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Abstract. Terrain parameters like topographic horizon and
sky view factor (SVF) are used in numerous fields and appli-
cations. In atmospheric and climate modelling, such parame-
ters are utilised to parameterise the effect of terrain geometry
on radiation exchanges between the surface and the atmo-
sphere. Ideally, these parameters are derived from a high-
resolution digital elevation model (DEM) because inferring
them from coarser elevation data induces a smoothing ef-
fect. Computing topographic horizon with conventional al-
gorithms, however, is slow because large amounts of non-
local terrain data have to be processed. We propose a new and
more efficient method, which is based on a high-performance
ray-tracing library. The new algorithm can speed up horizon
calculation by 2 orders of magnitude relative to a conven-
tional approach. By applying terrain simplification to remote
topography, the ray-tracing-based algorithm can also be ap-
plied with very high-resolution (< 5 m) DEM data, which
would otherwise induce an excessive memory footprint. The
topographic horizon algorithm is accompanied by an SVF
algorithm, which was verified to work accurately for all ter-
rain – even very steep and complex terrain. We compare the
computational performance and accuracy of the new horizon
algorithm with two reference methods from the literature and
illustrate its benefits. Finally, we illustrate how sub-grid SVF
values can be efficiently computed with the newly derived
horizon algorithm for a wide range of target grid resolutions
(1–25 km).

1 Introduction

In mountains, radiation exchange between the surface and
the atmosphere is substantially influenced by terrain geom-
etry. By knowing the local slope angle and aspect, the ef-
fect of self-shading on direct incoming shortwave radiation
can readily be considered. However, for all other topographic
effects on radiation, like topographic shading, (multiple) re-
flection of shortwave radiation and the exchange of longwave
emission between slopes, the geometry of non-local terrain
must be considered. For radiation modelling, two parameters
are particularly relevant and often applied: the horizon and
the sky view factor (SVF). The first parameter is uniformly
defined in the literature and indicates the boundary line be-
tween the terrain and the sky as seen from a certain location.
It can be used to account for topographic shading, i.e. as-
sessing if direct incoming shortwave radiation is blocked by
surrounding terrain. The second parameter can be inferred
from the horizon but is ambiguously defined: Zakšek et al.
(2011) specify the SVF as the solid angle of the visible sky,
which corresponds to the fraction of a hemisphere occupied
by the sky. Dozier and Frew (1990) provide a different defini-
tion of the SVF, which specifies the fraction of sky radiance a
location receives under the assumption of isotropic sky radia-
tion. The latter definition is often used to parameterise effects
like terrain reflection of shortwave radiation and exchange of
longwave emission between slopes.

The terrain parameters horizon and SVF are applied in a
wide range of disciplines and fields: in atmospheric and cli-
mate modelling, topographic shading is considered in certain
models by computing the terrain horizons of all grid cells
(Chow et al., 2006; Arthur et al., 2018). In addition, some
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models use the SVF to correct fluxes of longwave and/or dif-
fuse shortwave radiation (Müller and Scherer, 2005; Senkova
et al., 2007; Buzzi, 2008; Manners et al., 2012; Liou et al.,
2013; Rontu et al., 2016; Lee et al., 2019). Terrain param-
eters in these studies are either computed from the model’s
internal elevation representation or from a sub-grid digital
elevation model (DEM). Topographic shading is also con-
sidered in various spatially distributed land surface models
with typically higher horizontal resolutions – like in hydrol-
ogy (Zhang et al., 2018; Marsh et al., 2020) and glaciol-
ogy (Arnold et al., 2006; Olson and Rupper, 2019; Olson
et al., 2019). Terrain parameters are also relevant for down-
scaling outputs of climate and weather models, for instance
in TopoCLIM (Fiddes et al., 2022), or to produce road con-
dition forecasts (Karsisto et al., 2016). For urban areas and
cities, the SVF is utilised to quantify radiation exchanges in
street canyons and their contribution to the urban heat island
effect (Dirksen et al., 2019; Scarano and Mancini, 2017). Ad-
ditionally, SVF and horizon can also be used to estimate so-
lar resources in urban environments (Calcabrini et al., 2019).
In satellite climatology, the horizon line and SVF are cru-
cial quantities to model radiation in complex terrain (Dürr
and Zelenka, 2009; Bosch et al., 2010; Ruiz-Arias et al.,
2010). In geochronology, a concept similar to the SVF is ap-
plied – the so-called topographic shielding (Codilean, 2006;
Codilean et al., 2018). This quantity is used to correct incom-
ing cosmic radiation fluxes, which can provide information
on exposure ages of bedrock and surface denudation rates.
Finally, horizon lines are also relevant for more technical ap-
plications, like determining the camera position of an image
by horizon matching. This technique can be used to geolo-
calise photographs (Pritt, 2012; Saurer et al., 2016), improve
the estimated azimuth angles of augmented reality devices
(Nagy, 2020) and even to localise a Mars rover (Chiodini
et al., 2017).

An early concept of computing horizon and SVF is pre-
sented in Dozier et al. (1981) and Dozier and Frew (1990).
They propose an algorithm in which the horizon line for a
position is computed by dividing the azimuth in discrete sec-
tors. For each sector, the horizon is derived by computing el-
evation angles of all DEM grid cells that intersect the sector’s
centreline and taking the maximum angle. A speed-up of this
algorithm is suggested in Dozier et al. (1981), but the con-
cept is only applied to DEM data on a regular and planar grid.
Bosch et al. (2010) suggested another approach to speed up
horizon calculation. They divide a sector into a near-distance
(< 5 km) and far-distance domain. For the former domain, all
DEM information is processed, whereas only some of the in-
formation (local maxima) is used for the latter. The horizon is
then estimated by combining the near- and far-distance hori-
zons. Finally, Pillot et al. (2016) present a horizon algorithm
that closely follows the initial, non-accelerated concept of
Dozier et al. (1981). In contrast to many earlier studies, they
do not assume a planar DEM grid and account for the curva-
ture of the Earth’s surface.

In many studies (Pillot et al., 2016; Zhang et al., 2018;
Marsh et al., 2020), horizon algorithms are still based on
the conventional concept, in which all terrain information
along a finite centreline is scanned to find the highest ele-
vation angle. These algorithms typically perform sufficiently
for DEMs with coarse resolutions and/or small sizes. Pro-
cessing of large, high-resolution (≤ 30 m) DEM data, like
NASADEM (NASA JPL, 2020), USGS 1/3 arcsec DEM
(USGS, 2017a) and swissALTI3D (Swisstopo, 2018), how-
ever, is very time-consuming. We propose a faster horizon al-
gorithm, which is versatile in its application and based upon
a state-of-the-art high-performance ray-tracing library (Wald
et al., 2014; Embree, 2021) used in 3D computer graphics.
Such libraries are highly optimised and undergo continuous
development, which make them attractive for our purpose.
In this approach, terrain information is stored as a triangu-
lar mesh in a bounding volume hierarchy (BVH), and only
a fraction of terrain information has to be checked along a
search line (or ray). The proposed horizon algorithm is ac-
companied by an SVF algorithm, which ensures accurate re-
sults for all terrain – even very steep and complex terrain.
Additionally, we illustrate how sub-grid SVF values can be
computed efficiently for a large range of target grid spacings
(1–25 km), which was a main motivation to develop the new
algorithms.

This paper is structured as follows: input DEM data, which
are used to evaluate the algorithms and illustrate computed
terrain parameters, are described in Sect. 2. Implementation
details of the horizon and SVF algorithms are subsequently
presented in Sect. 3. In Sect. 4, the new algorithm is eval-
uated in terms of computational performance and accuracy.
Section 5 shows how the algorithm can be used to compute
sub-grid SVF and illustrates its application with very high-
resolution DEM data. Overall conclusions and outlooks are
presented in Sect. 6.

2 Data

To evaluate and illustrate the proposed horizon and SVF al-
gorithms, we use data from three different DEMs with hori-
zontal resolutions ranging from ∼ 30 to 2 m.

– NASADEM (NASA JPL, 2020) offers a horizontal res-
olution of 1 arcsec (∼ 30 m) and nearly global cover-
age (56◦ S to 60◦ N). NASADEM is the result of re-
processing Shuttle Radar Topography Mission (SRTM)
data and incorporating additional elevation data pri-
marily from the Ice, Cloud, and Land Elevation Satel-
lite (ICESat). Remaining voids were mainly filled with
ASTER-derived Global DEM (GDEM). NASADEM el-
evations are referenced to the WGS84 ellipsoid and pro-
vided as orthometric heights relative to the Earth Grav-
itational Model 1996 (EGM96; Lemoine et al., 1998;
NGA, 2021).
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– The USGS 1/3 arcsec DEM (USGS, 2017a) is provided
at a horizontal resolution of ∼ 10 m. The data set pro-
vides void-free and seamless elevation over the conter-
minous United States, Hawaii, Puerto Rico, other terri-
torial islands and in limited areas of Alaska. The ele-
vation data are referenced to the North American Da-
tum of 1983, and orthometric heights are relative to the
North American Vertical Datum of 1988.

