Articles | Volume 15, issue 17
https://doi.org/10.5194/gmd-15-6817-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6817-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
HORAYZON v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor
Christian R. Steger
CORRESPONDING AUTHOR
Institute for Atmospheric and Climate Sciences, ETH Zürich, Zürich, Switzerland
Benjamin Steger
ESRI Research & Development Center Zürich, Zürich, Switzerland
Christoph Schär
Institute for Atmospheric and Climate Sciences, ETH Zürich, Zürich, Switzerland
Related authors
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke
The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, https://doi.org/10.5194/tc-11-2507-2017, 2017
Short summary
Short summary
Mass loss from the Greenland Ice Sheet, which contributes to sea level rise, is currently dominated by surface melt and run-off. The relation between these two variables is rather uncertain due to the firn layer’s potential to buffer melt in solid (refreezing) or liquid (firn aquifer) form. To address this uncertainty, we analyse output of a numerical firn model run over 1960–2014. Results show a spatially variable response of the ice sheet to increasing melt and an upward migration of aquifers.
Stefano Ubbiali, Christian Kühnlein, Christoph Schär, Linda Schlemmer, Thomas C. Schulthess, Michael Staneker, and Heini Wernli
Geosci. Model Dev., 18, 529–546, https://doi.org/10.5194/gmd-18-529-2025, https://doi.org/10.5194/gmd-18-529-2025, 2025
Short summary
Short summary
We explore a high-level programming model for porting numerical weather prediction (NWP) model codes to graphics processing units (GPUs). We present a Python rewrite with the domain-specific library GT4Py (GridTools for Python) of two renowned cloud microphysics schemes and the associated tangent-linear and adjoint algorithms. We find excellent portability, competitive GPU performance, robust execution on diverse computing architectures, and enhanced code maintainability and user productivity.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
Ruoyi Cui, Nikolina Ban, Marie-Estelle Demory, Raffael Aellig, Oliver Fuhrer, Jonas Jucker, Xavier Lapillonne, and Christoph Schär
Weather Clim. Dynam., 4, 905–926, https://doi.org/10.5194/wcd-4-905-2023, https://doi.org/10.5194/wcd-4-905-2023, 2023
Short summary
Short summary
Our study focuses on severe convective storms that occur over the Alpine-Adriatic region. By running simulations for eight real cases and evaluating them against available observations, we found our models did a good job of simulating total precipitation, hail, and lightning. Overall, this research identified important meteorological factors for hail and lightning, and the results indicate that both HAILCAST and LPI diagnostics are promising candidates for future climate research.
Eleonora Dallan, Francesco Marra, Giorgia Fosser, Marco Marani, Giuseppe Formetta, Christoph Schär, and Marco Borga
Hydrol. Earth Syst. Sci., 27, 1133–1149, https://doi.org/10.5194/hess-27-1133-2023, https://doi.org/10.5194/hess-27-1133-2023, 2023
Short summary
Short summary
Convection-permitting climate models could represent future changes in extreme short-duration precipitation, which is critical for risk management. We use a non-asymptotic statistical method to estimate extremes from 10 years of simulations in an orographically complex area. Despite overall good agreement with rain gauges, the observed decrease of hourly extremes with elevation is not fully represented by the model. Climate model adjustment methods should consider the role of orography.
Roman Brogli, Christoph Heim, Jonas Mensch, Silje Lund Sørland, and Christoph Schär
Geosci. Model Dev., 16, 907–926, https://doi.org/10.5194/gmd-16-907-2023, https://doi.org/10.5194/gmd-16-907-2023, 2023
Short summary
Short summary
The pseudo-global-warming (PGW) approach is a downscaling methodology that imposes the large-scale GCM-based climate change signal on the boundary conditions of a regional climate simulation. It offers several benefits in comparison to conventional downscaling. We present a detailed description of the methodology, provide companion software to facilitate the preparation of PGW simulations, and present validation and sensitivity studies.
Qinggang Gao, Christian Zeman, Jesus Vergara-Temprado, Daniela C. A. Lima, Peter Molnar, and Christoph Schär
Weather Clim. Dynam., 4, 189–211, https://doi.org/10.5194/wcd-4-189-2023, https://doi.org/10.5194/wcd-4-189-2023, 2023
Short summary
Short summary
We developed a vortex identification algorithm for realistic atmospheric simulations. The algorithm enabled us to obtain a climatology of vortex shedding from Madeira Island for a 10-year simulation period. This first objective climatological analysis of vortex streets shows consistency with observed atmospheric conditions. The analysis shows a pronounced annual cycle with an increasing vortex shedding rate from April to August and a sudden decrease in September.
Christian Zeman and Christoph Schär
Geosci. Model Dev., 15, 3183–3203, https://doi.org/10.5194/gmd-15-3183-2022, https://doi.org/10.5194/gmd-15-3183-2022, 2022
Short summary
Short summary
Our atmosphere is a chaotic system, where even a tiny change can have a big impact. This makes it difficult to assess if small changes, such as the move to a new hardware architecture, will significantly affect a weather and climate model. We present a methodology that allows to objectively verify this. The methodology is applied to several test cases, showing a high sensitivity. Results also show that a major system update of the underlying supercomputer did not significantly affect our model.
Roman Brogli, Silje Lund Sørland, Nico Kröner, and Christoph Schär
Weather Clim. Dynam., 2, 1093–1110, https://doi.org/10.5194/wcd-2-1093-2021, https://doi.org/10.5194/wcd-2-1093-2021, 2021
Short summary
Short summary
In a warmer future climate, climate simulations predict that some land areas will experience excessive warming during summer. We show that the excessive summer warming is related to the vertical distribution of warming within the atmosphere. In regions characterized by excessive warming, much of the warming occurs close to the surface. In other regions, most of the warming is redistributed to higher levels in the atmosphere, which weakens the surface warming.
Daniel Regenass, Linda Schlemmer, Elena Jahr, and Christoph Schär
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-426, https://doi.org/10.5194/hess-2021-426, 2021
Manuscript not accepted for further review
Short summary
Short summary
Weather and climate models need to represent the water cycle on land in order to provide accurate estimates of moisture and energy exchange between the land and the atmosphere. Infiltration of water into the soil is often modeled with an equation describing water transport in porous media. Here, we point out some challenges arising in the numerical solution of this equation and show the consequences for the representation of the water cycle in modern weather and climate models.
Silje Lund Sørland, Roman Brogli, Praveen Kumar Pothapakula, Emmanuele Russo, Jonas Van de Walle, Bodo Ahrens, Ivonne Anders, Edoardo Bucchignani, Edouard L. Davin, Marie-Estelle Demory, Alessandro Dosio, Hendrik Feldmann, Barbara Früh, Beate Geyer, Klaus Keuler, Donghyun Lee, Delei Li, Nicole P. M. van Lipzig, Seung-Ki Min, Hans-Jürgen Panitz, Burkhardt Rockel, Christoph Schär, Christian Steger, and Wim Thiery
Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, https://doi.org/10.5194/gmd-14-5125-2021, 2021
Short summary
Short summary
We review the contribution from the CLM-Community to regional climate projections following the CORDEX framework over Europe, South Asia, East Asia, Australasia, and Africa. How the model configuration, horizontal and vertical resolutions, and choice of driving data influence the model results for the five domains is assessed, with the purpose of aiding the planning and design of regional climate simulations in the future.
Christian Zeman, Nils P. Wedi, Peter D. Dueben, Nikolina Ban, and Christoph Schär
Geosci. Model Dev., 14, 4617–4639, https://doi.org/10.5194/gmd-14-4617-2021, https://doi.org/10.5194/gmd-14-4617-2021, 2021
Short summary
Short summary
Kilometer-scale atmospheric models allow us to partially resolve thunderstorms and thus improve their representation. We present an intercomparison between two distinct atmospheric models for 2 summer days with heavy thunderstorms over Europe. We show the dependence of precipitation and vertical wind speed on spatial and temporal resolution and also discuss the possible influence of the system of equations, numerical methods, and diffusion in the models.
