-2636, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Based on the variable-limit integration method, this study developed a novel numerical approach for the thermohaline equations in ocean models. This method significantly enhances the simulation accuracy of temperature and salinity, improves model stability, and better simulates seawater overflow dynamics across steep ridges. The variable-limit integral method designed herein for thermohaline equations can be readily applied to other ocean numerical models.
Xiaole Li, Zhenya Song, Xiongbo Zheng, Zhanpeng Zhuang, Fangli Qiao, Haibin Zhou, and Mingze Ji
EGUsphere, https://doi.org/10.5194/egusphere-2025-2636, https://doi.org/10.5194/egusphere-2025-2636, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Based on the variable-limit integration method, this study developed a novel numerical approach for the thermohaline equations in ocean models. This method significantly enhances the simulation accuracy of temperature and salinity, improves model stability, and better simulates seawater overflow dynamics across steep ridges. The variable-limit integral method designed herein for thermohaline equations can be readily applied to other ocean numerical models.
Yongzeng Yang, Fuwei Wang, Meng Sun, Xingjie Jiang, Xunqiang Yin, Yongfang Shi, and Yong Teng
EGUsphere, https://doi.org/10.5194/egusphere-2025-2671, https://doi.org/10.5194/egusphere-2025-2671, 2025
Short summary
Short summary
The purpose of this study is to investigate the ocean wave energy dissipation induced by wave-generated turbulence and random wave-breaking. Dissipation is one of the less known processes and still remains poor, so there is a notable gap in mechanism research pertaining to varied parameterizations in wave models. Our results point the way toward better understanding of the dissipation induced by wave-generated turbulence and random wave-breaking, allowing future improvements, applications, etc.
Meng Sun, Yongzeng Yang, Xunqiang Yin, Jisheng Ding, Tianqi Sun, and Nan Jia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2905, https://doi.org/10.5194/egusphere-2023-2905, 2023
Preprint withdrawn
Short summary
Short summary
The understanding of wave-current interactions is important for comprehending the dynamics of the ocean. Among them, the mechanisms of vertical shear of background current and topographic fluctuations are two research issues with limited attention. In this study, based on the unified wave theory, an analytical model is proposed to describe the modification of the amplitude of orbital velocities for surface waves in presence of background current and topographic fluctuations.
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Junyi Li, Tao He, Quanan Zheng, Ying Xu, and Lingling Xie
Ocean Sci., 19, 1545–1559, https://doi.org/10.5194/os-19-1545-2023, https://doi.org/10.5194/os-19-1545-2023, 2023
Short summary
Short summary
This study aims to analyze the statistical behavior of the continental shelf wave motions, including continental shelf waves (CSWs) and arrested topographic waves (ATWs), in the northern South China Sea. The cross-shelf structure of along-track SLAs indicates that Mode 1 of CSWs is the predominant component trapped in the area shallower than about 200 m. The cross-shelf structures of CSWs and ATWs illustrate that the methods are suitable for observing the dynamic behavior of the CSWs.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Junyi Li, Min Li, Chao Wang, Quanan Zheng, Ying Xu, Tianyu Zhang, and Lingling Xie
Ocean Sci., 19, 469–484, https://doi.org/10.5194/os-19-469-2023, https://doi.org/10.5194/os-19-469-2023, 2023
Short summary
Short summary
This study reports the existence of a relatively-low-productivity area of upwelling east of Hainan Island (UEH), which is inconsistent with previous cognition. The reason for this phenomenon is the crucial role of the Guangdong Coastal Current and precipitation. The current and precipitation would induce a high productivity, which is interrupted by the upwelling processes. Therefore, the upwelling has a relatively limited effect on the Chl a concentration in the UEH area.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Cited articles
Abdulla, C. P., Alsaafani, M. A., Alraddadi, T. M., and Albarakati, A. M.:
Climatology of mixed layer depth in the Gulf of Aden derived from in situ
temperature profiles, J. Oceanogr., 75, 335–347,
https://doi.org/10.1007/s10872-019-00506-9, 2019.