– SwissALTI3D (Swisstopo, 2018) is a DEM with a very
high resolution of 2 m and covers the entire area of
Switzerland. The model was compiled from various
sources: below 2000 m a.s.l., lidar data with high ac-
curacy (in all three dimensions) of ±0.5 m are applied.
Above, stereo correlation data are used, which have an
accuracy of ±1.0 to ±3.0 m. Some manual updates re-
garding individual points, break lines and areas were
also included, which feature accuracies in the range of
±0.1 to±1.0 m. The elevation data are referenced to the
Swiss coordinate system LV95 and the Swiss national
levelling network LN02.

3 Horizon and sky view factor algorithms

3.1 Pre-processing of digital elevation model data

To compute the horizon with our applied ray-tracing library,
elevation data must be available in a Cartesian coordinate
system. Furthermore, auxiliary quantities like local upward,
north and east direction must be known as well as terrain
slope angle and aspect for the successive SVF calculation.
Elevation data sets are typically provided on map projec-
tions (SwissALTI3D) or in geodetic coordinates (φ: latitude,
λ: longitude) and orthometric height (ho (NASADEM and
USGS 1/3 arcsec). A multi-level coordinate transformation
is thus required, and the auxiliary quantities must be com-
puted.

3.1.1 Selection of required digital elevation model
domain

In a first step, we determine the total size of the DEM tile
required to compute the horizon for a inner rectangular do-
main. The inner domain has to be extended by a boundary
zone width b according to the applied search distance for the
horizon. Typical values for b used in this study range from
25–50 km. For DEM data on an equally spaced grid, like
SwissALTI3D, the extension of the inner domain is straight-
forward. For DEM data on a geodetic coordinate grid, like
NASADEM and the USGS 1/3 arcsec DEM, the size of the
total domain is computed by extending the inner domain,
which is bounded by λmin, λmax, φmin and φmax, with 1λa,
1φs and 1φn, respectively (Fig. 1).

Figure 1. Total digital elevation model domain (thick blue line) re-
quired to compute the horizon for the inner blue mesh. Black paral-
lels of latitude represent circles and black meridians geodesics.

The required extension in the longitudinal direction can be
approximated by

1λa =
2π
pl
b , (1)

where pl represents the length of the parallel at φa =max(|
φmin |, | φmax |). This length is computed with

pl = 2π
a√

1− e2 sin2φa

cosφa , (2)

where a represents Earth’s equatorial radius (semi-major
axis) and e its eccentricity. The total required DEM input do-
main in the longitude direction is then given by subtracting or
adding 1λa from λmin and λmax. The necessary extension in
the latitudinal direction (1φs and 1φn) is computed from b

via the direct geodesic problem (Karney, 2013), whose equa-
tions are implemented in the C++ library GeographicLib and
called via a Python wrapper (Karney, 2021). Computing do-
main extensions is more cumbersome in the case that geo-
graphic poles are included.

3.1.2 Coordinate transformations and computation of
auxiliary quantities

We utilise multiple coordinate systems in this work, which
are listed below and partially illustrated in Fig. 2.

– Map projection (optional)
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Figure 2. Illustration of the different coordinate systems applied: (a) the geodetic coordinate system (λ, φ) and the geocentric Earth-centred,
Earth-fixed (ECEF) reference system (x,y,z); (b) the topocentric east–north–up (ENU) reference system (x′,y′,z′) and a second local
ENU system (x′′,y′′,z′′). The grey mesh in panel (b) shows the curvature of the Earth’s surface and illustrates how local and global ENU
coordinates deviate.

– Geodetic coordinates

– Geocentric Earth-centred, Earth-fixed coordinates
(ECEF)

– Global east–north–up coordinates (global ENU)

– Local east–north–up coordinates (local ENU)

– Spherical coordinates in the local ENU reference sys-
tem

Definitions of these systems and transformations between
them are provided in Appendix A. In the case of DEM
data on a map projection, we first transform the data to
geodesic coordinates. For SwissALTI3D elevation data, we
apply the equations provided in Swisstopo (2016). The fol-
lowing steps are then performed identically for all consid-
ered DEM products: first, we transform geodetic coordinates
to a geocentric Earth-centred, Earth-fixed (ECEF) reference
system (x,y,z). Local up, north and east directions are com-
puted in this coordinate system for every DEM grid cell (see
Appendix B1). DEM coordinates and direction vectors are
then transformed to a topocentric east–north–up (ENU) ref-
erence system (x′,y′,z′). The origin of these coordinates co-
incides with the centre of the considered DEM domain, and
we refer to this system as global ENU coordinates. The trans-
formation to a global ENU system constrains coordinates to
a numerical range that can be represented with sufficient ac-
curacy as single-precision floats. This data type is required
in the applied ray-tracing library. The above transformation
steps are performed once for a certain DEM domain, and the
obtained DEM coordinates and direction vectors in global
ENU coordinates are subsequently passed to the ray-casting

part of the algorithm. The size of the selected DEM domain
is thereby primarily restricted by memory requirements.

Within the ray-casting part of the algorithm (see
Sect. 3.2.1), another topocentric reference frame is used –
the so-called local ENU coordinate system (x′′, y′′ and z′′).
In this reference system, the z axis is always aligned with
the local upward direction (and thus the local ellipsoid nor-
mal; see Fig. 2b). The same reference system is applied to
compute terrain slope aspect and angle (see Appendix B2).
This ensures that Eq. (B6) can be solved for any topographic
configuration (i.e. the matrix is never singular). Finally, the
SVF is computed in a spherical coordinate system, which is
referenced to the local ENU system. All above steps regard-
ing coordinate transformations and computations of auxiliary
quantities were implemented in Cython (Behnel et al., 2011)
and parallelised with OpenMP.

3.1.3 Masking of ocean grid cells

Computing the horizon from high-resolution elevation data
is an expensive operation, even with the method presented
in this work. It is thus worthwhile to exclude areas for
which horizon information is either not needed or its com-
putation is superfluous due to the non-existence of topog-
raphy within a relevant radius. The latter applies to a large
fraction of ocean grid cells. Unfortunately, such areas are
not unambiguously masked in some DEM products. For in-
stance, ocean grid cells in NASADEM have an elevation
of 0 m – but inland areas might share the same value. We
thus implemented a two-step method to address this issue:
first, we label potentially relevant areas in the DEM product
(for instance, grid cells with an elevation of 0 m in NASA-
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Figure 3. NASADEM grid (21960×32400 cells) for the northern part of Great Britain and Ireland. (a) Chord distance for every grid cell to
the nearest coastline. (b) Ocean grid cells are categorised according to their minimal chord distance to the coastline in bands of ≤ 10, ≤ 25
and ≤ 50 km. The numbers in the upper left indicate the fraction of remaining cells in the case that all ocean cells are masked (Fland) or
ocean cells exceeding a certain minimal distance to the coastline are masked.

DEM). Subsequently, we rasterise ocean coastlines from the
Global Self-consistent, Hierarchical, High-resolution Geog-
raphy Database (GSHHG; Wessel and Smith, 1996) to the
same grid. Grid cells labelled as land in at least one of the
two data sets are classified as land, and all remaining cells are
treated as ocean. Coastlines are then retrieved from this raster
as contour lines. Finally, we have to find the shortest distance
to the coastline for every ocean grid cell along a geodesic.
This procedure is expensive because an iterative algorithm
is required to solve the inverse geodesic problem (Karney,
2013). We therefore use the chord line (the closest straight
line connecting two points on the geoid), which can read-
ily be computed in ECEF coordinates. To efficiently find the
shortest distance, we transform coastline contours to ECEF
coordinates and store them in a SciPy k-d tree (Virtanen
et al., 2020). A nearest-neighbour query is then performed
for ocean grid cells. Approximating geodesics by chord lines
is justifiable because deviations between the two lines are
small (e.g. ∼ 1 m for 100 km) for relevant distances. Further-
more, chord lengths are always shorter than geodesics, which
guarantees a conservative masking of ocean grid cells.

Figure 3 shows the result of this masking approach for
NASADEM data and a region covering the northern part
of Great Britain and Ireland. By masking ocean grid cells
entirely, horizon information has to be computed for only
∼ 32 % of the total grid cells in the domain. This mask-

ing approach might e.g. be useful for land surface models.
In the case of considering ocean grid cells and applying a
horizon search distance of 25 km, the masking allows ex-
cluding ∼ 39 % of all grid cells in the domain. The imple-
mented masking is not restricted to water grid cells and can
be utilised to mask cells based on other criteria (e.g. land sur-
face type, elevation or slope azimuth).