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021, https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
Short summary
This study presents the first modelled estimates of perennial firn aquifers (PFAs) in Antarctica. PFAs are subsurface meltwater bodies that do not refreeze in winter due to the isolating effects of the snow they are buried underneath. They were first identified in Greenland, but conditions for their existence are also present in the Antarctic Peninsula. These PFAs can have important effects on meltwater retention, ice shelf stability, and, consequently, sea level rise.
Marie-Estelle Demory, Ségolène Berthou, Jesús Fernández, Silje L. Sørland, Roman Brogli, Malcolm J. Roberts, Urs Beyerle, Jon Seddon, Rein Haarsma, Christoph Schär, Erasmo Buonomo, Ole B. Christensen, James M. Ciarlo ̀, Rowan Fealy, Grigory Nikulin, Daniele Peano, Dian Putrasahan, Christopher D. Roberts, Retish Senan, Christian Steger, Claas Teichmann, and Robert Vautard
Geosci. Model Dev., 13, 5485–5506, https://doi.org/10.5194/gmd-13-5485-2020, https://doi.org/10.5194/gmd-13-5485-2020, 2020
Short summary
Short summary
Now that global climate models (GCMs) can run at similar resolutions to regional climate models (RCMs), one may wonder whether GCMs and RCMs provide similar regional climate information. We perform an evaluation for daily precipitation distribution in PRIMAVERA GCMs (25–50 km resolution) and CORDEX RCMs (12–50 km resolution) over Europe. We show that PRIMAVERA and CORDEX simulate similar distributions. Considering both datasets at such a resolution results in large benefits for impact studies.
Stefan Rüdisühli, Michael Sprenger, David Leutwyler, Christoph Schär, and Heini Wernli
Weather Clim. Dynam., 1, 675–699, https://doi.org/10.5194/wcd-1-675-2020, https://doi.org/10.5194/wcd-1-675-2020, 2020
Short summary
Short summary
Most precipitation over Europe is linked to low-pressure systems, cold fronts, warm fronts, or high-pressure systems. Based on a massive computer simulation able to resolve thunderstorms, we quantify in detail how much precipitation these weather systems produced during 2000–2008. We find distinct seasonal and regional differences, such as fronts precipitating a lot in fall and winter over the North Atlantic but high-pressure systems mostly in summer over the continent by way of thunderstorms.
Samuel Monhart, Massimiliano Zappa, Christoph Spirig, Christoph Schär, and Konrad Bogner
Hydrol. Earth Syst. Sci., 23, 493–513, https://doi.org/10.5194/hess-23-493-2019, https://doi.org/10.5194/hess-23-493-2019, 2019
Short summary
Short summary
Subseasonal streamflow forecasts have received increasing attention during the past decade, but their performance in alpine catchments is still largely unknown. We analyse the effect of a statistical correction technique applied to the driving meteorological forecasts on the performance of the resulting streamflow forecasts. The study shows the benefits of such hydrometeorological ensemble prediction systems and highlights the importance of snow-related processes for subseasonal predictions.
Stefan Brönnimann, Jan Rajczak, Erich M. Fischer, Christoph C. Raible, Marco Rohrer, and Christoph Schär
Nat. Hazards Earth Syst. Sci., 18, 2047–2056, https://doi.org/10.5194/nhess-18-2047-2018, https://doi.org/10.5194/nhess-18-2047-2018, 2018
Short summary
Short summary
Heavy precipitation events in Switzerland are expected to become more intense, but the seasonality also changes. Analysing a large set of model simulations, we find that annual maximum rainfall events become less frequent in late summer and more frequent in early summer and early autumn. The seasonality shift is arguably related to summer drying. Results suggest that changes in the seasonal cycle need to be accounted for when preparing for moderately extreme precipitation events.
Erik Kjellström, Grigory Nikulin, Gustav Strandberg, Ole Bøssing Christensen, Daniela Jacob, Klaus Keuler, Geert Lenderink, Erik van Meijgaard, Christoph Schär, Samuel Somot, Silje Lund Sørland, Claas Teichmann, and Robert Vautard
Earth Syst. Dynam., 9, 459–478, https://doi.org/10.5194/esd-9-459-2018, https://doi.org/10.5194/esd-9-459-2018, 2018
Short summary
Short summary
Based on high-resolution regional climate models we investigate European climate change at 1.5 and 2 °C of global warming compared to pre-industrial levels. Considerable near-surface warming exceeding that of the global mean is found for most of Europe, already at the lower 1.5 °C of warming level. Changes in precipitation and near-surface wind speed are identified. The 1.5 °C of warming level shows significantly less change compared to the 2 °C level, indicating the importance of mitigation.
Prisco Frei, Sven Kotlarski, Mark A. Liniger, and Christoph Schär
The Cryosphere, 12, 1–24, https://doi.org/10.5194/tc-12-1-2018, https://doi.org/10.5194/tc-12-1-2018, 2018
Short summary
Short summary
Snowfall is central to Alpine environments, and its future changes will be associated with pronounced impacts. We here assess future snowfall changes in the European Alps based on an ensemble of state-of-the-art regional climate model experiments and on two different greenhouse gas emission scenarios. The results reveal pronounced changes in the Alpine snowfall climate with considerable snowfall reductions at low and mid-elevations but also snowfall increases at high elevations in midwinter.
Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke
The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017, https://doi.org/10.5194/tc-11-2507-2017, 2017
Short summary
Short summary
Mass loss from the Greenland Ice Sheet, which contributes to sea level rise, is currently dominated by surface melt and run-off. The relation between these two variables is rather uncertain due to the firn layer’s potential to buffer melt in solid (refreezing) or liquid (firn aquifer) form. To address this uncertainty, we analyse output of a numerical firn model run over 1960–2014. Results show a spatially variable response of the ice sheet to increasing melt and an upward migration of aquifers.
Martin Wild, Atsumu Ohmura, Christoph Schär, Guido Müller, Doris Folini, Matthias Schwarz, Maria Zyta Hakuba, and Arturo Sanchez-Lorenzo
Earth Syst. Sci. Data, 9, 601–613, https://doi.org/10.5194/essd-9-601-2017, https://doi.org/10.5194/essd-9-601-2017, 2017
Short summary
Short summary
The Global Energy Balance Archive (GEBA) is a database for the central storage of worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 database, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and to date contains around 500 000 monthly mean entries from 2500 locations.
David Leutwyler, Oliver Fuhrer, Xavier Lapillonne, Daniel Lüthi, and Christoph Schär
Geosci. Model Dev., 9, 3393–3412, https://doi.org/10.5194/gmd-9-3393-2016, https://doi.org/10.5194/gmd-9-3393-2016, 2016
Short summary
Short summary
The representation of moist convection (thunderstorms and rain showers) in climate models represents a major challenge, as this process is usually approximated due to the lack of appropriate computational resolution. Climate simulations using horizontal resolution of O(1 km) allow one to explicitly resolve deep convection and thus allow for an improved representation of the water cycle. We present a set of such simulations covering the European scale using a climate model enabled for GPUs.
