Articles | Volume 15, issue 17
Geosci. Model Dev., 15, 6817–6840, 2022
https://doi.org/10.5194/gmd-15-6817-2022
Geosci. Model Dev., 15, 6817–6840, 2022
https://doi.org/10.5194/gmd-15-6817-2022
Model description paper
 | Highlight paper
08 Sep 2022
Model description paper  | Highlight paper | 08 Sep 2022

HORAYZON v1.2: an efficient and flexible ray-tracing algorithm to compute horizon and sky view factor

Christian R. Steger et al.

Related authors

An exploratory modelling study of perennial firn aquifers in the Antarctic Peninsula for the period 1979–2016
J. Melchior van Wessem, Christian R. Steger, Nander Wever, and Michiel R. van den Broeke
The Cryosphere, 15, 695–714, https://doi.org/10.5194/tc-15-695-2021,https://doi.org/10.5194/tc-15-695-2021, 2021
Short summary
The modelled liquid water balance of the Greenland Ice Sheet
Christian R. Steger, Carleen H. Reijmer, and Michiel R. van den Broeke
The Cryosphere, 11, 2507–2526, https://doi.org/10.5194/tc-11-2507-2017,https://doi.org/10.5194/tc-11-2507-2017, 2017
Short summary

Related subject area

Climate and Earth system modeling
Combining regional mesh refinement with vertically enhanced physics to target marine stratocumulus biases as demonstrated in the Energy Exascale Earth System Model version 1
Peter A. Bogenschutz, Hsiang-He Lee, Qi Tang, and Takanobu Yamaguchi
Geosci. Model Dev., 16, 335–352, https://doi.org/10.5194/gmd-16-335-2023,https://doi.org/10.5194/gmd-16-335-2023, 2023
Short summary
Evaluation of native Earth system model output with ESMValTool v2.6.0
Manuel Schlund, Birgit Hassler, Axel Lauer, Bouwe Andela, Patrick Jöckel, Rémi Kazeroni, Saskia Loosveldt Tomas, Brian Medeiros, Valeriu Predoi, Stéphane Sénési, Jérôme Servonnat, Tobias Stacke, Javier Vegas-Regidor, Klaus Zimmermann, and Veronika Eyring
Geosci. Model Dev., 16, 315–333, https://doi.org/10.5194/gmd-16-315-2023,https://doi.org/10.5194/gmd-16-315-2023, 2023
Short summary
WRF–ML v1.0: a bridge between WRF v4.3 and machine learning parameterizations and its application to atmospheric radiative transfer
Xiaohui Zhong, Zhijian Ma, Yichen Yao, Lifei Xu, Yuan Wu, and Zhibin Wang
Geosci. Model Dev., 16, 199–209, https://doi.org/10.5194/gmd-16-199-2023,https://doi.org/10.5194/gmd-16-199-2023, 2023
Short summary
The Euro-Mediterranean Center on Climate Change (CMCC) decadal prediction system
Dario Nicolì, Alessio Bellucci, Paolo Ruggieri, Panos J. Athanasiadis, Stefano Materia, Daniele Peano, Giusy Fedele, Riccardo Hénin, and Silvio Gualdi
Geosci. Model Dev., 16, 179–197, https://doi.org/10.5194/gmd-16-179-2023,https://doi.org/10.5194/gmd-16-179-2023, 2023
Short summary
Climate impacts of parameterizing subgrid variation and partitioning of land surface heat fluxes to the atmosphere with the NCAR CESM1.2
Ming Yin, Yilun Han, Yong Wang, Wenqi Sun, Jianbo Deng, Daoming Wei, Ying Kong, and Bin Wang
Geosci. Model Dev., 16, 135–156, https://doi.org/10.5194/gmd-16-135-2023,https://doi.org/10.5194/gmd-16-135-2023, 2023
Short summary

Cited articles

ArcGIS: Geodesic slope computation, https://pro.arcgis.com/en/pro-app/2.7/tool-reference/spatial-analyst/how-slope-works.htm, last access: 22 December 2021. a
Arnold, N. S., Rees, W. G., Hodson, A. J., and Kohler, J.: Topographic controls on the surface energy balance of a high Arctic valley glacier, J. Geophys. Res.-Earth, 111, F02011, https://doi.org/10.1029/2005JF000426, 2006. a
Arthur, R. S., Lundquist, K. A., Mirocha, J. D., and Chow, F. K.: Topographic Effects on Radiation in the WRF Model with the Immersed Boundary Method: Implementation, Validation, and Application to Complex Terrain, Mon. Weather Rev., 146, 3277–3292, https://doi.org/10.1175/MWR-D-18-0108.1, 2018. a, b
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi, M., Ahrens, B., Alias, A., Anders, I., Bastin, S., Belušić, D., Berthou, S., Brisson, E., Cardoso, R. M., Chan, S. C., Christensen, O. B., Fernández, J., Fita, L., Frisius, T., Gašparac, G., Giorgi, F., Goergen, K., Haugen, J. E., Hodnebrog, Ø., Kartsios, S., Katragkou, E., Kendon, E. J., Keuler, K., Lavin-Gullon, A., Lenderink, G., Leutwyler, D., Lorenz, T., Maraun, D., Mercogliano, P., Milovac, J., Panitz, H.-J., Raffa, M., Remedio, A. R., Schär, C., Soares, P. M. M., Srnec, L., Steensen, B. M., Stocchi, P., Tölle, M. H., Truhetz, H., Vergara-Temprado, J., de Vries, H., Warrach-Sagi, K., Wulfmeyer, V., and Zander, M. J.: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation, Clim. Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021. a
Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K.: Cython: The Best of Both Worlds, Comput. Sci. Eng., 13, 31–39, https://doi.org/10.1109/MCSE.2010.118, 2011. a
Download
Executive editor
Finding the horizon is commonplace for humans, and evocative when imagining journeys on the coast, in the mountains, or in endless plains. This paper shows a way to optimize a machine's ability to complete the same task, with the goal of bettering our ability to understand nature and climate.
Short summary
Terrain horizon and sky view factor are crucial quantities for many geoscientific applications; e.g. they are used to account for effects of terrain on surface radiation in climate and land surface models. Because typical terrain horizon algorithms are inefficient for high-resolution (< 30 m) elevation data, we developed a new algorithm based on a ray-tracing library. A comparison with two conventional methods revealed both its high performance and its accuracy for complex terrain.