3.2 Computation of horizon by ray casting

3.2.1 General implementation

We perform ray casting with the high-performance ray-
tracing library Intel Embree (Wald et al., 2014; Embree,
2021), which has been released as open-source under the
Apache 2.0 License. In short, ray tracing in Embree works
as follows: first, a BVH is built (in parallel) from input ge-
ometries, which can either be based upon triangles, quads
(quadrilaterals) or a grid (quadrilaterals on a curvilinear or
structured grid). This process recursively wraps the geome-
tries in so-called bounding volumes, which form leaf nodes
of a tree. The tree structure allows performing the subsequent
ray tracing in a highly optimised way: no children nodes of
the tree have to be considered if a ray does not intersect with
the parent node. In Cartesian coordinates, DEM data are typ-
ically provided on a grid that is (almost) regular, and thus
all three Embree geometries can potentially be used. A per-
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Figure 4. Overview of applied horizon detection algorithms with
ray casting. Illustrated are the first three rays cast with the meth-
ods of discrete sampling (red), binary search (green) and estimating
from the previous azimuth (blue). In contrast to the text, an eleva-
tion angle spacing of 4◦ is used to allow for better readability. The
blue dot marks the horizon estimate from the third method.

formance test revealed that ray casting is fastest with quads,
while using a grid allows for the fastest BVH building and
reveals by far the smallest memory footprint.

In line with other algorithms (Dozier et al., 1981; Dozier
and Frew, 1990; Pillot et al., 2016), we compute the horizon
for a location by splitting the azimuth angle into discrete sec-
tors and sample along the centrelines. By default, we use 360
sectors. Four different methods were tested to find the hori-
zon within a sector with ray casting (Fig. 4). Because hori-
zon detection results from discrete ray sampling, we have
to define a desired accuracy for the horizon (αr), which we
set to 0.25◦ by default. The simplest method, called discrete
sampling, starts from a minimal elevation angle (−15.0◦ by
default) and increments this angle until the ray no longer in-
tersects terrain. The increment 1α is thereby set to 2 αr. The
problem can be solved more efficiently by applying a binary
search algorithm, which splits the elevation angle range se-
quentially. The desired accuracy is reached as soon as the
difference between the preceding and current ray elevation
angle is smaller than 2 αr. Even faster methods can be ob-
tained by considering the fact that the horizon represents a
smooth continuous line. Horizon angles between two neigh-
bouring sectors are thus typically very similar, particularly
if a high number of azimuth sectors is used. We therefore

implemented a third method, which estimates the horizon of
the current sector from the previous one. The actual horizon
is then found by applying discrete ray sampling from this an-
gle. A fourth method was also tested, which estimates the
horizon of the current sector by linear extrapolation from the
previous two sectors. However, this method did not result in
a speed-up compared to the third method and was thus dis-
carded. For all methods, the actual horizon angle lies within
±0.25◦ of the computed one. By assuming a uniform prob-
ability distribution of the actual horizon in the constrained
range of the elevation angle (blue shaded area in Fig. 4), the
mean error of the computed horizon is ± 0.125◦. To ensure
that rays do not intersect terrain directly at their origin due to
numerical imprecision, the ray’s origin is elevated by a small
value of 0.01 m.

The ray-casting part was implemented in C++ and paral-
lelised with Intel Threading Building Blocks (TBB, 2021),
which is recommended by Embree and also released under
the Apache 2.0 License. In a first implementation, ray direc-
tions for a specific location were computed by rotating a vec-
tor, which initially points towards local north, in global ENU
coordinates. This approach proved to be expensive due to the
large number of trigonometric function evaluations. We ac-
celerated this part by storing a discrete number of trigono-
metric functions, which are needed to compute all necessary
ray directions in a local ENU coordinate system. These vec-
tors can subsequently be mapped to global ENU coordinates
with Eq. (A5), which is considerably cheaper. Embree of-
fers various options for building the BVH, which affects both
BVH building time and subsequent ray casting. An evalua-
tion of these options revealed that for our application, only
the flags robust and compact have a significant impact on
performance or the memory footprint of the algorithm. The
implications of these flags are briefly addressed in Sects. 4.1
and 3.2.2, respectively.

3.2.2 Processing of elevation data with very high
resolution

A disadvantage of the ray-tracing-based horizon algorithm
is its larger memory demand compared to conventional hori-
zon algorithms. Besides the DEM data, which require 3 (x, y
and z coordinate)× 4 bytes per grid cell, additional informa-
tion defining the connectivity of the triangle mesh and the
BVH has to be stored. The memory requirements for this
auxiliary data are smallest for the input geometry grid and
were found to amount to an additional ∼ 90 % of the space
the elevation data occupies. Applying the Embree flag com-
pact did not lower these memory requirements any further
(but revealed a significant impact on the memory footprint if
quads were used). Currently, various DEMs with very high
resolutions are available, like the USGS DEM 1 m (USGS,
2017b), the ArcticDEM (2 m, Porter et al., 2018) and the
swissALTI3D, which is available at resolutions of 0.5 and
2 m. In future, further products that cover larger geographi-
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Figure 5. Illustration of triangulated surface in the case of terrain simplification in the outer DEM boundary zone. The light grey dots
represent grid cell centres of the original DEM data. The blue shaded domain shows the area for which horizon values are computed. Red
lines mark discontinuities in the triangulated surface.

cal extents will likely become available. Processing such very
high-resolution DEM data can result in substantial memory
requirements, as shown in the following example: the hori-
zon of a 5× 5 km domain should be computed from a 1 m
DEM with a horizon search distance of 25 km. The eleva-
tion data alone require 36.3 GB of memory without consid-
ering space needed for building the BVH. These memory de-
mands exceed the specifications of typical personal comput-
ers. However, memory requirements can be drastically re-
duced by simplifying terrain geometry in the outer boundary
zone of the DEM domain (see Fig. 5). We perform this step
with the height map meshing utility (hmm; Fogleman, 2021),
which simplifies terrain based on a maximal allowed vertical
error (1h). Hmm is based on Garland and Heckbert (1995);
it applies a greedy insertion algorithm and subsequent De-
launay triangulation to simplify terrain.

Figure 5 illustrates the setup in the case that terrain simpli-
fication is applied. An inner domain, which encompasses the
area for which horizon values are computed plus a boundary
zone, is represented by the full DEM information. The outer
domain is split into four sub-domains, and its terrain geom-
etry is simplified to a triangulated irregular network (TIN).

This step can be performed in parallel. Recombination of the
five sub-domains introduces discontinuities in the triangu-
lated surface, which are marked by red lines in Fig. 5. These
discontinuities have to be patched – otherwise, rays might
pass through them without intersection terrain. We perform
the patching by adding a vertical strip of triangles (also re-
ferred to as skirt; see Fig. 2 in Campos et al., 2020) with a
vertical extent of 31h. As a consequence of the applied ter-
rain simplification, the accuracy of computed horizon values
decreases in the case that the horizon line is located in the
outer DEM domain. The horizon accuracy due to terrain sim-
plification αs is thereby linked to the vertical error in terrain
1h by

αs = 2 arctan
(
1h

2dm

)
, (3)

where dm is the minimal distance between the area for which
horizon values are computed and the simplified outer domain
(see Fig. 5). This uncertainty in horizon accuracy adds to that
from the horizon detection algorithm (αr; see Sect. 3.2.1).
Concretely, to e.g. meet a total horizon accuracy of 0.25◦,
one could apply the setting αr = 0.15◦ and αs = 0.1◦.
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Figure 6. Visualisation of the horizon for two locations in the Lauterbunnen Valley (Bernese Oberland, Switzerland). Panels (a) and (b) show
the horizon in local ENU coordinates (grey) and in a sloped coordinate system (blue and red, respectively), whose z axis is aligned with the
surface normal. Panel (c) illustrates the surrounding terrain of the two locations in an oblique view of the Lauterbunnen Valley from the north.
The blue and red arrows represent the surface normals of the two locations. The illustrated domain has an extent of∼ 7.5 km (east–west) and
∼ 6.9 km (north–south). An approximate scale, which is valid for the northern edge of the domain, is provided in the lower left.