J. Hall, B. Arheimer, M. Borga, R. Brázdil, P. Claps, A. Kiss, T. R. Kjeldsen, J. Kriaučiūnienė, Z. W. Kundzewicz, M. Lang, M. C. Llasat, N. Macdonald, N. McIntyre, L. Mediero, B. Merz, R. Merz, P. Molnar, A. Montanari, C. Neuhold, J. Parajka, R. A. P. Perdigão, L. Plavcová, M. Rogger, J. L. Salinas, E. Sauquet, C. Schär, J. Szolgay, A. Viglione, and G. Blöschl
Hydrol. Earth Syst. Sci., 18, 2735–2772, https://doi.org/10.5194/hess-18-2735-2014, https://doi.org/10.5194/hess-18-2735-2014, 2014
S. Kotlarski, K. Keuler, O. B. Christensen, A. Colette, M. Déqué, A. Gobiet, K. Goergen, D. Jacob, D. Lüthi, E. van Meijgaard, G. Nikulin, C. Schär, C. Teichmann, R. Vautard, K. Warrach-Sagi, and V. Wulfmeyer
Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, https://doi.org/10.5194/gmd-7-1297-2014, 2014
Related subject area
Climate and Earth system modeling
The very-high-resolution configuration of the EC-Earth global model for HighResMIP
GOSI9: UK Global Ocean and Sea Ice configurations
Decomposition of skill scores for conditional verification: impact of Atlantic Multidecadal Oscillation phases on the predictability of decadal temperature forecasts
Virtual Integration of Satellite and In-situ Observation Networks (VISION) v1.0: In-Situ Observations Simulator (ISO_simulator)
Climate model downscaling in central Asia: a dynamical and a neural network approach
Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4
Subsurface hydrological controls on the short-term effects of hurricanes on nitrate–nitrogen runoff loading: a case study of Hurricane Ida using the Energy Exascale Earth System Model (E3SM) Land Model (v2.1)
CARIB12: a regional Community Earth System Model/Modular Ocean Model 6 configuration of the Caribbean Sea
Architectural insights into and training methodology optimization of Pangu-Weather
Evaluation of global fire simulations in CMIP6 Earth system models
Evaluating downscaled products with expected hydroclimatic co-variances
Software sustainability of global impact models
fair-calibrate v1.4.1: calibration, constraining, and validation of the FaIR simple climate model for reliable future climate projections
ISOM 1.0: a fully mesoscale-resolving idealized Southern Ocean model and the diversity of multiscale eddy interactions
A computationally lightweight model for ensemble forecasting of environmental hazards: General TAMSAT-ALERT v1.2.1
Introducing the MESMER-M-TPv0.1.0 module: spatially explicit Earth system model emulation for monthly precipitation and temperature
The need for carbon-emissions-driven climate projections in CMIP7
Robust handling of extremes in quantile mapping – “Murder your darlings”
A protocol for model intercomparison of impacts of marine cloud brightening climate intervention
An extensible perturbed parameter ensemble for the Community Atmosphere Model version 6
Coupling the regional climate model ICON-CLM v2.6.6 to the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
A fully coupled solid-particle microphysics scheme for stratospheric aerosol injections within the aerosol–chemistry–climate model SOCOL-AERv2
An improved representation of aerosol in the ECMWF IFS-COMPO 49R1 through the integration of EQSAM4Climv12 – a first attempt at simulating aerosol acidity
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical-mixing parameterization on Arctic sea ice and upper-ocean properties using the NEMO-SI3 model
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Historical Trends and Controlling Factors of Isoprene Emissions in CMIP6 Earth System Models
Modeling Commercial-Scale CO2 Storage in the Gas Hydrate Stability Zone with PFLOTRAN v6.0
A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates
Methane dynamics in the Baltic Sea: investigating concentration, flux, and isotopic composition patterns using the coupled physical–biogeochemical model BALTSEM-CH4 v1.0
Using feature importance as exploratory data analysis tool on earth system models
CropSuite – A comprehensive open-source crop suitability model considering climate variability for climate impact assessment
ICON ComIn – The ICON Community Interface (ComIn version 0.1.0, with ICON version 2024.01-01)
Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2
Applying double cropping and interactive irrigation in the North China Plain using WRF4.5
The sea ice component of GC5: coupling SI3 to HadGEM3 using conductive fluxes
CICE on a C-grid: new momentum, stress, and transport schemes for CICEv6.5
HyPhAICC v1.0: a hybrid physics–AI approach for probability fields advection shown through an application to cloud cover nowcasting
CICERO Simple Climate Model (CICERO-SCM v1.1.1) – an improved simple climate model with a parameter calibration tool
A non-intrusive, multi-scale, and flexible coupling interface in WRF
T&C-CROP: Representing mechanistic crop growth with a terrestrial biosphere model (T&C, v1.5): Model formulation and validation
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
The Earth Science Box Modeling Toolkit (ESBMTK)
High Resolution Model Intercomparison Project phase 2 (HighResMIP2) towards CMIP7
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Presentation, Calibration and Testing of the DCESS II Earth System Model of Intermediate Complexity (version 1.0)
Baseline Climate Variables for Earth System Modelling
The DOE E3SM Version 2.1: Overview and Assessment of the Impacts of Parameterized Ocean Submesoscales
Evaluation of atmospheric rivers in reanalyses and climate models in a new metrics framework
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
Eduardo Moreno-Chamarro, Thomas Arsouze, Mario Acosta, Pierre-Antoine Bretonnière, Miguel Castrillo, Eric Ferrer, Amanda Frigola, Daria Kuznetsova, Eneko Martin-Martinez, Pablo Ortega, and Sergi Palomas
Geosci. Model Dev., 18, 461–482, https://doi.org/10.5194/gmd-18-461-2025, https://doi.org/10.5194/gmd-18-461-2025, 2025
Short summary
Short summary
We present the high-resolution model version of the EC-Earth global climate model to contribute to HighResMIP. The combined model resolution is about 10–15 km in both the ocean and atmosphere, which makes it one of the finest ever used to complete historical and scenario simulations. This model is compared with two lower-resolution versions, with a 100 km and a 25 km grid. The three models are compared with observations to study the improvements thanks to the increased resolution.
Catherine Guiavarc'h, David Storkey, Adam T. Blaker, Ed Blockley, Alex Megann, Helene Hewitt, Michael J. Bell, Daley Calvert, Dan Copsey, Bablu Sinha, Sophia Moreton, Pierre Mathiot, and Bo An
Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, https://doi.org/10.5194/gmd-18-377-2025, 2025
Short summary
Short summary
The Global Ocean and Sea Ice configuration version 9 (GOSI9) is the new UK hierarchy of model configurations based on the Nucleus for European Modelling of the Ocean (NEMO) and available at three resolutions. It will be used for various applications, e.g. weather forecasting and climate prediction. It improves upon the previous version by reducing global temperature and salinity biases and enhancing the representation of Arctic sea ice and the Antarctic Circumpolar Current.
Andy Richling, Jens Grieger, and Henning W. Rust
Geosci. Model Dev., 18, 361–375, https://doi.org/10.5194/gmd-18-361-2025, https://doi.org/10.5194/gmd-18-361-2025, 2025
Short summary
Short summary
The performance of weather and climate prediction systems is variable in time and space. It is of interest how this performance varies in different situations. We provide a decomposition of a skill score (a measure of forecast performance) as a tool for detailed assessment of performance variability to support model development or forecast improvement. The framework is exemplified with decadal forecasts to assess the impact of different ocean states in the North Atlantic on temperature forecast.
Maria R. Russo, Sadie L. Bartholomew, David Hassell, Alex M. Mason, Erica Neininger, A. James Perman, David A. J. Sproson, Duncan Watson-Parris, and Nathan Luke Abraham
Geosci. Model Dev., 18, 181–191, https://doi.org/10.5194/gmd-18-181-2025, https://doi.org/10.5194/gmd-18-181-2025, 2025
Short summary
Short summary
Observational data and modelling capabilities have expanded in recent years, but there are still barriers preventing these two data sources from being used in synergy. Proper comparison requires generating, storing, and handling a large amount of data. This work describes the first step in the development of a new set of software tools, the VISION toolkit, which can enable the easy and efficient integration of observational and model data required for model evaluation.
