Articles | Volume 15, issue 18
https://doi.org/10.5194/gmd-15-7221-2022
https://doi.org/10.5194/gmd-15-7221-2022
Development and technical paper
 | 
26 Sep 2022
Development and technical paper |  | 26 Sep 2022

Improved upper-ocean thermodynamical structure modeling with combined effects of surface waves and M2 internal tides on vertical mixing: a case study for the Indian Ocean

Zhanpeng Zhuang, Quanan Zheng, Yongzeng Yang, Zhenya Song, Yeli Yuan, Chaojie Zhou, Xinhua Zhao, Ting Zhang, and Jing Xie

Related authors

An analytical model investigating the impact of current shear and topographic fluctuations on surface waves
Meng Sun, Yongzeng Yang, Xunqiang Yin, Jisheng Ding, Tianqi Sun, and Nan Jia
EGUsphere, https://doi.org/10.5194/egusphere-2023-2905,https://doi.org/10.5194/egusphere-2023-2905, 2023
Short summary
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023,https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Statistical analysis of dynamic behavior of continental shelf wave motions in the northern South China Sea
Junyi Li, Tao He, Quanan Zheng, Ying Xu, and Lingling Xie
Ocean Sci., 19, 1545–1559, https://doi.org/10.5194/os-19-1545-2023,https://doi.org/10.5194/os-19-1545-2023, 2023
Short summary
Arctic Ocean simulations in the CMIP6 Ocean Model Intercomparison Project (OMIP)
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023,https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Multiple mechanisms for chlorophyll a concentration variations in coastal upwelling regions: a case study east of Hainan Island in the South China Sea
Junyi Li, Min Li, Chao Wang, Quanan Zheng, Ying Xu, Tianyu Zhang, and Lingling Xie
Ocean Sci., 19, 469–484, https://doi.org/10.5194/os-19-469-2023,https://doi.org/10.5194/os-19-469-2023, 2023
Short summary

Related subject area

Oceanography
Comparison of 4-dimensional variational and ensemble optimal interpolation data assimilation systems using a Regional Ocean Modeling System (v3.4) configuration of the eddy-dominated East Australian Current system
Colette Gabrielle Kerry, Moninya Roughan, Shane Keating, David Gwyther, Gary Brassington, Adil Siripatana, and Joao Marcos A. C. Souza
Geosci. Model Dev., 17, 2359–2386, https://doi.org/10.5194/gmd-17-2359-2024,https://doi.org/10.5194/gmd-17-2359-2024, 2024
Short summary
LOCATE v1.0: numerical modelling of floating marine debris dispersion in coastal regions using Parcels v2.4.2
Ivan Hernandez, Leidy M. Castro-Rosero, Manuel Espino, and Jose M. Alsina Torrent
Geosci. Model Dev., 17, 2221–2245, https://doi.org/10.5194/gmd-17-2221-2024,https://doi.org/10.5194/gmd-17-2221-2024, 2024
Short summary
New insights into the South China Sea throughflow and water budget seasonal cycle: evaluation and analysis of a high-resolution configuration of the ocean model SYMPHONIE version 2.4
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024,https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
MQGeometry-1.0: a multi-layer quasi-geostrophic solver on non-rectangular geometries
Louis Thiry, Long Li, Guillaume Roullet, and Etienne Mémin
Geosci. Model Dev., 17, 1749–1764, https://doi.org/10.5194/gmd-17-1749-2024,https://doi.org/10.5194/gmd-17-1749-2024, 2024
Short summary
Parameter estimation for ocean background vertical diffusivity coefficients in the Community Earth System Model (v1.2.1) and its impact on El Niño–Southern Oscillation forecasts
Zheqi Shen, Yihao Chen, Xiaojing Li, and Xunshu Song
Geosci. Model Dev., 17, 1651–1665, https://doi.org/10.5194/gmd-17-1651-2024,https://doi.org/10.5194/gmd-17-1651-2024, 2024
Short summary

Cited articles

Abdulla, C. P., Alsaafani, M. A., Alraddadi, T. M., and Albarakati, A. M.: Climatology of mixed layer depth in the Gulf of Aden derived from in situ temperature profiles, J. Oceanogr., 75, 335–347, https://doi.org/10.1007/s10872-019-00506-9, 2019. 
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Hwang, P. A., Williams, A. J. I., Drennan, W. M., and Krtaigorodskii, S. A.: Enhanced dissipation of kinetic energy beneath surface waves, Nature, 359, 219–220, 1992. 
Aijaz, S., Ghantous, M., Babanin, A. V., Ginis, I., Thomas, B., and Wake, G.: Nonbreaking wave-induced mixing in upper ocean during tropical cyclones using coupled hurricane-ocean-wave modeling, J. Geophys. Res.-Oceans, 122, 3939–3963, 2017. 
Alford, M. H.: Internal Swell Generation: The Spatial Distribution of Energy Flux from the Wind to Mixed Layer Near-Inertial Motions, J. Phys. Oceanogr., 31, 2359–2368, https://doi.org/10.1175/1520-0485(2001)031<2359:Isgtsd>2.0.Co;2, 2001. 
Anoop, T. R., Kumar, V. S., Shanas, P. R., and Johnson, G.: Surface Wave Climatology and Its Variability in the North Indian Ocean Based on ERA-Interim Reanalysis, J. Atmos. Ocean. Tech., 32, 1372–1385, https://doi.org/10.1175/jtech-d-14-00212.1, 2015. 
Download
Short summary
We evaluate the impacts of surface waves and internal tides on the upper-ocean mixing in the Indian Ocean. The surface-wave-generated turbulent mixing is dominant if depth is < 30 m, while the internal-tide-induced mixing is larger than surface waves in the ocean interior from 40 to 130 m. The simulated thermal structure, mixed layer depth and surface current are all improved when the mixing schemes are jointly incorporated into the ocean model because of the strengthened vertical mixing.