3.3 Sky view factor computation

We consider the SVF definition, which yields the fraction of
sky irradiance under the assumption of isotropic sky radia-
tion, analogous to Dozier and Frew (1990) and Helbig et al.
(2009). For a surface whose normal is parallel to the coordi-
nate system’s z axis, the SVF is computed by

Fsky =
1
π

2π∫
0

π/2−αt∫
0

cosϑ sinϑ dϑ dϕ , (4)

with αt representing the elevation angle of the surrounding
terrain and ϑ and ϕ the zenith and azimuth angle, respec-
tively. Integration of Eq. (4) with respect to ϑ yields

Fsky =
1

2π

2π∫
0

cos2αt dϕ . (5)

This equation is identical to Eq. (8) in Helbig et al. (2009).
Equations (4) and (5) are applicable in a sloped coordinate
system, in which the surface normal of the terrain aligns with
the z axis. An apparently straightforward way to compute
Fsky from the horizon, derived according to Sect. 3.2, is to
transform horizon angles from the local ENU to sloped co-
ordinates and apply Eq. (5). However, this approach is com-
plicated by several factors: first, it is no longer possible to
represent horizon as a function of azimuth in the sloped co-
ordinate system because αt can obtain multiple values for a
certain ϕ (see Fig. 6a). Secondly, if the surface normal in-
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tersects surrounding topography due to very steep terrain,
then all horizon values are constrained to an azimuth range
of 180◦ (Fig. 6b). And finally, the azimuth spacing of trans-
formed horizon angles is no longer regular. Solving the dou-
ble integral of Eq. (4) in the sloped coordinate system thus
requires the consideration of more complex integration lim-
its. Additionally, transformation of all horizon angles to a
sloped coordinate system is expensive due to the evaluation
of numerous trigonometric functions. We therefore discard
this approach and derive an exact SVF equation for horizon-
tal local ENU coordinates.

First, we compute the intersection of the sloped terrain sur-
face with a unit sphere. This plane passes through the origin
of the local ENU coordinate system, and thus we can write
its implicit plane equation as

nx′′ x
′′
+ ny′′ y

′′
+ nz′′ z

′′
= 0 , (6)

with n= (nx′′ , ny′′ , nz′′) being the surface normal of the ter-
rain in local ENU coordinates. Combining Eqs. (6) and (A7)
yields the elevation angle of the plane–sphere intersection αp
as a function of the azimuth angle:

αp = arctan
(
−
nx′′

nz′′
sinϕ−

ny′′

nz′′
cosϕ

)
. (7)

A crucial part of the correct SVF equation, which is some-
times omitted in the literature, is Lambert’s cosine law, which
is represented by cosϑ in Eq. (4). The angle in this cosine
function has to be measured between an arbitrary incoming
ray and the surface normal, which is n in the local ENU co-
ordinate system. We can thus express the cosine term as

cosγ =

nx′′ny′′

nz′′

 ·
sinϑ sinϕ

sinϑ cosϕ
cosϑ

 (8)

for local ENU coordinates. Analogous to Eq. (4), we can
multiply the cosine term with the surface element of a sphere
(sinϑ dϑ dϕ) and integrate with respect to ϕ and ϑ , which
yields

Fsky =
1
π

2π∫
0

π/2−αm∫
0

(
nx′′ sinϑ sinϕ

+ ny′′ sinϑ cosϕ+ nz′′ cosϑ
)

sinϑ dϑ dϕ , (9)

where αm =max(αt, αp) is either defined by the surrounding
terrain horizon or the local (sloped) surface. Integration of
Eq. (9) with respect to ϑ yields

Fsky =
1

2π

2π∫
0

(
(nx′′ sinϕ+ ny′′ cosϕ)

(
π

2
− αm −

sin(2αm)

2

)
+ nz′′ cos2αm

)
dϕ . (10)

This represents the analytical formulation of the SVF. To
apply this equation with computed terrain horizon angles, we
have to discretise it to

Fsky ≈
1ϕ

2π

M∑
i=1

(nx′′ sinϕ+ ny′′ cosϕ)(
π

2
− αm −

sin(2αm)

2

)
+ nz′′ cos2αm , (11)

where M represents the number of equally spaced azimuth
directions for which the horizon was computed. In principle,
one could improve the accuracy of the numerical integration
by employing Simpson’s rule; however, we believe that the
overall uncertainty is not determined by the errors of this in-
tegration, but rather by the computational resolution of the
horizon computation.

In the literature, SVF computation is performed with dif-
ferent methods, which are, for instance, based on formula-
tions from Helbig et al. (2009), Manners et al. (2012), and
Dozier and Frew (1990). Computing the SVF in a sloped co-
ordinate system with the equation suggested in Helbig et al.
(2009), which is identical to Eq. (5), requires careful consid-
eration of the integration limits. As illustrated by the blue and
red dots in Fig. 6a and b and as previously discussed, these
limits can be complicated for steep and complex terrain. In-
tegration can be performed successfully with the trapezoidal
rule and by summing up obtained areas – analogous to the
area computation of a two-dimensional polygon. Apart from
negligible numerical deviations, we obtained the same results
with this method compared to applying Eq. (11). By testing
the method of Manners et al. (2012), we believe we have
found an error in its derivation: in Eq. (13) of Manners et al.
(2012), angles are added that are expressed in different coor-
dinate systems. The resulting error is minor for small slope
angles but more pronounced for steeper terrain. Finally, we
considered the method suggested by Dozier and Frew (1990).
By applying multiple trigonometric identities and consider-
ing the different coordinate systems applied, we found it to
be identical to our solution. Concluding, if horizon angles
are available in a horizontal coordinate system, it seems most
convenient to perform the SVF integration in the same refer-
ence system.

4 Computational performance and accuracy of
algorithms

We consider two reference horizon algorithms to evaluate the
computational performance and accuracy of our method: the
first is the algorithm described in Pillot et al. (2016), which
is available as a MATLAB implementation (Pillot, 2016).
The second is the algorithm applied in Buzzi (2008), which
was implemented in the pre-processing tool of the limited-
area atmospheric model COSMO (Steppeler et al., 2003) in
Fortran and parallelised with OpenMP. Both algorithms are
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Figure 7. Computational performance of the ray-casting algorithm relative to the one implemented by Buzzi (2008) in a log–log plot. Panels
(a) and (b) show the performance for a DEM with 30 and 10 m horizontal resolution, respectively. Dashed lines indicate a linear extrapolation
of the performance relationship. The inset panel in (a) shows the parallel scaling performance of the ray-casting algorithm for a fixed terrain
size of approximately 106 grid cells, a horizon search distance of 50 km and a DEM resolution of 30 m.

based on the conventional concept of sampling all elevation
data along a centreline of an azimuth sector. The algorithm
by Buzzi (2008) was developed to process elevation data on
a rotated latitude–longitude grid centred at the coordinate
system’s origin. The Earth’s shape is furthermore assumed
to be spherical. Due to these restrictions, we processed the
input DEM data for this section as follows: first, we as-
sume that DEM heights are referenced to a spherical Earth
and ignore differences between orthometric and ellipsoidal
heights. Secondly, we bilinearly remapped DEM data to ro-
tated longitude–latitude coordinates, whose origin is located
in the centre of the selected DEM domains. We apply two el-
evation data sets in this section: NASADEM, with a horizon-
tal resolution of 30 m, and the USGS 1/3 arcsec DEM, which
has a higher horizontal resolution of 10 m. For all algorithms,
we used the default number of 360 azimuth sampling sectors.
For the ray-casting-based algorithm, the elevation angle ac-
curacy was set to ±0.25◦ and terrain simplifications accord-
ing to Sect. 3.2.2 were not applied.

4.1 Evaluation of the computational performance

In the literature, suggested search distances for the hori-
zon typically range from ca. 20 km (Senkova et al., 2007)
to 50 km (Dürr and Zelenka, 2009). These distances should
be defined according to the desired horizon accuracy and
the complexity of the regional terrain. In areas like the Hi-
malayas, elevation differences within 50 km can be as high
as 7000 m (without intermediate terrain obstruction), which
corresponds to a horizon angle of ∼ 8◦. For such terrains,
a search distance even larger than 50 km might be neces-
sary if high horizon accuracy is required. We applied NASA-

DEM data, centred at Kleine Scheidegg (Bernese Oberland,
Switzerland), and USGS 1/3 arcsec DEM data, centred at
Denali (Alaska, USA), for the performance evaluation. The
performance analysis of the ray-tracing-based method re-
vealed a dependency on terrain complexity, and the algo-
rithm’s performance is higher for simpler terrain. We there-
fore considered two additional domains for this algorithm,
which are located north of the above-mentioned domains
and feature less complex, hilly terrain. The overall perfor-
mance was then computed as an average between the two
domains with different terrain complexity. The performance
dependency on terrain, however, is minor and of the order
of ±10 % from the average. Performance experiments have
been carried out on a workstation with an Intel Core i5 Quad-
Core processor (3.4 GHz) with 16 GB of memory, except
for assessing the parallel scaling performance of the algo-
rithm, which was evaluated on an Intel Xeon Gold processor
(3.4 GHz) with 2×16 physical cores and 1.5 TB of memory.