Bijan Fallah, Masoud Rostami, Emmanuele Russo, Paula Harder, Christoph Menz, Peter Hoffmann, Iulii Didovets, and Fred F. Hattermann
Geosci. Model Dev., 18, 161–180, https://doi.org/10.5194/gmd-18-161-2025, https://doi.org/10.5194/gmd-18-161-2025, 2025
Short summary
Short summary
We tried to contribute to a local climate change impact study in central Asia, a region that is water-scarce and vulnerable to global climate change. We use regional models and machine learning to produce reliable local data from global climate models. We find that regional models show more realistic and detailed changes in heavy precipitation than global climate models. Our work can help assess the future risks of extreme events and plan adaptation strategies in central Asia.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Willem Deconinck, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Rohit Ghosh, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Thomas Jung, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Aleksei Koldunov, Tobias Kölling, Josh Kousal, Christian Kühnlein, Pedro Maciel, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Balthasar Reuter, Domokos Sármány, Patrick Scholz, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025, https://doi.org/10.5194/gmd-18-33-2025, 2025
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale") and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Yilin Fang, Hoang Viet Tran, and L. Ruby Leung
Geosci. Model Dev., 18, 19–32, https://doi.org/10.5194/gmd-18-19-2025, https://doi.org/10.5194/gmd-18-19-2025, 2025
Short summary
Short summary
Hurricanes may worsen water quality in the lower Mississippi River basin (LMRB) by increasing nutrient runoff. We found that runoff parameterizations greatly affect nitrate–nitrogen runoff simulated using an Earth system land model. Our simulations predicted increased nitrogen runoff in the LMRB during Hurricane Ida in 2021, albeit less pronounced than the observations, indicating areas for model improvement to better understand and manage nutrient runoff loss during hurricanes in the region.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Deifilia To, Julian Quinting, Gholam Ali Hoshyaripour, Markus Götz, Achim Streit, and Charlotte Debus
Geosci. Model Dev., 17, 8873–8884, https://doi.org/10.5194/gmd-17-8873-2024, https://doi.org/10.5194/gmd-17-8873-2024, 2024
Short summary
Short summary
Pangu-Weather is a breakthrough machine learning model in medium-range weather forecasting that considers 3D atmospheric information. We show that using a simpler 2D framework improves robustness, speeds up training, and reduces computational needs by 20 %–30 %. We introduce a training procedure that varies the importance of atmospheric variables over time to speed up training convergence. Decreasing computational demand increases the accessibility of training and working with the model.
Fang Li, Xiang Song, Sandy P. Harrison, Jennifer R. Marlon, Zhongda Lin, L. Ruby Leung, Jörg Schwinger, Virginie Marécal, Shiyu Wang, Daniel S. Ward, Xiao Dong, Hanna Lee, Lars Nieradzik, Sam S. Rabin, and Roland Séférian
Geosci. Model Dev., 17, 8751–8771, https://doi.org/10.5194/gmd-17-8751-2024, https://doi.org/10.5194/gmd-17-8751-2024, 2024
Short summary
Short summary
This study provides the first comprehensive assessment of historical fire simulations from 19 Earth system models in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Most models reproduce global totals, spatial patterns, seasonality, and regional historical changes well but fail to simulate the recent decline in global burned area and underestimate the fire response to climate variability. CMIP6 simulations address three critical issues of phase-5 models.
Seung H. Baek, Paul A. Ullrich, Bo Dong, and Jiwoo Lee
Geosci. Model Dev., 17, 8665–8681, https://doi.org/10.5194/gmd-17-8665-2024, https://doi.org/10.5194/gmd-17-8665-2024, 2024
Short summary
Short summary
We evaluate downscaled products by examining locally relevant co-variances during precipitation events. Common statistical downscaling techniques preserve expected co-variances during convective precipitation (a stationary phenomenon). However, they dampen future intensification of frontal precipitation (a non-stationary phenomenon) captured in global climate models and dynamical downscaling. Our study quantifies a ramification of the stationarity assumption underlying statistical downscaling.
Emmanuel Nyenah, Petra Döll, Daniel S. Katz, and Robert Reinecke
Geosci. Model Dev., 17, 8593–8611, https://doi.org/10.5194/gmd-17-8593-2024, https://doi.org/10.5194/gmd-17-8593-2024, 2024
Short summary
Short summary
Research software is vital for scientific progress but is often developed by scientists with limited skills, time, and funding, leading to challenges in usability and maintenance. Our study across 10 sectors shows strengths in version control, open-source licensing, and documentation while emphasizing the need for containerization and code quality. We recommend workshops; code quality metrics; funding; and following the findable, accessible, interoperable, and reusable (FAIR) standards.
Chris Smith, Donald P. Cummins, Hege-Beate Fredriksen, Zebedee Nicholls, Malte Meinshausen, Myles Allen, Stuart Jenkins, Nicholas Leach, Camilla Mathison, and Antti-Ilari Partanen
Geosci. Model Dev., 17, 8569–8592, https://doi.org/10.5194/gmd-17-8569-2024, https://doi.org/10.5194/gmd-17-8569-2024, 2024
Short summary
Short summary
Climate projections are only useful if the underlying models that produce them are well calibrated and can reproduce observed climate change. We formalise a software package that calibrates the open-source FaIR simple climate model to full-complexity Earth system models. Observations, including historical warming, and assessments of key climate variables such as that of climate sensitivity are used to constrain the model output.
Jingwei Xie, Xi Wang, Hailong Liu, Pengfei Lin, Jiangfeng Yu, Zipeng Yu, Junlin Wei, and Xiang Han
Geosci. Model Dev., 17, 8469–8493, https://doi.org/10.5194/gmd-17-8469-2024, https://doi.org/10.5194/gmd-17-8469-2024, 2024
Short summary
Short summary
We propose the concept of mesoscale ocean direct numerical simulation (MODNS), which should resolve the first baroclinic deformation radius and ensure the numerical dissipative effects do not directly contaminate the mesoscale motions. It can be a benchmark for testing mesoscale ocean large eddy simulation (MOLES) methods in ocean models. We build an idealized Southern Ocean model using MITgcm to generate a type of MODNS. We also illustrate the diversity of multiscale eddy interactions.
Emily Black, John Ellis, and Ross I. Maidment
Geosci. Model Dev., 17, 8353–8372, https://doi.org/10.5194/gmd-17-8353-2024, https://doi.org/10.5194/gmd-17-8353-2024, 2024
Short summary
Short summary
We present General TAMSAT-ALERT, a computationally lightweight and versatile tool for generating ensemble forecasts from time series data. General TAMSAT-ALERT is capable of combining multiple streams of monitoring and meteorological forecasting data into probabilistic hazard assessments. In this way, it complements existing systems and enhances their utility for actionable hazard assessment.
Sarah Schöngart, Lukas Gudmundsson, Mathias Hauser, Peter Pfleiderer, Quentin Lejeune, Shruti Nath, Sonia Isabelle Seneviratne, and Carl-Friedrich Schleussner
Geosci. Model Dev., 17, 8283–8320, https://doi.org/10.5194/gmd-17-8283-2024, https://doi.org/10.5194/gmd-17-8283-2024, 2024
Short summary
Short summary
Precipitation and temperature are two of the most impact-relevant climatic variables. Yet, projecting future precipitation and temperature data under different emission scenarios relies on complex models that are computationally expensive. In this study, we propose a method that allows us to generate monthly means of local precipitation and temperature at low computational costs. Our modelling framework is particularly useful for all downstream applications of climate model data.
Benjamin M. Sanderson, Ben B. B. Booth, John Dunne, Veronika Eyring, Rosie A. Fisher, Pierre Friedlingstein, Matthew J. Gidden, Tomohiro Hajima, Chris D. Jones, Colin G. Jones, Andrew King, Charles D. Koven, David M. Lawrence, Jason Lowe, Nadine Mengis, Glen P. Peters, Joeri Rogelj, Chris Smith, Abigail C. Snyder, Isla R. Simpson, Abigail L. S. Swann, Claudia Tebaldi, Tatiana Ilyina, Carl-Friedrich Schleussner, Roland Séférian, Bjørn H. Samset, Detlef van Vuuren, and Sönke Zaehle
Geosci. Model Dev., 17, 8141–8172, https://doi.org/10.5194/gmd-17-8141-2024, https://doi.org/10.5194/gmd-17-8141-2024, 2024
Short summary
Short summary
We discuss how, in order to provide more relevant guidance for climate policy, coordinated climate experiments should adopt a greater focus on simulations where Earth system models are provided with carbon emissions from fossil fuels together with land use change instructions, rather than past approaches that have largely focused on experiments with prescribed atmospheric carbon dioxide concentrations. We discuss how these goals might be achieved in coordinated climate modeling experiments.
Peter Berg, Thomas Bosshard, Denica Bozhinova, Lars Bärring, Joakim Löw, Carolina Nilsson, Gustav Strandberg, Johan Södling, Johan Thuresson, Renate Wilcke, and Wei Yang
Geosci. Model Dev., 17, 8173–8179, https://doi.org/10.5194/gmd-17-8173-2024, https://doi.org/10.5194/gmd-17-8173-2024, 2024
Short summary
Short summary
When bias adjusting climate model data using quantile mapping, one needs to prescribe what to do at the tails of the distribution, where a larger data range is likely encountered outside of the calibration period. The end result is highly dependent on the method used. We show that, to avoid discontinuities in the time series, one needs to exclude data in the calibration range to also activate the extrapolation functionality in that time period.