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Hwang, P. A., Williams, A. J.
I., Drennan, W. M., and Krtaigorodskii, S. A.: Enhanced dissipation of
kinetic energy beneath surface waves, Nature, 359, 219–220, 1992.
Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., and Wake,
G.: Nonbreaking wave-induced mixing in upper ocean during tropical cyclones
using coupled hurricane-ocean-wave modeling, J. Geophys. Res.-Oceans, 122, 3939–3963, 2017.
Alford, M. H.: Internal Swell Generation: The Spatial Distribution of Energy
Flux from the Wind to Mixed Layer Near-Inertial Motions, J. Phys.
Oceanogr., 31, 2359–2368, https://doi.org/10.1175/1520-0485(2001)031<2359:Isgtsd>2.0.Co;2, 2001.
Anoop, T. R., Kumar, V. S., Shanas, P. R., and Johnson, G.: Surface Wave
Climatology and Its Variability in the North Indian Ocean Based on
ERA-Interim Reanalysis, J. Atmos. Ocean. Tech., 32,
1372–1385, https://doi.org/10.1175/jtech-d-14-00212.1, 2015.
Ansong, J. K., Arbic, B. K., Alford, M. H., Buijsman, M. C., Shriver, J. F.,
Zhao, Z., Richman, J. G., Simmons, H. L., Timko, P. G., Wallcraft, A. J.,
and Zamudio, L.: Semidiurnal internal tide energy fluxes and their
variability in a Global Ocean Model and moored observations, J.
Geophys. Res.-Oceans, 122, 1882–1900, https://doi.org/10.1002/2016jc012184, 2017.
Babanin, A. V.: Similarity Theory for Turbulence, Induced by Orbital Motion
of Surface Water Waves, 24th International Congress of Theoretical and
Applied Mechanics, Elsevier B. V., 20, 99–102, https://doi.org/10.1016/j.piutam.2017.03.014, 2017.
Babanin, A. V. and Haus, B. K.: On the Existence of Water Turbulence
Induced by Nonbreaking Surface Waves, J. Phys. Oceanogr., 39,
2675–2679, 2009.
Baumert, H., Simpson, J., and Sundermann, J. (Eds.): Marine turbulence: theories,
observations and models, Cambridge University Press, Cambridge, 314 pp., http://www.cambridge.org/9780521153720 (last access: 22 September 2022),
2005.
Bonjean, F. and Lagerloef, G. S. E.: Diagnostic Model and Analysis of the
Surface Currents in the Tropical Pacific Ocean, J. Phys. Oceanogr., 32, 2938–2954, https://doi.org/10.1175/1520-0485(2002)032<2938:Dmaaot>2.0.Co;2, 2002.
Chambers, D. P., Tapley, B. D., and Stewart, R. H.: Anomalous warming in the
Indian Ocean coincident with El Niño, J. Geophys. Res.-Oceans, 104, 3035–3047, https://doi.org/10.1029/1998jc900085, 1999.
Chapman, D. C.: Numerical Treatment of Cross-Shelf Open Boundaries in a
Barotropic Coastal Ocean Model, J. Phys. Oceanogr., 15,
1060–1075, https://doi.org/10.1175/1520-0485(1985)015<1060:Ntocso>2.0.Co;2, 1985.
Chen, D., Busalacchi, A. J., and Rothstein, L. M.: The roles of vertical
mixing, solar radiation, and wind stress in a model simulation of the sea
surface temperature seasonal cycle in the tropical Pacific Ocean, J.
Geophys. Res., 99, 20345–20359, https://doi.org/10.1029/94jc01621, 1994.
Craig, P. D. and Banner, M. L.: Modeling wave-enhanced turbulence in the
ocean surface layer, J. Phys. Oceanogr., 24, 2546–2559, 1994.