Figure 7 shows results from the performance analysis for
two different horizontal DEM resolutions and horizon search
distances. The algorithm of Pillot et al. (2016) is not con-
sidered in this analysis because it was designed for point lo-
cation applications (its run time is substantially larger than
the other two considered algorithms). Figure 7a reveals that
the run time of the conventional algorithm (Buzzi, 2008)
scales distinctively with horizon search distance. For the ray-
tracing-based method, this is only true for relatively small
(ca. < 105 grid cells) terrain sizes. This diverging pattern is
caused by the varying ratio of time spent on BVH build-
ing and ray tracing. For small domains, the BVH building
contributes significantly to the total run time, whereas for
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Figure 8. Horizons for three locations computed with the three different algorithms. The boxes at the lower boundary of the panels illustrate
the distance to the horizon line based on the ray-casting algorithm. The numbers in the panel’s upper left show the geographic longitude (λ)
and latitude (φ) of the location. The numbers at the right boundaries of the panels represent the mean (1mean) and maximal (1max) spread in
computed horizon angles for the location. The three methodologies considered qualitatively agree, but note the occurrence of staircase-like
behaviour for the Pillot and Buzzi algorithms.

larger domains, this contribution is negligible. For larger do-
mains (ca. > 105 grid cells), run times for the ray-casting
algorithm are almost independent of the horizon search dis-
tance. For the DEM with 10 m resolution (Fig. 7b), the per-
formance analysis looks overall very similar. However, run
times between the conventional and the ray-tracing-based al-
gorithm diverge even further: for processing 106 grid cells
with a search distance of 50 km, the new algorithm reveals a
speed-up factor of ∼ 72 for a 30 m DEM, whereas this fac-
tor increases to ∼ 321 for a 10 m DEM. As mentioned in
Sect. 3.2.1, Embree offers an option for robust BVH build-
ing, which we used for the analysis shown in Fig. 7. Dis-
abling this option increases ray-tracing performance by ap-
proximately 20 %. However, as a trade-off, the requirements
for horizon accuracy are no longer strictly met because trian-
gles from the terrain mesh might be missed by rays. We thus
always enable the flag robust for BVH building, even if such
errors were found to occur extremely infrequent. The inset
panel in Fig. 7a shows the parallel scaling performance of
the ray-casting-based horizon algorithm. For the considered
terrain size and setup, the algorithm reveals excellent scala-

bility with a speed-up factor of ∼ 27 using 32 cores relative
to a single-core execution.

In summary, the performance analysis revealed that the
ray-casting method is much faster for all considered terrain
sizes (by about 2 orders of magnitude). The speed-up in-
creases with both higher spatial DEM resolution and larger
horizon search distances as well as with terrain size up to
approximately 106 grid cells. The higher performance of the
ray-tracing-based algorithm is mainly caused by the more ef-
ficient storage of DEM data, which drastically reduces the
elevation information that has to be considered along a sam-
pling line. The relevance of this effect grows with both in-
creased DEM resolution and horizon search distance.

4.2 Accuracy evaluation for real terrain

We compared the accuracy of the ray-tracing-based hori-
zon algorithm to the methods suggested by Buzzi (2008)
and Pillot et al. (2016). The accuracy of the latter algorithm
was assessed by in situ horizon measurements collected with
a theodolite in Corsica (Pillot et al., 2016). We evaluated
the different algorithms for an approximately 10 by 10 km
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Figure 9. Terrain parameters for the two idealised geometries Crater (blue) and Crater hill (red). (a) Elevation cross-sections of the two
terrains; black symbols mark locations for which the horizon is illustrated in (b) and (d). In (b), exact solutions (grey lines) for the horizon
are shown in addition to the ones computed with ray casting. Panels (c) and (e) illustrate horizontally resolved SVF for the Crater and Crater
hill geometries; the black symbols again indicate the locations considered in (b) and (d).

wide NASADEM domain (324× 324 grid cells) centred at
Kleine Scheidegg (Bernese Oberland, Switzerland). To in-
crease overall accuracy of the computed horizon lines, we
enhanced the search distance for the horizon to 100 km. Due
to the comparably high run time of the Pillot et al. (2016) al-
gorithm, we did not apply it to the full domain. Instead, we
ran it for 1000 cells within the 324×324 domain, which were
drawn by random uniform sampling.

Figure 8 shows obtained horizon lines for three example
locations. In Fig. 8a, the distance to locations forming the
horizon is generally larger than 1 km, and the agreement be-
tween the three algorithms is, with a mean spread of 0.42◦,
very good. For locations shown in Fig. 8b and c, the agree-
ment between the algorithms deteriorates and maximal de-
viations up to 14.34◦ occur. Considering the horizon dis-
tance information, it is obvious that the inferior agreement
is constrained to azimuth angles with distances close to the
horizon. For these ranges, both reference algorithms indicate
staircase-shaped changes in the horizon line, which is e.g.
also apparent in Fig. 9 in Pillot et al. (2016). Table 1 indi-
cates that findings from the three example locations translate
to the entirety of analysed locations. The agreement between
the three algorithms is considerably smaller for locations and

azimuths with close (< 1 km) proximity to the horizon line –
in terms of both statistical mean and 95th percentile. Addi-
tionally, Table 1 reveals that the agreement between the ray-
casting and Buzzi (2008) algorithm is consistently better than
between the other two combinations. Deviations from the al-
gorithm by Pillot et al. (2016) are higher for large horizon
distances. A potential explanation for this pattern might be
the way sampling for a certain azimuth direction is imple-
mented in Pillot et al. (2016), which happens along a loxo-
drome.

The pronounced staircase-shaped artefacts in Fig. 8b and
c, which cause the poor agreement between the algorithms
for close horizon distances in Table 1, are induced by the
non-smooth terrain representation in the reference algo-
rithms of Buzzi (2008) and Pillot et al. (2016). These algo-
rithms assume uniform elevations within grid cells with ver-
tical drops at the cells’ edges. The non-smooth terrain rep-
resentation introduces two disadvantages: the first is the oc-
currence of unnatural steps in the horizon line (see Fig. 8c),
and the second is high sensitivity of the computed horizon
to the chosen azimuth angle. The relevance of these issues
increases with decreasing distance between the centre loca-
tion and the horizon. If computed horizon lines are used for
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Table 1. Absolute differences in horizon angles [◦] between the three algorithms. The mean and the 95th percentile (p95) are shown for all
data and grouped according to the associated distance to the horizon.

Horizon distance

Comparison all < 1 km ≥ 1 km

mean p95 mean p95 mean p95

Ray casting – Pillot et al. (2016) 1.54 7.78 2.55 10.91 0.87 3.12
Ray casting – Buzzi (2008) 1.02 4.25 1.80 7.10 0.49 0.89
Pillot et al. (2016) – Buzzi (2008) 1.33 5.50 1.96 9.04 0.91 1.94

SVF calculations, the issue of artificial steps is partially at-
tenuated because terrain horizon αt is occasionally exceeded
by plane horizon αp and thus not considered (see Sect. 3.3).
However, some of the error does propagate to computed SVF
values. In the ray-casting algorithm, gridded DEM data are
converted to a triangle mesh, which represents a smooth sur-
face. Subsequently, this algorithm does not suffer from the
aforementioned issues.

4.3 Verification with idealised terrain geometries

To quantitatively verify our methodology, we additionally
assessed the implemented horizon and SVF algorithms by
means of two idealised z-axis-symmetric terrain geometries.
The first one, called Crater, represents a simple hemispher-
ical cavity, which was also considered in Manners et al.
(2012). Its elevation h is defined according to

h(d)=

{
r −
√
r2− d2 if d < r

r if d ≥ r
, (12)

where d is the distance from the centre and r the radius of
the cavity. Except for the rim of the cavity, the terrain repre-
sented by this geometry is concave, which implies that hori-
zon lines are almost exclusively formed by non-adjacent ter-
rain. To cover the other case, we consider a second, partially
convex geometry (Crater hill), whose elevation is defined by

h(d)=


0.5 r fa (cos( 2 d π

r
)+ 1.0) if d < r

2

r − 2
√
r d − d2 if r2 ≤ d < r

r if d ≥ r

, (13)

where fa represents the amplitude factor, which determines
the height of the central bump. Cross-sections of the two
geometries are shown in Fig. 9a for the parameter setting
r = 1000 m and fa = 0.9.

We discretised both terrains by 1026×1026 grid cells and
computed the horizon with the default setting of 360 azimuth
sectors and an accuracy of 0.25◦. The resulting horizon for
three grid cells, whose location is marked in Fig. 9a, is illus-
trated in panels (b) (Crater) and (d) (Crater hill) of the same
figure. In accordance with the smooth surfaces of the geome-
tries, horizon angles represent smooth lines without artefacts.

In the case of the Crater geometry, the horizon is invariably
formed by the rim of the cavity and its exact solution can
thus readily be derived. Figure 9b indicates that horizon lines
computed with ray casting align with these “perfect” solu-
tions. Obtained spatial SVF values for both geometries are
shown in Fig. 9c and e. The SVF for the Crater geometry
is uniformly 0.5 within the cavity (with negligible numerical
deviations), which is in line with the analytical solution de-
rived in Manners et al. (2012). The SVF for the Crater hill
geometry is spatially variable with the lowest values around
d = r/2 and the highest values in the centre.