Philip J. Rasch, Haruki Hirasawa, Mingxuan Wu, Sarah J. Doherty, Robert Wood, Hailong Wang, Andy Jones, James Haywood, and Hansi Singh
Geosci. Model Dev., 17, 7963–7994, https://doi.org/10.5194/gmd-17-7963-2024, https://doi.org/10.5194/gmd-17-7963-2024, 2024
Short summary
Short summary
We introduce a protocol to compare computer climate simulations to better understand a proposed strategy intended to counter warming and climate impacts from greenhouse gas increases. This slightly changes clouds in six ocean regions to reflect more sunlight and cool the Earth. Example changes in clouds and climate are shown for three climate models. Cloud changes differ between the models, but precipitation and surface temperature changes are similar when their cooling effects are made similar.
Trude Eidhammer, Andrew Gettelman, Katherine Thayer-Calder, Duncan Watson-Parris, Gregory Elsaesser, Hugh Morrison, Marcus van Lier-Walqui, Ci Song, and Daniel McCoy
Geosci. Model Dev., 17, 7835–7853, https://doi.org/10.5194/gmd-17-7835-2024, https://doi.org/10.5194/gmd-17-7835-2024, 2024
Short summary
Short summary
We describe a dataset where 45 parameters related to cloud processes in the Community Earth System Model version 2 (CESM2) Community Atmosphere Model version 6 (CAM6) are perturbed. Three sets of perturbed parameter ensembles (263 members) were created: current climate, preindustrial aerosol loading and future climate with sea surface temperature increased by 4 K.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
Geosci. Model Dev., 17, 7815–7834, https://doi.org/10.5194/gmd-17-7815-2024, https://doi.org/10.5194/gmd-17-7815-2024, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI v2.0 that includes the regional climate model ICON-CLM coupled to the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in ICON-CLM makes it more flexible for coupling to an external ocean model and an external hydrological discharge model.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Samuel Rémy, Swen Metzger, Vincent Huijnen, Jason E. Williams, and Johannes Flemming
Geosci. Model Dev., 17, 7539–7567, https://doi.org/10.5194/gmd-17-7539-2024, https://doi.org/10.5194/gmd-17-7539-2024, 2024
Short summary
Short summary
In this paper we describe the development of the future operational cycle 49R1 of the IFS-COMPO system, used for operational forecasts of atmospheric composition in the CAMS project, and focus on the implementation of the thermodynamical model EQSAM4Clim version 12. The implementation of EQSAM4Clim significantly improves the simulated secondary inorganic aerosol surface concentration. The new aerosol and precipitation acidity diagnostics showed good agreement against observational datasets.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev., 17, 7629–7643, https://doi.org/10.5194/gmd-17-7629-2024, https://doi.org/10.5194/gmd-17-7629-2024, 2024
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
Geosci. Model Dev., 17, 7365–7399, https://doi.org/10.5194/gmd-17-7365-2024, https://doi.org/10.5194/gmd-17-7365-2024, 2024
Short summary
Short summary
In this study, we improved a climate model by adding the representation of water use sectors such as domestic, industry, and agriculture. This new feature helps us understand how water is used and supplied in various areas. We tested our model from 1971 to 2010 and found that it accurately identifies areas with water scarcity. By modelling the competition between sectors when water availability is limited, the model helps estimate the intensity and extent of individual sectors' water shortages.
Thi Nhu Ngoc Do, Kengo Sudo, Akihiko Ito, Louisa Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2313, https://doi.org/10.5194/egusphere-2024-2313, 2024
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth System Models mainly due to partially incorporating CO2 effects and land cover changes rather than climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant-climate interactions.
Michael Nole, Jonah Bartrand, Fawz Naim, and Glenn Hammond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-162, https://doi.org/10.5194/gmd-2024-162, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Safe carbon dioxide (CO2) storage is likely to be critical for mitigating some of the most dangerous effects of climate change. We present a simulation framework for modeling CO2 storage beneath the seafloor where CO2 can form a solid. This can aid in permanent CO2 storage for long periods of time. Our models show what a commercial-scale CO2 injection would look like in a marine environment. We discuss what would need to be considered when designing a sub-sea CO2 injection.
Cynthia Whaley, Montana Etten-Bohm, Courtney Schumacher, Ayodeji Akingunola, Vivek Arora, Jason Cole, Michael Lazare, David Plummer, Knut von Salzen, and Barbara Winter
Geosci. Model Dev., 17, 7141–7155, https://doi.org/10.5194/gmd-17-7141-2024, https://doi.org/10.5194/gmd-17-7141-2024, 2024
Short summary
Short summary
This paper describes how lightning was added as a process in the Canadian Earth System Model in order to interactively respond to climate changes. As lightning is an important cause of global wildfires, this new model development allows for more realistic projections of how wildfires may change in the future, responding to a changing climate.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Daniel Ries, Katherine Goode, Kellie McClernon, and Benjamin Hillman
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-133, https://doi.org/10.5194/gmd-2024-133, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Machine learning has advanced research in the climate science domain, but its models are difficult to understand. In order to understand the impacts and consequences of climate interventions such as stratospheric aerosol injection, complex models are often necessary. We use a case study to illustrate how we can understand the inner workings of a complex model. We present this technique as an exploratory tool that can be used to quickly discover and assess relationships in complex climate data.
Florian Zabel, Matthias Knüttel, and Benjamin Poschlod
EGUsphere, https://doi.org/10.5194/egusphere-2024-2526, https://doi.org/10.5194/egusphere-2024-2526, 2024
Short summary
Short summary
CropSuite is a fuzzy-logic based high resolution open-source crop suitability model considering the impact of climate variability. We apply CropSuite for 48 important staple and cash crops at 1 km spatial resolution for Africa. We find that climate variability significantly impacts on suitable areas, but also affects optimal sowing dates, and multiple cropping potentials. The results provide information that can be used for climate impact assessments, adaptation and land-use planning.
Kerstin Hartung, Bastian Kern, Nils-Arne Dreier, Jörn Geisbüsch, Mahnoosh Haghighatnasab, Patrick Jöckel, Astrid Kerkweg, Wilton Jaciel Loch, Florian Prill, and Daniel Rieger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-135, https://doi.org/10.5194/gmd-2024-135, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
The Icosahedral Nonhydrostatic (ICON) Model Community Interface (ComIn) library supports connecting third-party modules to the ICON model. Third-party modules can range from simple diagnostic Python scripts to full chemistry models. ComIn offers a low barrier for code extensions to ICON, provides multi-language support (Fortran, C/C++ and Python) and reduces the migration effort in response to new ICON releases. This paper presents the ComIn design principles and a range of use cases.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Yuwen Fan, Zhao Yang, Min-Hui Lo, Jina Hur, and Eun-Soon Im
Geosci. Model Dev., 17, 6929–6947, https://doi.org/10.5194/gmd-17-6929-2024, https://doi.org/10.5194/gmd-17-6929-2024, 2024
Short summary
Short summary
Irrigated agriculture in the North China Plain (NCP) has a significant impact on the local climate. To better understand this impact, we developed a specialized model specifically for the NCP region. This model allows us to simulate the double-cropping vegetation and the dynamic irrigation practices that are commonly employed in the NCP. This model shows improved performance in capturing the general crop growth, such as crop stages, biomass, crop yield, and vegetation greenness.
Ed Blockley, Emma Fiedler, Jeff Ridley, Luke Roberts, Alex West, Dan Copsey, Daniel Feltham, Tim Graham, David Livings, Clement Rousset, David Schroeder, and Martin Vancoppenolle
Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, https://doi.org/10.5194/gmd-17-6799-2024, 2024
Short summary
Short summary
This paper documents the sea ice model component of the latest Met Office coupled model configuration, which will be used as the physical basis for UK contributions to CMIP7. Documentation of science options used in the configuration are given along with a brief model evaluation. This is the first UK configuration to use NEMO’s new SI3 sea ice model. We provide details on how SI3 was adapted to work with Met Office coupling methodology and documentation of coupling processes in the model.