Dai, D., Qiao, F., Sulisz, W., Lei, H., and Babanin, A.: An Experiment on
the Nonbreaking Surface-Wave-Induced Vertical Mixing, J. Phys. Oceanogr., 40, 2180–2188, 2010.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and
Iudicone, D.: Mixed layer depth over the global ocean: An examination of
profile data and a profile-based climatology, J. Geophys.
Res., 109, C12003, https://doi.org/10.1029/2004jc002378,
2004.
Dohan, K.: Ocean surface currents from satellite data, J.
Geophys. Res.-Oceans, 122, 2647–2651, https://doi.org/10.1002/2017jc012961, 2017.
Donelan, M. A.: Air-water exchange processes, in: Physical Processes in
Lakes and Oceans, Coastal and Estuarine Study, edited by: Imberger, J.,
American Geophysical Union, Washington, D.C., 19–36, https://doi.org/10.1029/CE054p0019, 1998.
Ezer, T.: On the seasonal mixed layer simulated by a basin-scale ocean model
and theMellor-Yamada turbulence scheme, J. Geophys. Res.-Oceans, 105, 16843–16855, 2000.
Furuichi, N., Hibiya, T., and Niwa, Y.: Model-predicted distribution of
wind-induced internal wave energy in the world's oceans, J.
Geophys. Res., 113, C09034, https://doi.org/10.1029/2008jc004768, 2008.
Gordon, A. L., Susanto, R. D., and Vranes, K.: Cool Indonesian throughflow
as a consequence of restricted surface layer flow, Nature, 425, 824–828,
https://doi.org/10.1038/nature02038, 2003.
Gregg, M. C.: Scaling turbulent dissipation in the thermocline, J.
Geophys. Res.Oceans, 94, 9686–9698, https://doi.org/10.1029/JC094iC07p09686, 1989.
Gregg, M. C. and Kunze, E.: Shear and strain in Santa Monica Basin, J. Geophys. Res., 96, 16709–16719, https://doi.org/10.1029/91jc01385, 1991.
Gregg, M. C., Sanford, T. B., and Winkel, D. P.: Reduced mixing from the
breaking of internal waves in equatorial waters, Nature, 422, 513–515,
https://doi.org/10.1038/nature01507, 2003.
Han, L.: A two-time-level split-explicit ocean circulation model (MASNUM)
and its validation, Acta Oceanol. Sin., 33, 11–35, 2014.
Han, L. and Yuan, Y. L.: An ocean circulation model based on Eulerian
forward-backward difference scheme and three-dimensional, primitive
equations and its application in regional simulations, J.
Hydrodynam., 26, 37–49, 2014.
Han, L., Zhuang, Z., and Yuan, Y.: MASNUM ocean circulation model V2.0,
Zenodo [code], https://doi.org/10.5281/zenodo.6717314, 2022.
Haney, R. L.: Surface Thermal Boundary Condition for Ocean Circulation
Models, J. Phys. Oceanogr., 1, 241–248, 1971.
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E.,
Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P.,
Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden,
H.: Mensurements of wind-wave growth and swell decay during the joint north
sea wave project (JONSWAP), Deutche Hydrological Institute, Hamburg, 93 pp., https://doi.org/10.1093/ije/27.2.335,
1973.
Huang, C. and Qiao, F.: Wave-turbulence interaction and its induced mixing
in the upper ocean, J. Geophys. Res., 115, 1–12, https://doi.org/10.1029/2009jc005853, 2010.
Huang, C., Qiao, F., Song, Z., and Ezer, T.: Improving simulations of the
upper ocean by inclusion of surface waves in the Mellor-Yamada turbulence
scheme, J. Geophys. Res.-Oceans, 116, C01007, https://doi.org/10.1029/2010JC006320, 2011.
Huussen, T. N., Naveira-Garabato, A. C., Bryden, H. L., and McDonagh, E. L.:
Is the deep Indian Ocean MOC sustained by breaking internal waves?, J. Geophys. Res.-Oceans, 117, C08024, https://doi.org/10.1029/2012jc008236, 2012.