It is possible to validate the resulting SVF values of
both geometries, at least in a horizontally aggregated way,
by physical and geometrical considerations: Manners et al.
(2012) illustrate in Sect. 2.4 that the same horizontally aggre-
gated longwave flux is emitted from a flat disc and a hemi-
spherical cavity. This relation holds for any cavity – not only
the perfectly hemispherical one. We can rearrange Eqs. (24)
and (25) of Manners et al. (2012) to

Fsky, disc =
Acavity

Adisc
Fsky, cavity , (14)

where Acavity and Adisc represent the surface area of the cav-
ity and the flat disc, and Fsky, disc represents the SVF of the
disc, which is exactly 1. Applying Eq. (14) to the Crater and
Crater hill geometries yields ∼0.999 for both cases, which
confirms the correct implementation of the horizon and SVF
algorithm.

5 Application examples of the algorithms

In this section, we present example applications of the
ray-tracing-based horizon and SVF algorithm. Output from
Sect. 5.1 and 5.2 can be used to parameterise the effect of
terrain on surface radiation in weather and climate models.
Section 5.3 illustrates the computation of horizon and SVF
from very high-resolution elevation data. These outputs are
primarily interesting for very high-resolution land surface
models applied in mountainous terrains.
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Figure 10. Terrain parameters computed from NASADEM for a 40 km wide window centred at Lauterbunnen Valley (Bernese Oberland,
Switzerland). Panels (a) to (c) illustrate the elevation, slope angle and slope aspect. Note that aspects with slopes < 1◦ are masked. Panel (d)
shows the computed SVF at the native resolution of ∼ 30 m and panels (e) and (f) the spatial aggregation of this parameter to 3 and 12 km,
respectively.

5.1 Computation of terrain parameters and sub-grid
sky view factor

As mentioned in the Introduction, terrain parameters like
horizon and SVF are already applied in several numeri-
cal weather and climate models to account for topographic
effects on radiation. In some models, terrain parameters
are derived from the model’s internal elevation representa-
tion, which typically features grid spacings of > 500 m to
∼ 100 km. This elevation data are normally smoothed to en-
sure numerical stability of the model. The relatively coarse
spacing (and the potential smoothing of orography) leads to
a smoothing of terrain parameters – i.e. computed horizons
angles are typically lower and obtained SVF values higher. In
other models, terrain parameters are computed from a sub-
grid-scale DEM and subsequently spatially aggregated. In
the latter case, DEM data with high spatial resolution have
to be processed, which can be done efficiently with our ray-
tracing-based algorithm. Such a sub-grid-scale parameterisa-
tion is, for instance, presented in Helbig and Löwe (2012),

which emulates the effects of terrain reflection of shortwave
radiation on surface albedo.

We illustrate the computation of terrain parameters and
the spatial aggregation of the SVF by means of two DEMs
with different resolution, the NASADEM and the USGS
1/3 arcsec DEM. Output from the NASADEM is shown in
Fig. 10 for a 40 km wide domain centred at Lauterbunnen
Valley (Bernese Oberland, Switzerland). The horizon was
computed with the default setting of 360 azimuth sectors and
a search distance for the horizon of 50 km. Panels (d) to (f)
illustrate how the range of SVF changes with spatial aggre-
gation. Common horizontal resolutions applied in regional
climate modelling are 3 and 12 km (Ban et al., 2021; Sør-
land et al., 2021; Jacob et al., 2014). Figure 10f shows that,
even at a relatively coarse resolution of 12 km, the aggre-
gated SVF of some grid cells is still significantly smaller than
1.0. Figure 11 illustrates terrain parameters computed from
the USGS 1/3 arcsec DEM for a 40 km wide area centred at
Denali (Alaska, USA). The geographic latitude of this area
is relatively high (∼ 63◦N), which means that topographic
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Figure 11. Terrain parameters computed from the USGS 1/3 arcsec DEM for a 40 km wide window centred at Denali (Alaska, USA). Panels
(a) to (c) illustrate the elevation, slope angle and slope aspect. Note that aspects with slopes < 1◦ are masked. Panel (d) shows the computed
SVF at the native resolution of ∼ 10 m and panels (e) and (f) the spatial aggregation of this parameter to 3 and 12 km, respectively.

shading is a very relevant process due to low solar elevation
angles – particularly during Northern Hemisphere winter. In
contrast to NASADEM processing, the number of azimuth
sectors was decreased to 60 to reduce the required storage
space for the three-dimensional horizon information. Com-
pared to Fig. 10, obtained SVF values on the native grid are
generally lower. This translates to the spatially aggregated
SVF values, and even on a scale of 12 km, almost the entire
area features SVF values below 0.85 (see Fig. 11f).

5.2 Accelerated computation of sub-grid sky view
factor

The application of sub-grid SVF in weather and climate mod-
els, such as in Hao et al. (2021), requires the computation of
high-resolution horizon for large domains spanning several
hundred to several thousand kilometres. This step is com-
putationally expensive, even with the new horizon algorithm
(with the default setting of Na = 360 and αr = 0.25◦) pre-
sented in this study. We thus tested two approaches to de-
crease computational time further while maintaining a high
level of accuracy: on the one hand, we decreased the num-

ber of azimuth sectors and the horizon accuracy. These two
parameters are interdependent in the fastest horizon detec-
tion method (see Sect. 3.2.1). If e.g. only Na is decreased,
the average number of rays applied per sampling location
and sector increases due to larger horizon differences be-
tween neighbouring sectors. We thus only considered set-
tings in which both Na and αr are altered simultaneously
to keep the averaged number of rays per grid cell and sec-
tor similar. We considered three combinations beside the de-
fault setting: Na = 60 and αr = 1.5◦, Na = 30 and αr = 3.0◦,
and Na = 15 and αr = 6.0◦, which represent performance in-
crease factors of ∼ 6, ∼ 12 and ∼ 24. On the other hand, we
reduced spatial sampling density. For this analysis, we bi-
linearly remapped NASADEM and USGS 1/3 arcsec data to
resolutions of∼ 31.3 and∼ 10.4 m, respectively. This allows
for a simple spatial aggregation of sub-grid SVFs to grids
with resolutions of 1 km and integer multiples, as a 1 km2

cell contains exactly 32×32 (NASADEM) or 96×96 (USGS
1/3 arcsec DEM) resampled DEM cells. For the reference so-
lution, we consider SVF information from all NASADEM
sub-grid cells and 1/9 of all USGS 1/3 arcsec DEM sub-
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Table 2. Different geographic domains used to test the accelerated computation of sub-grid SVF values.

Label Geographical Latitude/ Domain size Spacing Mean Mean
Location longitudea [◦] [km] [m] slopeb [◦] SVFb [–]

Central Alps Switzerland/Austria/Italy 46.663/10.393 100× 100 30 26.5 0.87
Grand Canyon USA 36.130/−111.970 50× 50 30 16.3 0.91
Hawaii USA 22.050/−159.540 50× 50 30 8.6 0.97
Kamchatka Russia 55.920/160.500 50× 50 30 11.9 0.97
Karakoram Pakistan/China 35.883/76.513 100× 100 30 28.7 0.83
Fiordland New Zealand −44.750/168.100 50× 50 30 29.0 0.82
Patagonia Argentina/Chile −49.271/−73.043 100× 100 30 12.3 0.95
Three Parallel Rivers China 28.186/98.871 100× 100 30 31.8 0.83
Yosemite USA 37.750/−119.600 50× 50 30 16.7 0.94
Denali USA 63.069/−151.008 50× 50 10 24.8 0.85

a Geographic coordinates refer to the centre of the domain. b Computed with the reference sampling density (∼ 1024 samples per km2).

Figure 12. Example of the relative error in spatially aggregated SVF for the Central Alps region as a function of sampling density. The figure
displays errors from 104 randomly and spatially uniformly drawn samples for an aggregation to 3 km. Na denotes the number of applied
azimuth sectors and αr the horizon accuracy. The lower x axis shows the sampling density relative to the reference density (∼ 1024 samples
per km2), while the upper x axis indicates absolute values. Intersections of the coloured solid lines, which represent the maximal relative
error, with the horizontal 1 % error line are denoted by grey circles and vertical lines.

grid cells, which corresponds to a spatial sampling density of
∼ 1024 times per km2. Subsequently, we decreased spatial
sampling densities by considering subsets of the reference
sampling locations, which were drawn randomly and spa-
tially uniformly. To obtain more robust results, we repeated
the random drawing 104 times. We performed these tests for
10 different geographic domains, which cover a broad range
of geomorphologies (see Table 2). Spatial SVF aggregation
scales of 1, 3, 12 and 25 km are considered, which repre-
sent common horizontal resolutions for numerical weather
and climate models.