Jean-François Lemieux, William H. Lipscomb, Anthony Craig, David A. Bailey, Elizabeth C. Hunke, Philippe Blain, Till A. S. Rasmussen, Mats Bentsen, Frédéric Dupont, David Hebert, and Richard Allard
Geosci. Model Dev., 17, 6703–6724, https://doi.org/10.5194/gmd-17-6703-2024, https://doi.org/10.5194/gmd-17-6703-2024, 2024
Short summary
Short summary
We present the latest version of the CICE model. It solves equations that describe the dynamics and the growth and melt of sea ice. To do so, the domain is divided into grid cells and variables are positioned at specific locations in the cells. A new implementation (C-grid) is presented, with the velocity located on cell edges. Compared to the previous B-grid, the C-grid allows for a natural coupling with some oceanic and atmospheric models. It also allows for ice transport in narrow channels.
Rachid El Montassir, Olivier Pannekoucke, and Corentin Lapeyre
Geosci. Model Dev., 17, 6657–6681, https://doi.org/10.5194/gmd-17-6657-2024, https://doi.org/10.5194/gmd-17-6657-2024, 2024
Short summary
Short summary
This study introduces a novel approach that combines physics and artificial intelligence (AI) for improved cloud cover forecasting. This approach outperforms traditional deep learning (DL) methods in producing realistic and physically consistent results while requiring less training data. This architecture provides a promising solution to overcome the limitations of classical AI methods and contributes to open up new possibilities for combining physical knowledge with deep learning models.
Marit Sandstad, Borgar Aamaas, Ane Nordlie Johansen, Marianne Tronstad Lund, Glen Philip Peters, Bjørn Hallvard Samset, Benjamin Mark Sanderson, and Ragnhild Bieltvedt Skeie
Geosci. Model Dev., 17, 6589–6625, https://doi.org/10.5194/gmd-17-6589-2024, https://doi.org/10.5194/gmd-17-6589-2024, 2024
Short summary
Short summary
The CICERO-SCM has existed as a Fortran model since 1999 that calculates the radiative forcing and concentrations from emissions and is an upwelling diffusion energy balance model of the ocean that calculates temperature change. In this paper, we describe an updated version ported to Python and publicly available at https://github.com/ciceroOslo/ciceroscm (https://doi.org/10.5281/zenodo.10548720). This version contains functionality for parallel runs and automatic calibration.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Jordi Buckley Paules, Simone Fatichi, Bonnie Warring, and Athanasios Paschalis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2072, https://doi.org/10.5194/egusphere-2024-2072, 2024
Short summary
Short summary
We outline and validate developments to the pre-existing process-based model T&C to better represent cropland processes. Foreseen applications of T&C-CROP include hydrological and carbon storage implications of land-use transitions involving crop, forest, and pasture conversion, as well as studies on optimal irrigation and fertilization under a changing climate.
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Ulrich Georg Wortmann, Tina Tsan, Mahrukh Niazi, Ruben Navasardyan, Magnus-Roland Marun, Bernardo S. Chede, Jingwen Zhong, and Morgan Wolfe
EGUsphere, https://doi.org/10.5194/egusphere-2024-1864, https://doi.org/10.5194/egusphere-2024-1864, 2024
Short summary
Short summary
The Earth Science Box Modeling Toolkit (ESBMTK) is a Python library designed to separate model description from numerical implementation. This approach results in well-documented, easily readable, and maintainable model code, allowing students and researchers to concentrate on conceptual challenges rather than mathematical intricacies.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Esteban Fernández and Gary Shaffer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-122, https://doi.org/10.5194/gmd-2024-122, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Here we describe, calibrate and test DCESS II, a new, broad, adaptable and fast Earth System Model. DCESS II has been designed for global simulations over time scales of years to millions of years using limited computer resources like a personal computer. With its flexibility and comprehensive treatment of the global carbon cycle, DCESS II should prove to be a useful, computational-friendly tool for simulations of past climates as well as for future Earth System projections.
Martin Juckes, Karl E. Taylor, Fabrizio Antonio, David Brayshaw, Carlo Buontempo, Jian Cao, Paul J. Durack, Michio Kawamiya, Hyungjun Kim, Tomas Lovato, Chloe Mackallah, Matthew Mizielinski, Alessandra Nuzzo, Martina Stockhause, Daniele Visioni, Jeremy Walton, Briony Turner, Eleanor O’Rourke, and Beth Dingley
EGUsphere, https://doi.org/10.5194/egusphere-2024-2363, https://doi.org/10.5194/egusphere-2024-2363, 2024
Short summary
Short summary
The Baseline Climate Variables for Earth System Modelling (ESM-BCVs) are defined as a list of 132 variables which have high utility for the evaluation and exploitation of climate simulations. The list reflects the most heavily used variables from Earth System Models, based on an assessment of data publication and download records from the largest archive of global climate projects.
Katherine Smith, Alice M. Barthel, LeAnn M. Conlon, Luke P. Van Roekel, Anthony Bartoletti, Jean-Christophe Golez, Chengzhu Zhang, Carolyn Branecky Begeman, James J. Benedict, Gautum Bisht, Yan Feng, Walter Hannah, Bryce E. Harrop, Nicole Jeffery, Wuyin Lin, Po-Lun Ma, Mathew E. Maltrud, Mark R. Petersen, Balwinder Singh, Qi Tang, Teklu Tesfa, Jonathan D. Wolfe, Shaocheng Xie, Xue Zheng, Karthik Balaguru, Oluwayemi Garuba, Peter Gleckler, Aixue Hu, Jiwoo Lee, Ben Moore-Maley, and Ana C. Ordonez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-149, https://doi.org/10.5194/gmd-2024-149, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Version 2.1 of the U.S. Department of Energy's Energy Exascale Earth System Model (E3SM) adds the Fox-Kemper et al. (2011) mixed layer eddy parameterization, which restratifies the ocean surface layer through an overturning streamfunction. Results include surface layer biases reduction in temperature, salinity, and sea-ice extent in the North Atlantic, a small strengthening of the Atlantic Meridional Overturning Circulation, and improvements in many atmospheric climatological variables.
Bo Dong, Paul Ullrich, Jiwoo Lee, Peter Gleckler, Kristin Chang, and Travis O'Brien
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-142, https://doi.org/10.5194/gmd-2024-142, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
1. A metrics package designed for easy analysis of AR characteristics and statistics is presented. 2. The tool is efficient for diagnosing systematic AR bias in climate models, and useful for evaluating new AR characteristics in model simulations. 3. In climate models, landfalling AR precipitation shows dry biases globally, and AR tracks are farther poleward (equatorward) in the north and south Atlantic (south Pacific and Indian Ocean).
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Cited articles
ArcGIS: Geodesic slope computation,
https://pro.arcgis.com/en/pro-app/2.7/tool-reference/spatial-analyst/how-slope-works.htm,
last access: 22 December 2021. a
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls
on the surface energy balance of a high Arctic valley glacier, J.
Geophys. Res.-Earth, 111, F02011, https://doi.org/10.1029/2005JF000426, 2006. a
Arthur, R. S., Lundquist, K. A., Mirocha, J. D., and Chow, F. K.: Topographic
Effects on Radiation in the WRF Model with the Immersed Boundary Method:
Implementation, Validation, and Application to Complex Terrain, Mon.