Hypolite, D., Romero, L., McWilliams, J. C., and Dauhajre, D. P.: Surface
gravity wave effects on submesoscale currents in the open ocean, J. Phys. Oceanogr., 51, 3365–3383, https://doi.org/10.1175/jpo-d-20-0306.1, 2021.
Jayne, S. R.: The Impact of Abyssal Mixing Parameterizations in an Ocean
General Circulation Model, J. Phys. Oceanogr., 39, 1756–1775,
https://doi.org/10.1175/2009jpo4085.1, 2009.
Jayne, S. R. and Marotzke, J.: The Oceanic Eddy Heat Transport, J. Phys. Oceanogr., 32, 3328–3345, https://doi.org/10.1175/1520-0485(2002)032<3328:Toeht>2.0.Co;2, 2002.
Johnson, E. S., Bonjean, F., Lagerloef, G. S. E., Gunn, J. T., and Mitchum,
G. T.: Validation and Error Analysis of OSCAR Sea Surface Currents, J. Atmos. Ocean. Tech., 24, 688–701, https://doi.org/10.1175/jtech1971.1,
2007.
Kantha, L., Tamura, H., and Miyazawa, Y.: Comment on “wave-turbulence
interaction and its induced mixing in the upper ocean” by Huang and Qiao,
J. Geophys. Res.-Oceans, 119, 1510–1515, 2014.
Kantha, L. H. and Clayson, C. A.: An improved mixed layer model for
geophysical applications, J. Geophys. Res.-Oceans, 99, 25235–23266, 1994.
Kara, A. B., Wallcraft, A. J., and Hurlburt, H. E.: Climatological SST and
MLD predictions from a global layered ocean model with an embedded mixed
layer, J. Atmos. Ocean. Tech., 20, 1616–1632, 2003.
Kumar, E. D., Sannasiraj, S. A., Sundar, V., and Polnikov, V. G.: Wind-Wave
Characteristics and Climate Variability in the Indian Ocean Region Using
Altimeter Data, Marine Geodesy, 36, 303–318, https://doi.org/10.1080/01490419.2013.771718, 2013.
Kumar, V. S., Joseph, J., Amrutha, M. M., Jena, B. K., Sivakholundu, K. M.,
and Dubhashi, K. K.: Seasonal and interannual changes of significant wave
height in shelf seas around India during 1998–2012 based on wave hindcast,
Ocean Eng., 151, 127–140, https://doi.org/10.1016/j.oceaneng.2018.01.022, 2018.
Kunze, E.: Internal-Wave-Driven Mixing: Global Geography and Budgets,
J. Phys. Oceanogr., 47, 1325–1345, https://doi.org/10.1175/jpo-d-16-0141.1,
2017.
Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., and Thurnherr, A.
M.: Global Abyssal Mixing Inferred from Lowered ADCP Shear and CTD Strain
Profiles, J. Phys. Oceanogr., 36, 1553–1576, https://doi.org/10.1175/jpo2926.1, 2006.
Levitus, S. and Boyer, T. P.: World Ocean Atlas 1994. Volume 4.
Temperature, National Environmental Satellite, Data, and Information
Service, Washington D.C., p. 117, https://www.osti.gov/biblio/137203 (last access: 5 September 2022), 1994.
Levitus, S., Burgett, R., and Boyer, T. P.: World Ocean Atlas 1994. Volume
3. Salinity. National Environmental Satellite, Data, and Information
Service, Washington D.C., p. 99, https://www.osti.gov/biblio/137202 (last access: 5 September 2022), 1994.
Li, H., Xu, F., Zhou, W., Wang, D., Wright, J. S., Liu, Z., and Lin, Y.:
Development of a global gridded Argo data set with Barnes successive
corrections, J. Geophys. Res.-Oceans, 122, 866–889,
https://doi.org/10.1002/2016jc012285, 2017.