Figure 12 illustrates the obtained results for the Central
Alps region and a spatial aggregation of the sub-grid SVF

values to 3 km. As expected, decreasing sampling density in-
duces a gradual increase in relative SVF error in all consid-
ered error statistics (maximum, 95th percentile and mean).
Remarkably, this gradual behaviour is less evident for the
applied sets of Na and αr. Initial decreases in Na, until Na =

30, revealed minor effects on the accuracy of the computed
sub-grid SVF. Only the decrease from Na = 30 to Na = 15
showed a clear deterioration in the accuracy of sub-grid SVF.
The same behaviour was also found for other geographical
regions. The grey circles and vertical lines in Fig. 12 illus-
trate the required sampling density to meet a maximal rela-
tive error of 1 % and the associated 95th percentile and mean
of this error.
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Figure 13. Overview of error statistics for the applied speed-up tests of sub-grid SVF calculation. The upper row illustrates the required
spatial sampling density to meet a maximum relative error of 1 % in sub-grid SVF computation. The lower row shows the associated 95th
percentiles and means in relative error. Settings (Na and αr) for which the maximum relative error never falls below 1 % are hatched. Note
the variable y-axis range between panels in the upper row.

Figure 13 displays these values for all considered regions
and spatial aggregation scales. Values for different regions
are typically clustered in relatively narrow bands. Appar-
ently, the Fiordland region in New Zealand exhibits the high-
est terrain complexity, as it typically requires the highest
sampling density to meet the 1 % maximum relative error
(see upper row in Fig. 13). In contrast, the Kamchatka re-
gion in Russia requires a comparably low sampling density.
This can be explained by the relatively simple terrain geom-
etry of this region, which is shaped by stratovolcanos. For
all conducted experiments, the 95th percentile and the mean
in relative error remain below 0.5 % and 0.2 % – except for
the experiment with Na = 15 (see lower row in Fig. 13). Re-
garding speed-up factors for computing sub-grid SVF with
a maximal absolute error of 1 %, the following conclusions
can be drawn from Fig. 13: for a spatial aggregation to 1 and
3 km, the setting Na = 30 and αr = 3.0◦ is most favourable,
while a decrease in the spatial sampling density is not (or
only to a minor extent) possible. This allows a performance
increase relative to the default setting of a factor of∼ 12. For
the spatial aggregation to coarser resolutions (12 and 25 km),
the setting Na = 30 and αr = 3.0◦ is again optimal. For these

resolutions, the sampling density can additionally be reduced
to 5 % (12 km) and 2.5 % (25 km) of the reference density.
This yields total speed-up factors of ∼ 240 (12× 1.0/0.05)
and ∼ 480 (12× 1.0/0.025) for sub-grid SVF computations
for resolutions of 12.0 and 25.0 km, respectively.

An earlier method to compute sub-grid-scale SVF was pre-
sented in Helbig and Löwe (2014). They developed a model
that estimates spatially aggregated SVF from local terrain pa-
rameters, which are cheap to compute. This model is faster
than our approach but also exhibits larger relative errors in
computed SVF – particularly for target grids with high spa-
tial resolutions (1.0–2.5 km). The choice of model, i.e. Hel-
big and Löwe (2014) versus our approach, depends on the
available computational resources and the desired accuracy
for the sub-grid-scale SVF. An advantage of our approach is
its potential to seamless derive accurate sub-grid SVF values
for all spatial scales.

5.3 Application to very high-resolution DEM data

In this section, we demonstrate the application of the hori-
zon and SVF algorithm with very high-resolution DEM data.
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Figure 14. Terrain parameters computed from the 2 m SwissALTI3D DEM for a 3 km wide domain centred at Tödi (Glarus Alps, Switzer-
land). Panel (a) illustrates the spatially gridded SVF, while the number in the lower left represents the domain-wide average. Panels (b) and
(c) show the associated surface elevation and slope angles.

As mentioned in Sect. 2, we used SwissALTI3D data with a
horizontal resolution of 2 m. To lower the memory footprint
of the high-resolution data during processing, we simplified
terrain representation in the boundary zone of the DEM ac-
cording to Sect. 3.2.2. We computed terrain parameters for
two 3× 3 km domains in the Glarus Alps in Switzerland.

The first domain is centred around Tödi and is overall
convex-shaped (Fig. 14), while the latter is centred at Lim-
merensee and features a rather concave-shaped terrain ge-
ometry (Fig. 15). For the absolute horizon accuracy, we se-
lected a value of 0.25◦, which is partitioned to αr = 0.15◦

and αs = 0.1◦. For dm (see Fig. 5), we chose a distance of
7 km. For the domain centred around Tödi, a search distance
for the horizon of 30 km was applied. Choosing a larger dis-
tance is not possible due to the limited spatial coverage of
SwissALTI3D data. Without terrain simplification, the mem-
ory footprint of the DEM data amounts to ∼ 11.9 GB, while
with terrain simplification, total memory requirements can
be lowered to ∼ 0.92 GB (∼ 867 MB for the inner domain
and ∼ 55 MB for the outer TIN). For this domain, obtained
SVF values are the highest and close to 1.0 in the centre,
which features a high-elevation glaciated plateau. The low-
est SVF values, which frequently fall below 0.4, typically
coincide with steep walls that are e.g. found north and south-
west of the plateau. Further areas with very low SVF values
can be found in the southern–eastern region and are caused
by glacier crevasses.

For the second considered domain (Fig. 15), the horizon
search distance could be enhanced to 35 km. By considering

the full DEM information, memory demands for the DEM
data would have amounted to∼ 16.0 GB – without consider-
ing memory needed to build the BVH. With terrain simplifi-
cation, these demands dropped to ∼ 0.94 GB (∼ 867 MB for
the inner domain and∼ 73 MB for the outer TIN). In contrast
to Fig. 14a, the spatially aggregated SVF is lower and aver-
ages to 0.71. This relatively low value is primarily caused
by the deep gorge in the north-western part of the domain,
which features a larger coherent area with SVF values below
0.5.

6 Conclusions

Horizon and derived SVF values are used in various fields
and applications. Conventional horizon algorithms typically
process the full elevation information along an azimuth sec-
tor’s centreline, which makes them slow for (very) high-
resolution DEMs. We propose a new and more efficient
method, which is based on a high-performance ray-tracing
library. In this approach, terrain information is stored in a
tree structure (BVH) and only a fraction of elevation data
have to be considered along a scanning line. A comparison of
the ray-tracing-based horizon algorithm with a conventional
method revealed its high computational performance, which
amplifies for higher DEM resolutions and larger horizon
search distances. The new algorithm exhibits only a minor
performance dependency on horizon search distance, which
allows computing more accurate horizon angles by consider-
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Figure 15. Terrain parameters computed from the 2 m SwissALTI3D DEM for a 3 km wide domain centred at Limmerensee (Glarus Alps,
Switzerland). Panel (a) illustrates the spatially gridded SVF, while the number in the lower left represents the domain-wide average. Panels
(b) and (c) show the associated surface elevation and slope angles.

ing larger search distances. Applying the horizon (and SVF)
algorithm to larger domains can additionally be accelerated
by masking water grid cells, whose minimal distance to the
coastline is larger than the search distance for the horizon.
In terms of accuracy, the ray-tracing-based algorithms agrees
well with two existing methods in the case of larger distances
(> 1 km) between the sampling location and the horizon line.
For smaller distances, deviations are larger. These discrep-
ancies are caused by differences in internal terrain render-
ing. In the two reference algorithms, terrain is represented
by quadrilaterals with a uniform elevation within individ-
ual cells, which results in a staircase-shaped surface. These
structures translate to the computed horizon lines. In the new
algorithm, terrain information is rendered by a triangle mesh,
which represents a smooth continuous surface. Computed
horizon lines subsequently have more natural gradients and
do not suffer from staircase-shaped artefacts induced by ter-
rain representation. A disadvantage of the new algorithm is
its larger memory footprint, which is critical if very high-
resolution DEM data are processed. However, these memory
demands can be drastically lowered by simplifying terrain in
the outer boundary zone of the DEM domain.

To infer SVF values from computed horizon angles, vari-
ous methods are suggested in the literature (Dozier and Frew,
1990; Helbig et al., 2009; Manners et al., 2012), which are
either applied in a horizontal or sloped coordinate system.
We tested these methods for very steep and complex terrain
and concluded that, in the case that horizon angles are avail-

able in a horizontal coordinate system, the method by Dozier
and Frew (1990) is most convenient to apply. This SVF algo-
rithm yields correct results for all terrains – even very steep
and complex ones.

