Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7221-2022
https://doi.org/10.5194/gmd-15-7221-2022
Development and technical paper
 | 
26 Sep 2022
Development and technical paper |  | 26 Sep 2022

Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean

Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, Zhenya Song, Yeli Yuan, Chaojie Zhou, Xinhua Zhao, Ting Zhang, and Jing Xie

Related authors

Analytical approaches for wave energy dissipation induced by wave-generated turbulence and random wave-breaking
Yongzeng Yang, Fuwei Wang, Meng Sun, Xingjie Jiang, Xunqiang Yin, Yongfang Shi, and Yong Teng
EGUsphere, https://doi.org/10.5194/egusphere-2025-2671,https://doi.org/10.5194/egusphere-2025-2671, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
An analytical model investigating the impact of current shear and topographic fluctuations on surface waves
Meng Sun, Yongzeng Yang, Xunqiang Yin, Jisheng Ding, Tianqi Sun, and Nan Jia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2905,https://doi.org/10.5194/egusphere-2023-2905, 2023
Preprint withdrawn
Short summary
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023,https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Statistical analysis of dynamic behavior of continental shelf wave motions in the northern South China Sea
Junyi Li, Tao He, Quanan Zheng, Ying Xu, and Lingling Xie
Ocean Sci., 19, 1545–1559, https://doi.org/10.5194/os-19-1545-2023,https://doi.org/10.5194/os-19-1545-2023, 2023
Short summary
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023,https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary

Related subject area

Oceanography
GREAT v1.0: Global Real-time Early Assessment of Tsunamis
Usama Kadri, Ali Abdolali, and Maxim Filimonov
Geosci. Model Dev., 18, 3487–3507, https://doi.org/10.5194/gmd-18-3487-2025,https://doi.org/10.5194/gmd-18-3487-2025, 2025
Short summary
Using automatic calibration to improve the physics behind complex numerical models: an example from a 3D lake model using Delft3D (v6.02.10) and DYNO-PODS (v1.0)
Marina Amadori, Abolfazl Irani Rahaghi, Damien Bouffard, and Marco Toffolon
Geosci. Model Dev., 18, 3473–3486, https://doi.org/10.5194/gmd-18-3473-2025,https://doi.org/10.5194/gmd-18-3473-2025, 2025
Short summary
Improvements to the Met Office's global ocean–sea ice forecasting system including model and data assimilation changes
Davi Mignac, Jennifer Waters, Daniel J. Lea, Matthew J. Martin, James While, Anthony T. Weaver, Arthur Vidard, Catherine Guiavarc'h, Dave Storkey, David Ford, Edward W. Blockley, Jonathan Baker, Keith Haines, Martin R. Price, Michael J. Bell, and Richard Renshaw
Geosci. Model Dev., 18, 3405–3425, https://doi.org/10.5194/gmd-18-3405-2025,https://doi.org/10.5194/gmd-18-3405-2025, 2025
Short summary
Resolution dependence of interlinked Southern Ocean biases in global coupled HadGEM3 models
David Storkey, Pierre Mathiot, Michael J. Bell, Dan Copsey, Catherine Guiavarc'h, Helene T. Hewitt, Jeff Ridley, and Malcolm J. Roberts
Geosci. Model Dev., 18, 2725–2745, https://doi.org/10.5194/gmd-18-2725-2025,https://doi.org/10.5194/gmd-18-2725-2025, 2025
Short summary
A new global high-resolution wave model for the tropical ocean using WAVEWATCH III version 7.14
Axelle Gaffet, Xavier Bertin, Damien Sous, Héloïse Michaud, Aron Roland, and Emmanuel Cordier
Geosci. Model Dev., 18, 1929–1946, https://doi.org/10.5194/gmd-18-1929-2025,https://doi.org/10.5194/gmd-18-1929-2025, 2025
Short summary

Cited articles

Abdulla, C. P., Alsaafani, M. A., Alraddadi, T. M., and Albarakati, A. M.: Climatology of mixed layer depth in the Gulf of Aden derived from in situ temperature profiles, J. Oceanogr., 75, 335–347, https://doi.org/10.1007/s10872-019-00506-9, 2019. 
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Hwang, P. A., Williams, A. J. I., Drennan, W. M., and Krtaigorodskii, S. A.: Enhanced dissipation of kinetic energy beneath surface waves, Nature, 359, 219–220, 1992. 
Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., and Wake, G.: Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling, J. Geophys. Res.-Oceans, 122, 3939–3963, 2017. 
Alford, M. H.: Internal Swell Generation: The Spatial Distribution of Energy Flux from the Wind to Mixed Layer Near-Inertial Motions, J. Phys. Oceanogr., 31, 2359–2368, https://doi.org/10.1175/1520-0485(2001)031<2359:Isgtsd>2.0.Co;2, 2001. 
Anoop, T. R., Kumar, V. S., Shanas, P. R., and Johnson, G.: Surface Wave Climatology and Its Variability in the North Indian Ocean Based on ERA-Interim Reanalysis, J. Atmos. Ocean. Tech., 32, 1372–1385, https://doi.org/10.1175/jtech-d-14-00212.1, 2015. 
Download
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40 to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.
Share