Li, M. and Garrett, C.: Mixed Layer Deepening Due to Langmuir Circulation,
J. Phys. Oceanogr., 27, 121–132, https://doi.org/10.1175/1520-0485(1997)027<0121:Mlddtl>2.0.Co;2, 1997.
Li, Q. and Fox-Kemper, B.: Assessing the Effects of Langmuir Turbulence on
the Entrainment Buoyancy Flux in the Ocean Surface Boundary Layer, J. Phys. Oceanogr., 47, 2863–2886, https://doi.org/10.1175/jpo-d-17-0085.1, 2017.
Li, S., Song, J., and Sun, Q.: Effect of Stokes drift on upper ocean mixing,
Acta Oceanol. Sin., 27, 11–20, 2008.
Lin, X., Xie, S. P., Chen, X., and Xu, L.: A well-mixed warm water column in
the central Bohai Sea in summer: effects of tidal and surface wave mixing,
J. Geophys. Res.-Oceans, 111, C11017, https://doi.org/10.1029/2006JC003504, 2006.
Liu, L., Yang, G., Zhao, X., Feng, L., Han, G., Wu, Y., and Yu, W.: Why Was
the Indian Ocean Dipole Weak in the Context of the Extreme El Niño in
2015?, J. Climate, 30, 4755–4761, https://doi.org/10.1175/jcli-d-16-0281.1, 2017.
Lozovatsky, I. D., Fernando, H. J. S., Jinadasa, S. U. P., and Wijesekera,
H. W.: Eddy diffusivity in stratified ocean: a case study in Bay of Bengal,
Environ. Fluid Mech., https://doi.org/10.1007/s10652-022-09872-3, 2022.
MacKinnon, J. A. and Gregg, M. C.: Near-inertial waves on the New England
shelf: the role of evolving stratification, turbulent dissipation, and
bottom drag, J. Phys. Oceanogr., 35, 2408–2424, 2005.
Mellor, G. L. and Yamada, T.: Development of a turbulence closuremodel for
geophysical fluid problems, Rev. Geophys. Space Phys., 20,
851–875, 1982.
Monterey, G. and Levitus, S.: Seasonal Variability of Mixed Layer Depth for
the World Ocean, NOAA Atlas NESDIS, Washington, D.C., p. 100, https://www.mendeley.com/catalogue/6819c84d-0457-3525-aabb-a8d9ad1683b2/ (last access: 5 September 2022), 1997.
Munk, W. H. and Wunsch, C.: Abyssal recipes II: energetics of tidal and
wind mixing, Deep-Sea Res. Pt. I, 45,
1977–2010, https://doi.org/10.1016/s0967-0637(98)00070-3, 1998.
Nagai, T. and Hibiya, T.: Internal tides and associated vertical mixing in
the Indonesian Archipelago, J. Geophys. Res.-Oceans, 120,
3373–3390, https://doi.org/10.1002/2014jc010592, 2015.
Nagai, T., Hibiya, T., and Bouruet-Aubertot, P.: Nonhydrostatic Simulations
of Tide-Induced Mixing in the Halmahera Sea: A Possible Role in the
Transformation of the Indonesian Throughflow Waters, J. Geophys.
Res.-Oceans, 122, 8933–8943, https://doi.org/10.1002/2017jc013381, 2017.
Pinkel, R. and Sun, O. M.: Subharmonic Energy Transfer from the Semidiurnal
Internal Tide to Near-Diurnal Motions over Kaena Ridge, Hawaii, J. Phys. Oceanogr., 43, 766–789, https://doi.org/10.1175/jpo-d-12-0141.1, 2013.
Polton, J. A., Lewis, D. M., and Belcher, S. E.: The Role of Wave-Induced
Coriolis–Stokes Forcing on the Wind-Driven Mixed Layer, J. Phys. Oceanogr., 35, 444–457, https://doi.org/10.1175/jpo2701.1, 2005.
Polzin, K. L., Naveira Garabato, A. C., Huussen, T. N., Sloyan, B. M., and
Waterman, S.: Finescale parameterizations of turbulent dissipation, J. Geophys. Res.-Oceans, 119, 1383–1419, https://doi.org/10.1002/2013jc008979, 2014.