Weather Rev., 146, 3277–3292, https://doi.org/10.1175/MWR-D-18-0108.1, 2018. a, b
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M.,
Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou,
S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B.,
Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F.,
Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E.,
Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D.,
Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa,
M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen,
B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J.,
de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first
multi-model ensemble of regional climate simulations at kilometer-scale
resolution, part I: evaluation of precipitation, Clim. Dynam., 57,
275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021. a
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith,
K.: Cython: The Best of Both Worlds, Comput. Sci. Eng., 13,
31–39, https://doi.org/10.1109/MCSE.2010.118, 2011. a
Bosch, J., Batlles, F., Zarzalejo, L., and López, G.: Solar resources
estimation combining digital terrain models and satellite images techniques,
Renew. Energ., 35, 2853 – 2861, https://doi.org/10.1016/j.renene.2010.05.011, 2010. a, b
Calcabrini, A., Ziar, H., Isabella, O., and Zeman, M.: A simplified
skyline-based method for estimating the annual solar energy potential in
urban environments, Nature Energy, 4, 206–215,
https://doi.org/10.1038/s41560-018-0318-6, 2019. a
Campos, R., Quintana, J., Garcia, R., Schmitt, T., Spoelstra, G., and
M. A. Schaap, D.: 3D Simplification Methods and Large Scale Terrain Tiling,
Remote Sensing, 12, 437, https://doi.org/10.3390/rs12030437, 2020. a
Chiodini, S., Pertile, M., Debei, S., Bramante, L., Ferrentino, E.,
Villa, A. G., Musso, I., and Barrera, M.: Mars rovers localization by
matching local horizon to surface digital elevation models, in: 2017 IEEE
International Workshop on Metrology for AeroSpace (MetroAeroSpace),
374–379, https://doi.org/10.1109/MetroAeroSpace.2017.7999600, 2017. a
Chow, F. K., Weigel, A. P., Street, R. L., Rotach, M. W., and Xue, M.:
High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part
I: Methodology, Verification, and Sensitivity Experiments, J. Appl.
Meteorol. Clim., 45, 63–86, https://doi.org/10.1175/JAM2322.1, 2006. a, b
Chu, Q., Yan, G., Qi, J., Mu, X., Li, L., Tong, Y., Zhou, Y., Liu, Y., Xie, D.,
and Wild, M.: Quantitative Analysis of Terrain Reflected Solar Radiation in
Snow-Covered Mountains: A Case Study in Southeastern Tibetan Plateau, J.
Geophys. Res.-Atmos., 126, e2020JD034294,
https://doi.org/10.1029/2020JD034294, 2021. a
Codilean, A. T.: Calculation of the cosmogenic nuclide production topographic
shielding scaling factor for large areas using DEMs, Earth Surf. Proc.
Land., 31, 785–794, https://doi.org/10.1002/esp.1336, 2006. a
Codilean, A. T., Munack, H., Cohen, T. J., Saktura, W. M., Gray, A., and Mudd, S. M.: OCTOPUS: an open cosmogenic isotope and luminescence database, Earth Syst. Sci. Data, 10, 2123–2139, https://doi.org/10.5194/essd-10-2123-2018, 2018. a
Corripio, J. G.: Vectorial algebra algorithms for calculating terrain
parameters from DEMs and solar radiation modelling in mountainous terrain,
Int. J. Geogr. Inf. Sci., 17, 1–23,
https://doi.org/10.1080/713811744, 2003. a
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science
communication, Nature Commun., 11, 5444,
https://doi.org/10.1038/s41467-020-19160-7, 2020. a
Dirksen, M., Ronda, R., Theeuwes, N., and Pagani, G.: Sky view factor
calculations and its application in urban heat island studies, Urban Climate,
30, 100498, https://doi.org/10.1016/j.uclim.2019.100498, 2019. a
Dozier, J., Bruno, J., and Downey, P.: A faster solution to the horizon
problem, Comput. Geosci., 7, 145–151,
https://doi.org/10.1016/0098-3004(81)90026-1, 1981. a, b, c, d
Dürr, B. and Zelenka, A.: Deriving surface global irradiance over the
Alpine region from METEOSAT Second Generation data by supplementing the
HELIOSAT method, Int. J. Remote Sens., 30, 5821–5841,
https://doi.org/10.1080/01431160902744829, 2009. a, b
Fiddes, J., Aalstad, K., and Lehning, M.: TopoCLIM: rapid topography-based downscaling of regional climate model output in complex terrain v1.1, Geosci. Model Dev., 15, 1753–1768, https://doi.org/10.5194/gmd-15-1753-2022, 2022. a
Fogleman, M.: heightmap meshing utility (hmm),
https://github.com/fogleman/hmm, last access: 22 December
2021. a
Garland, M. and Heckbert, P. S.: Fast Polygonal Approximation of Terrains and
Height Fields, Tech. Rep. CMU-CS-95-181, Carnegie Mellon University, 1995. a
Grohmann, C. H.: Evaluation of TanDEM-X DEMs on selected Brazilian sites:
Comparison with SRTM, ASTER GDEM and ALOS AW3D30, Remote Sens.
Environ., 212, 121–133, https://doi.org/10.1016/j.rse.2018.04.043,
2018. a
Hao, D., Bisht, G., Gu, Y., Lee, W.-L., Liou, K.-N., and Leung, L. R.: A parameterization of sub-grid topographical effects on solar radiation in the E3SM Land Model (version 1.0): implementation and evaluation over the Tibetan Plateau, Geosci. Model Dev., 14, 6273–6289, https://doi.org/10.5194/gmd-14-6273-2021, 2021. a
Helbig, N. and Löwe, H.: Shortwave radiation parameterization scheme for
subgrid topography, J. Geophys. Res.-Atmos., 117, D03112,
https://doi.org/10.1029/2011JD016465, 2012. a
Helbig, N. and Löwe, H.: Parameterization of the spatially averaged sky
view factor in complex topography, J. Geophys. Res.-Atmos., 119, 4616–4625, https://doi.org/10.1002/2013JD020892, 2014. a, b, c
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G.,
Georgopoulou, E., Gobiet, A., Menut, L., Nikulin, G., Haensler, A.,
Hempelmann, N., Jones, C., Keuler, K., Kovats, S., Kröner, N., Kotlarski,
S., Kriegsmann, A., Martin, E., van Meijgaard, E., Moseley, C., Pfeifer, S.,
Preuschmann, S., Radermacher, C., Radtke, K., Rechid, D., Rounsevell, M.,
Samuelsson, P., Somot, S., Soussana, J.-F., Teichmann, C., Valentini, R.,
Vautard, R., Weber, B., and Yiou, P.: EURO-CORDEX: new high-resolution
climate change projections for European impact research, Reg.
Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a
Jones, K. H.: A comparison of algorithms used to compute hill slope as a
property of the DEM, Comput. Geosci., 24, 315–323,
https://doi.org/10.1016/S0098-3004(98)00032-6, 1998. a
Karney, C. F. F.: A python implementation of the geodesic routines in
GeographicLib,
https://geographiclib.sourceforge.io/html/python/, last
access: 22 December 2021. a
Karney, C. F. F.: Algorithms for geodesics, J. Geodesy, 87, 43–55,
https://doi.org/10.1007/s00190-012-0578-z, 2013. a, b
Karsisto, V., Nurmi, P., Kangas, M., Hippi, M., Fortelius, C., Niemelä, S.,
and Järvinen, H.: Improving road weather model forecasts by adjusting the
radiation input, Meteorol. Appl., 23, 503–513,
https://doi.org/10.1002/met.1574, 2016. a
Lee, W.-L., Liou, K.-N., Wang, C.-c., Gu, Y., Hsu, H.-H., and Li, J.-L. F.:
Impact of 3-D Radiation-Topography Interactions on Surface Temperature and
Energy Budget Over the Tibetan Plateau in Winter, J. Geophys.