The terrain parameters horizon and/or sky view factor are
applied in various numerical weather and climate models
(Müller and Scherer, 2005; Chow et al., 2006; Senkova et al.,
2007; Buzzi, 2008; Manners et al., 2012; Liou et al., 2013;
Rontu et al., 2016; Arthur et al., 2018; Lee et al., 2019) to
parameterise the effects of terrain geometry on surface radi-
ation – either on the scale of the model grid or on a sub-grid
scale. The relevance of the SVF for parameterising the effect
of topography on surface radiation was confirmed in a recent
study by Chu et al. (2021). They showed that, on domain-
averaged scales, results from a three-dimensional ray-tracing
simulation agree well with an SVF-based parameterisation.
Even with our efficient horizon algorithm, the computation
of sub-grid SVF is expensive for large weather and climate
model domains. Fortunately, these sub-grid parameters have
to be computed only once during the pre-processing stage of
the model simulation. Nevertheless, it makes sense to com-
pute them as efficiently as possible. We demonstrated that
the computational time can be further reduced by considering
less accurate horizon lines and by reducing the spatial sam-
pling density. The loss in SVF accuracy is thereby only very
minor. The speed-up factor grows with increasing resolution
differences between the DEM and the target grid and exceeds
400 for the coarsest considered target resolution (25 km). The
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proposed method to efficiently computed sub-grid SVF pro-
vides a complement to the statistical method suggested by
Helbig and Löwe (2014), which links SVF to local terrain pa-
rameters and is thus computationally very cheap. The choice
of method depends on the available computational resources
and the desired accuracy in SVF.

A run time analysis of our horizon algorithm revealed a
considerable speed-up compared to conventional algorithms.
However, performance could likely be further improved with
the following suggestions, which concern the performance-
critical ray-tracing part: we currently do not apply coher-
ent rays in Embree, which allow for a more efficient utilisa-
tion of the BVH. Considering such ray streams might speed
up horizon detection. To increase run times for workstations
with performant graphic processing units (GPUs), ray cast-
ing could be performed with a GPU-based ray tracer, like
NVIDIA OptiX (Parker et al., 2010).

Appendix A: Coordinate transformations

Various Cartesian and elliptical (or spherical) coordinate sys-
tems are used in this work. In terms of Cartesian coor-
dinates, we apply three different systems: ECEF (x,y,z),
global ENU (x′,y′,z′) and local ENU (x′′,y′′,z′′) coordi-
nates. Equations to transform between the different reference
systems are provided below.

A1 Transformation from geodetic to ECEF coordinates

Transformation from geodetic to ECEF coordinates is per-
formed by

x = (N(φ)+he)cosφ cosλ,

y = (N(φ)+he)cosφ sinλ,

z=

(
b2

a2N(φ)+he

)
sinφ, (A1)

with N(φ)= a /
√

1− e2 sin2φ and e2
= 1− b2/a2. φ repre-

sents the geodetic latitude, λ longitude, a the equatorial Earth
radius (semi-major axis), b the polar Earth radius (semi-
minor axis) and e the eccentricity.

A2 Transformation from ECEF to global ENU
coordinates

Transformation from ECEF to global ENU coordinates is
achieved byx′y′
z′

=
 −sinλr −cosλr 0
−sinφr cosλr −sinφr sinλr cosφr
cosφr cosλr cosφr sinλr sinφr


x− xr
y− yr
z− zr

 , (A2)

with φr and λr representing the geodetic latitude and longi-
tude. xr, yr and zr constitute the coordinates of the tangential
point in ECEF coordinates. The transformation of a vector b

from ECEF to global ENU coordinates is performed with(
bx′
by′
bz′

)
=

(
−sinλr −cosλr 0

−sinφr cosλr −sinφr sinλr cosφr
cosφr cosλr cosφr sinλr sinφr

)
(
bx
by
bz

)
. (A3)

A3 Transformation between global and local ENU
coordinates

We distinguish between two topocentric reference systems,
the global and local ENU coordinates. The axes of the global
ENU coordinate system do not coincide with local east, north
and upward directions of all DEM grid cells. This is only true
for local ENU coordinates. A vector b, expressed in global
ENU coordinates (x′, y′ and z′), is converted to local ENU
coordinates (x′′, y′′ and z′′) bybx′′by′′

bz′′

= R

bx′by′
bz′

 , (A4)

where R represents the rotation matrix. The inverse trans-
formation requires the inverse of the rotation matrix R−1.
Rotation matrices represent orthogonal matrices; thus, their
inverse is identical to their transpose. The inverse transfor-
mation can subsequently be written asbx′by′
bz′

= RT
bx′′by′′

bz′′

 . (A5)

The rotation matrix R is defined by

R=

ae, x′ ae, y′ ae, z′

an, x′ an, y′ an, z′

au, x′ au, y′ au, z′

 , (A6)

where ae, an and au represent the local ENU coordinate axes
east, north and up in global ENU coordinates.

A4 Transformation between local ENU and spherical
coordinates

In the local ENU coordinate system, we also apply spherical
coordinates:

x′′ = cosα sinϕ,

y′′ = cosα cosϕ,
z′′ = sinα. (A7)

In this reference system, the azimuth angle ϕ is measured
clockwise from north (y′′) and the elevation angle α is mea-
sured from the x′′−y′′ plane. In terms of the zenith angle ϑ ,
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which is measured from up (z′′), the transformation can be
expressed as

x′′ = sinϑ sinϕ,

y′′ = sinϑ cosϕ,
z′′ = cosϑ. (A8)

The elevation and zenith angles are linked via the relation
α = (π/2)−ϑ .

A5 Conversion from orthometric to ellipsoidal height

Elevation data from DEMs often refer to orthometric heights.
These elevations are measured relative to a geoid and must
be converted to ellipsoidal heights if coordinates are subse-
quently transformed from a geodetic to a geocentric coor-
dinate system. The relation between the ellipsoidal height
he, the orthometric height ho and the geoid undulation N
is specified by the following equation (Pillot et al., 2016;
Grohmann, 2018):

he = ho+N. (A9)

For NASADEM data, we computed the undulation N

based on EGM96 (Lemoine et al., 1998; NGA, 2021).
For USGS 1/3 arcsec elevation data, the GEOID12A geoid
model (NGS, 2021) is applied. We bilinearly interpolate N
from a 5 arcmin (EGM96) or 1 arcmin (GEOID12A) refer-
ence grid.

Appendix B: Computation of auxiliary quantities

B1 Local east, north and upward unit vectors

Computing the horizon line for a certain location requires
knowledge about the local direction vectors pointing towards
east, north and up. We compute these unit vectors in ECEF
coordinates according to the following equations. The up-
ward vector is represented by the ellipsoid normal vector and
can be computed asau, x
au, y
au, z

=
cosφ cosλ

cosφ sinλ
sinφ

 . (B1)

This vector (au) is also called a geodetic normal or n vector.
The vector an, pointing towards north and being perpendic-
ular to vector au, can readily be derived in ECEF coordi-
nates. First, the vector between the current location (vl) and
the North Pole vp is computed as

vn = vp− vl . (B2)

The North Pole is given by vp = (0, 0, b). Vector vn is
then projected on the location’s normal plane to receive

vj = vn− (vn · au) au . (B3)

Vector an is obtained by normalising vector vj :

an =
vj

‖vj‖
. (B4)

The east unit vector (ae) is simply computed as

ae = an× au . (B5)

The direction vectors are subsequently transformed to
global ENU coordinates with Eq. (A3).

B2 Slope aspect and angle of terrain

To compute the SVF, local terrain slope and aspect must be
known, which can be represented by a local surface tilt vec-
tor. Various slope algorithms exist (Jones, 1998; Corripio,
2003) which typically consider the nearest four to eight DEM
grid cells. We select an approach, in which a plane is fitted to
the respective centre grid cell and its eight neighbours. The
plane fitting is performed in the local ENU coordinate system
by minimising the sum of squared z′′ differences between the
plane and the nine cells. This approach requires solving a lin-
ear system of equations defined as
∑9
i=1x

′′

i
2 ∑9

i=1x
′′

i y
′′

i

∑9
i=1x

′′

i∑9
i=1x

′′

i y
′′

i

∑9
i=1y

′′

i
2 ∑9

i=1y
′′

i∑9
i=1x

′′

i

∑9
i=1y

′′

i 9


nx′′ny′′

nz′′



=

∑9
i=1x

′′

i z
′′

i∑9
i=1y

′′

i z
′′

i∑9
i=1z

′′

i

 , (B6)

where n represents the surface normal of the sloped plane
and x′′, y′′ and z′′ the DEM coordinates of the nine grid cells.
The same method is used in the Geographic Information Sys-
tem software ArcGIS (ArcGIS, 2021).

Code and data availability. HORAYZON is made available under
the terms and conditions of the MIT license. The source code has
been archived on Zenodo (https://doi.org/10.5281/zenodo.6965104,
Steger, 2022) and is available on GitHub (https://github.com/
ChristianSteger/HORAYZON, last access: 5 September 2022). HO-
RAYZON’s core dependencies are Intel Embree and Threading
Building Blocks (TBB), as well as the NetCDF-4 C++ library and
the Python packages Cython, NumPy, SciPy, GeographicLib, tqdm,
requests and xarray. Dependencies can either be installed manually
or conveniently via the package manager Conda. HORAYZON is
a cross-platform application and supports both x86 and ARM ar-
chitectures. On multi-core processor systems, HORAYZON can be
run in parallel via TBB and OpenMP. All DEM data used in this
study are freely available from the respective sources stated in the
references.
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