Qiao, F., Chen, S., Li, C., Zhao, W., and Pan, Z.: The Study of Wind, Wave,
Current Extreme Parameters and Climatic Characters of the South China Sea,
Mar. Technol. Soc. J., 33, 61–68, 1999.
Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., and Jian, M.: Wave-induced mixing
in the upper ocean: Distribution and application to a global ocean
circulation model, Geophys. Res. Lett., 31, 293–317, 2004.
Qiao, F., Yuan, Y., Ezer, T., Xia, C., Yang, Y., Lü, X., and Song, Z.: A
three-dimensional surface wave–ocean circulation coupled model and its
initial testing, Ocean Dynam., 60, 1339–1355, https://doi.org/10.1007/s10236-010-0326-y, 2010.
Qiao, F., Yuan, Y., Deng, J., Dai, D., and Song, Z.: Wave–turbulence
interaction-induced vertical mixing and its effects in ocean and climate
models, Philos. T. A, 374, 1–20, https://doi.org/10.1098/rsta.2015.0201, 2016.
Ray, R. D. and Mitchum, G. T.: Surface manifestation of internal tides
generated near Hawaii, Geophys. Res. Lett., 23, 2101–2104,
https://doi.org/10.1029/96gl02050, 1996.
Romero, L., Hypolite, D., and McWilliams, J. C.: Representing wave effects
on currents, Ocean Model., 167, 101873, https://doi.org/10.1016/j.ocemod.2021.101873, 2021.
Santoso, A., England, M. H., Kajtar, J. B., and Cai, W.: Indonesian
Throughflow Variability and Linkage to ENSO and IOD in an Ensemble of CMIP5
Models, J. Climate, 35, 3161–3178, https://doi.org/10.1175/jcli-d-21-0485.1, 2022.
Scott, R. B., Goff, J. A., Naveira Garabato, A. C., and Nurser, A. J. G.:
Global rate and spectral characteristics of internal gravity wave generation
by geostrophic flow over topography, J. Geophys. Res., 116, C09029,
https://doi.org/10.1029/2011jc007005, 2011.
Shay, T. J. and Gregg, M. C.: Convectively Driven Turbulent Mixing in the
Upper Ocean, J. Phys. Oceanogr., 16, 1777–1798, https://doi.org/10.1175/1520-0485(1986)016<1777:Cdtmit>2.0.Co;2, 1986.
Shi, Y., Wu, K., and Yang, Y.: Preliminary Results of Assessing the Mixing
of Wave Transport Flux Residualin the Upper Ocean with ROMS, Journal of
Ocean University of China, 15, 193–200, 2016.
Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J.,
Wallcraft, A. J., and Timko, P. G.: An evaluation of the barotropic and
internal tides in a high-resolution global ocean circulation model, J. Geophys. Res.-Oceans, 117, C10024, https://doi.org/10.1029/2012jc008170, 2012.
Simmons, H. L., Hallberg, R. W., and Arbic, B. K.: Internal wave generation
in a global baroclinic tide model, Deep-Sea Res. Pt. II, 51, 3043–3068, https://doi.org/10.1016/j.dsr2.2004.09.015, 2004.
Song, Z., Qiao, F., Yang, Y., and Yuan, Y.: An improvement of the too cold
tongue in the tropical Pacific with the development of an
ocean-wave-atmosphere coupled numerical model, Prog. Nat.
Sci., 17, 576–583, 2007.
Song, Z., Qiao, F., and Song, Y.: Response of the equatorial basin-wide SST
to non-breaking surface wave-induced mixing in a climate model: An amendment
to tropical bias, J. Geophys. Res.-Oceans, 117, C00J26, https://doi.org/10.1029/2012JC007931, 2012.
Song, Z., Liu, H., and Chen, X.: Eastern equatorial Pacific SST seasonal
cycle in global climate models: from CMIP5 to CMIP6, Acta Oceanol.
