Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7221-2022
https://doi.org/10.5194/gmd-15-7221-2022
Development and technical paper
 | 
26 Sep 2022
Development and technical paper |  | 26 Sep 2022

Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean

Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, Zhenya Song, Yeli Yuan, Chaojie Zhou, Xinhua Zhao, Ting Zhang, and Jing Xie

Related authors

The Applicability of the Integral Method with Variable Limit in Solving the Governing Equations for Temperature and Salinity in an Ocean Circulation Model
Xiaole Li, Zhenya Song, Xiongbo Zheng, Zhanpeng Zhuang, Fangli Qiao, Haibin Zhou, and Mingze Ji
EGUsphere, https://doi.org/10.5194/egusphere-2025-2636,https://doi.org/10.5194/egusphere-2025-2636, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Abdulla, C. P., Alsaafani, M. A., Alraddadi, T. M., and Albarakati, A. M.: Climatology of mixed layer depth in the Gulf of Aden derived from in situ temperature profiles, J. Oceanogr., 75, 335–347, https://doi.org/10.1007/s10872-019-00506-9, 2019. 
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Hwang, P. A., Williams, A. J. I., Drennan, W. M., and Krtaigorodskii, S. A.: Enhanced dissipation of kinetic energy beneath surface waves, Nature, 359, 219–220, 1992. 
Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., and Wake, G.: Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling, J. Geophys. Res.-Oceans, 122, 3939–3963, 2017. 
Alford, M. H.: Internal Swell Generation: The Spatial Distribution of Energy Flux from the Wind to Mixed Layer Near-Inertial Motions, J. Phys. Oceanogr., 31, 2359–2368, https://doi.org/10.1175/1520-0485(2001)031<2359:Isgtsd>2.0.Co;2, 2001. 
Anoop, T. R., Kumar, V. S., Shanas, P. R., and Johnson, G.: Surface Wave Climatology and Its Variability in the North Indian Ocean Based on ERA-Interim Reanalysis, J. Atmos. Ocean. Tech., 32, 1372–1385, https://doi.org/10.1175/jtech-d-14-00212.1, 2015. 
Download
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40 to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.
Share