Res.-Atmos., 124, 1537–1549, https://doi.org/10.1029/2018JD029592, 2019. a, b
Lemoine, F., Kenyon, S., Factor, J., Trimmer, R., Pavlis, N., Chinn, D., Cox,
C., Klosko, S., Luthcke, S., Torrence, M., Wang, Y., Williamson, R., Pavlis,
E., Rapp, R., and Olson, T.: The development of the joint NASA GSFC and the
National Imagery and Mapping Agency (NIMA) geopotential model EGM96, Tech.
rep., National Aeronau- tics and Space Administration – Goddard Space Flight
Center, Greenbelt, USA, 1998. a, b
Liou, K. N., Gu, Y., Leung, L. R., Lee, W. L., and Fovell, R. G.: A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada, Atmos. Chem. Phys., 13, 11709–11721, https://doi.org/10.5194/acp-13-11709-2013, 2013. a, b
Marsh, C. B., Pomeroy, J. W., and Wheater, H. S.: The Canadian Hydrological Model (CHM) v1.0: a multi-scale, multi-extent, variable-complexity hydrological model – design and overview, Geosci. Model Dev., 13, 225–247, https://doi.org/10.5194/gmd-13-225-2020, 2020. a, b
Müller, M. D. and Scherer, D.: A Grid- and Subgrid-Scale Radiation
Parameterization of Topographic Effects for Mesoscale Weather Forecast
Models, Mon. Weather Rev., 133, 1431–1442, https://doi.org/10.1175/MWR2927.1,
2005. a, b
Nagy, B.: A New Method of Improving the Azimuth in Mountainous Terrain by
Skyline Matching, J. Photogramm., 88, 121–131, https://doi.org/10.1007/s41064-020-00093-1, 2020. a
NGS: GEOID12A, NGS [data set], https://geodesy.noaa.gov/GEOID/GEOID12A/, last
access: 22 December 2021. a
Olson, M. and Rupper, S.: Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography, The Cryosphere, 13, 29–40, https://doi.org/10.5194/tc-13-29-2019, 2019. a
Olson, M., Rupper, S., and Shean, D. E.: Terrain Induced Biases in Clear-Sky
Shortwave Radiation Due to Digital Elevation Model Resolution for Glaciers in
Complex Terrain, Front. Earth Sci., 7, 216,
https://doi.org/10.3389/feart.2019.00216, 2019. a
Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke,
D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M.:
OptiX: A General Purpose Ray Tracing Engine, ACM Trans. Graph., 29,
https://doi.org/10.1145/1778765.1778803, 2010. a
Pillot, B.: DEM-based topography horizon model,
https://www.mathworks.com/matlabcentral/fileexchange/59421-dem-based-topography-horizon-model
(last access: 22 December 2021), 2016. a
Pillot, B., Muselli, M., Poggi, P., Haurant, P., and Dias, J. B.: Development
and validation of a new efficient SRTM DEM-based horizon model combined with
optimization and error prediction methods, Sol. Energy, 129, 101–115,
https://doi.org/10.1016/j.solener.2016.01.058, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m
Porter, C., Morin, P., Howat, I., Noh, M.-J., Bates, B., Peterman, K., Keesey,
S., Schlenk, M., Gardiner, J., Tomko, K., Willis, M., Kelleher, C., Cloutier,
M., Husby, E., Foga, S., Nakamura, H., Platson, M., Wethington, Michael, J.,
Williamson, C., Bauer, G., Enos, J., Arnold, G., Kramer, W., Becker, P.,
Doshi, A., D'Souza, C., Cummens, P., Laurier, F., and Bojesen, M.:
ArcticDEM, Harvard Dataverse, V1 [data set], https://doi.org/10.7910/DVN/OHHUKH, 2018. a
Pritt, S. W.: Geolocation of photographs by means of horizon matching with
digital elevation models, in: 2012 IEEE International Geoscience and Remote
Sensing Symposium, 1749–1752, https://doi.org/10.1109/IGARSS.2012.6351180, 2012. a
Rontu, L., Wastl, C., and Niemelä, S.: Influence of the Details of
Topography on Weather Forecast – Evaluation of HARMONIE Experiments in the
Sochi Olympics Domain over the Caucasian Mountains, Front. Earth
Sci., 4, 13, https://doi.org/10.3389/feart.2016.00013, 2016. a, b
Ruiz-Arias, J. A., Cebecauer, T., Tovar-Pescador, J., and Šúri, M.:
Spatial disaggregation of satellite-derived irradiance using a
high-resolution digital elevation model, Sol. Energy, 84, 1644–1657,
https://doi.org/10.1016/j.solener.2010.06.002, 2010. a
Saurer, O., Baatz, G., Köser, K., Ladický, L., and Pollefeys, M.: Image
Based Geo-localization in the Alps, Int. J. Comput. Vision,
116, 213–225, https://doi.org/10.1007/s11263-015-0830-0, 2016. a
Scarano, M. and Mancini, F.: Assessing the relationship between sky view factor
and land surface temperature to the spatial resolution, Int. J.
Remote Sens., 38, 6910–6929, https://doi.org/10.1080/01431161.2017.1368099, 2017. a
Senkova, A. V., Rontu, L., and Savijärvi, H.: Parametrization of orographic
effects on surface radiation in HIRLAM, Tellus A, 59, 279–291, https://doi.org/10.1111/j.1600-0870.2007.00235.x, 2007. a, b, c
Sørland, S. L., Brogli, R., Pothapakula, P. K., Russo, E., Van de Walle, J., Ahrens, B., Anders, I., Bucchignani, E., Davin, E. L., Demory, M.-E., Dosio, A., Feldmann, H., Früh, B., Geyer, B., Keuler, K., Lee, D., Li, D., van Lipzig, N. P. M., Min, S.-K., Panitz, H.-J., Rockel, B., Schär, C., Steger, C., and Thiery, W.: COSMO-CLM regional climate simulations in the Coordinated Regional Climate Downscaling Experiment (CORDEX) framework: a review, Geosci. Model Dev., 14, 5125–5154, https://doi.org/10.5194/gmd-14-5125-2021, 2021. a
Steger, C: ChristianSteger/HORAYZON: HORAYZON v1.2 (v1.2), Zenodo [code], https://doi.org/10.5281/zenodo.6965104, 2022. a
Steppeler, J., Doms, G., Schättler, U., Bitzer, H. W., Gassmann, A.,
Damrath, U., and Gregoric, G.: Meso-gamma scale forecasts using the
nonhydrostatic model LM, Meteorol. Atmos. Phys., 82, 75–96,
https://doi.org/10.1007/s00703-001-0592-9, 2003.
a
Swisstopo: Approximate formulas for the transformation between Swiss projection
coordinates and- WGS84,
https://www.swisstopo.admin.ch/content/swisstopo-internet/en/online/calculation-services/_jcr_content/contentPar/tabs/items/documents_publicatio/tabPar/downloadlist/downloadItems/19_1467104393233.download/ch1903wgs84_e.pdf
(last access: 22 December 2021), 2016. a
TBB: Intel Threading Building Blocks,
https://github.com/oneapi-src/oneTBB, last access: 22
December 2021. a
USGS: 1 meter Digital Elevation Models, USGS National Map 3DEP Downloadable
Data Collection [data set],
https://www.sciencebase.gov/catalog/item/543e6b86e4b0fd76af69cf4c (last access: 5 September 2022),
2017b. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,
Nature Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wald, I., Woop, S., Benthin, C., Johnson, G. S., and Ernst, M.: Embree: A
Kernel Framework for Efficient CPU Ray Tracing, ACM Trans. Graph., 33,
https://doi.org/10.1145/2601097.2601199, 2014. a, b
Wessel, P. and Smith, W. H. F.: A global, self-consistent, hierarchical,
high-resolution shoreline database, J. Geophys. Res.-Sol.
Ea., 101, 8741–8743, https://doi.org/10.1029/96JB00104, 1996. a
Zakšek, K., Oštir, K., and Kokalj, Ž.: Sky-View Factor as a
Relief Visualization Technique, Remote Sensing, 3, 398,
https://doi.org/10.3390/rs3020398, 2011. a
Zhang, Y. L., Li, X., Cheng, G. D., Jin, H. J., Yang, D. W., Flerchinger,
G. N., Chang, X. L., Wang, X., and Liang, J.: Influences of Topographic
Shadows on the Thermal and Hydrological Processes in a Cold Region
Mountainous Watershed in Northwest China, J. Adv. Model.
Earth Sy., 10, 1439–1457, https://doi.org/10.1029/2017MS001264,
2018. a, b
Executive editor
Finding the horizon is commonplace for humans, and evocative when imagining journeys on the coast, in the mountains, or in endless plains. This paper shows a way to optimize a machine's ability to complete the same task, with the goal of bettering our ability to understand nature and climate.
Finding the horizon is commonplace for humans, and evocative when imagining journeys on the...
Short summary
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications; e.g. they are used to account for effects of terrain on surface radiation in climate and land surface models. Because typical terrain horizon algorithms are inefficient for high-resolution (< 30 m) elevation data, we developed a new algorithm based on a ray-tracing library. A comparison with two conventional methods revealed both its high performance and its accuracy for complex terrain.
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications;...