Sin., 39, 50–60, https://doi.org/10.1007/s13131-020-1623-z,
2020.
st. Laurent, L., Naveira Garabato, A. C., Ledwell, J. R., Thurnherr, A. M.,
Toole, J. M., and Watson, A. J.: Turbulence and Diapycnal Mixing in Drake
Passage, J. Phys. Oceanogr., 42, 2143–2152,
https://doi.org/10.1175/jpo-d-12-027.1, 2012.
Sullivan, P. P., McWilliams, J. C., and Melville, W. K.: Surface gravity
wave effects in the oceanic boundary layer: large-eddy simulation with
vortex force and stochastic breakers, J. Fluid Mech., 593,
405–452, https://doi.org/10.1017/s002211200700897x, 2007.
Sun, M., Du, J., Yang, Y., and Yin, X.: Evaluation of Assimilation in the
MASNUM Wave Model Based on Jason-3 and CFOSAT, Remote Sensing, 13, 3833,
https://doi.org/10.3390/rs13193833, 2021.
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H. (Eds.): Descriptive
physical oceanography: an introduction, Academic Press, London, https://www.sciencedirect.com/book/9780750645522/descriptive-physical-oceanography (last access: 18 September 2022), 2011.
Umlauf, L. and Burchard, H.: Marine Turbulence, 3rd edn., 79 pp., https://www.io-warnemuende.de/tl_files/staff/umlauf/turbulence/turbulence.pdf (last access: 25 August 2022), 2020.
Vic, C., Naveira Garabato, A. C., Green, J. A. M., Waterhouse, A. F., Zhao,
Z., Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.:
Deep-ocean mixing driven by small-scale internal tides, Nat. Commun., 10,
2099, https://doi.org/10.1038/s41467-019-10149-5, 2019.
Wang, S., Wang, Q., Shu, Q., Scholz, P., Lohmann, G., and Qiao, F.:
Improving the Upper-ocean Temperature in an Ocean Climate Model (FESOM 1.4):
Shortwave Penetration vs. Mixing Induced by Non-breaking Surface Waves,
J. Adv. Model. Earth Sy., 11, 1–13, 2019.
Wang, W. and Huang, R. X.: Wind energy input to the surface waves, J. Phys. Oceanogr., 34, 1276–1280, 2004.
Whalen, C. B., de Lavergne, C., Naveira Garabato, A. C., Klymak, J. M.,
MacKinnon, J. A., and Sheen, K. L.: Internal wave-driven mixing: governing
processes and consequences for climate, Nat. Rev. Earth
Environ., 1, 606–621, https://doi.org/10.1038/s43017-020-0097-z, 2020.
Wright, C. J., Scott, R. B., Ailliot, P., and Furnival, D.: Lee wave
generation rates in the deep ocean, Geophys. Res. Lett., 41,
2434–2440, https://doi.org/10.1002/2013gl059087, 2014.
Wu, L., Staneva, J., Breivik, Ø., Rutgersson, A., Nurser, A. G.,
Clementi, E., and Madec, G.: Wave effects on coastal upwelling and water
level, Ocean Model., 140, 101405, https://doi.org/10.1016/j.ocemod.2019.101405, 2019.
Wunsch, C.: Baroclinic Motions and Energetics as Measured by Altimeters,
J. Atmos. Ocean. Tech., 30, 140–150, https://doi.org/10.1175/jtech-d-12-00035.1, 2013.
Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general
circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314,
2004.
Xia, C., Qiao, F., Yang, Y., Ma, J., and Yuan, Y.: Three-dimensional
structure of the summertime circulation in the Yellow Sea from a
wave-tidecirculation coupled model, J. Geophys. Res.-Oceans,
111, C11S03, https://doi.org/10.1029/2005JC003218, 2006.
Yang, Y., Shi, Y., Yu, C., Teng, Y., and Sun, M.: Study on surface
wave-induced mixing of transport flux residue under typhoon conditions,
J. Oceanol. Limnol., 37, 1837–1845, https://doi.org/10.1007/s00343-019-8268-9, 2019.
Yang, Y., Zhan, R., and Teng, Y.: Parameterization of ocean wave-induced
mixing processes for finite water depth, Acta Oceanol. Sin., 28,
16–22, 2009.
Yu, C., Yang, Y., Yin, X., Sun, M., and Shi, Y.: Impact of Enhanced
Wave-Induced Mixing on the Ocean Upper Mixed Layer during Typhoon Nepartak
in a Regional Model of the Northwest Pacific Ocean, Remote Sensing, 12,
2808, https://doi.org/10.3390/rs12172808, 2020.
Yu, W., Qiao, F., Yuan, Y., and Pan, Z.: Numerical modelling of wind and
waves for Typhoon Betty (8710), Acta Oceanol. Sin., 16, 459–473, 1997.
Yu, W., Song, J., Cao, A., Yin, B., and Guan, S.: An Improved Second-Moment
Closure Model for Langmuir Turbulence Conditions: Model Derivation and
Validation, J. Geophys. Res.-Oceans, 123, 9010–9037, 2018.
Yuan, Y., Hua, F., Pan, Z., and Sun, L.: LAGFD-WAM numerical wave model - I
Basic physical model, Acta Oceanol. Sin., 10, 483–488, 1991.
Yuan, Y., Hua, F., Pan, Z., and Sun, L.: LAGFD-WAM numerical wave model – II
Characteristics inlaid scheme and its application, Acta Oceanol. Sin.,
11, 13–23, 1992.
Yuan, Y., Han, L., Qiao, F., Yang, Y., and Lu, M.: A unified linear theory
of wavelike perturbations under general ocean conditions, Dynam.
Atmos. Oceans, 51, 55–74, https://doi.org/10.1016/j.dynatmoce.2010.11.001, 2011.
Yuan, Y., Qiao, F., Yin, X., and Han, L.: Analytical estimation of mixing
coefficient induced by surface wave-generated turbulence based on the
equilibrium solution of the second-order turbulence closure model, Science
China Earth Sciences, 56, 71–80, 2013.
Yuan, Y., Yang, Y., Yin, X., Shi, Y., and Zhuang, Z.: MASNUM wave model
V3.0, Zenodo [code], https://doi.org/10.5281/zenodo.6719479,
2022.
Zhang, X., Wang, Z., Wang, B., Wu, K., Han, G., and Li, W.: A numerical
estimation of the impact of Stokes drift on upper ocean temperature, Acta
Oceanol. Sinica, 33, 48–55, 2014.
Zhao, Z.: Internal tide radiation from the Luzon Strait, J.
Geophys. Res.-Oceans, 119, 5434–5448, https://doi.org/10.1002/2014jc010014, 2014.
Zhao, Z.: The Global Mode-2 M2 Internal Tide, J. Geophys.
Res.-Oceans, 123, 7725–7746, https://doi.org/10.1029/2018jc014475, 2018.
Zhao, Z. and Alford, M. H.: New Altimetric Estimates of Mode-1 M2 Internal
Tides in the Central North Pacific Ocean, J. Phys. Oceanogr.,
39, 1669–1684, https://doi.org/10.1175/2009jpo3922.1, 2009.
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.:
Global Observations of Open-Ocean Mode-1 M2 Internal Tides, J. Phys. Oceanogr., 46, 1657–1684, https://doi.org/10.1175/jpo-d-15-0105.1, 2016.
Zhuang, Z.: MASNUM model data and results, Zenodo [data set], https://doi.org/10.5281/zenodo.6749788, 2022.
Zhuang, Z., Yuan, Y., and Yang, G.: An ocean circulation model in
óS-z-óB hybrid coordinate and its validation, Ocean Dynam., 68,
159–175, 2018.
Zhuang, Z., Zheng, Q., Yuan, Y., Yang, G., and Zhao, X.: A
non-breaking-wave-generated turbulence mixing scheme for a global ocean
general circulation model, Ocean Dynam., 70, 293–305, 2020.
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40
to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the...