Bleck, R. and Smith, L.: A wind-driven isopycnic coordinate model of the North
and Equatorial Atlantic Ocean. 1. Model development and supporting
experiments, J. Geophys. Res., 95, 3273–3285, 1990. a
Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev., 10, 765–789,
https://doi.org/10.5194/gmd-10-765-2017, 2017.
a
Debreu, L., Kevlahan, N. K.-R., and Marchesiello, P.: Brinkman volume
penalization for bathymetry in three-dimensional ocean models, Ocean
Model., 145, 101530,
https://doi.org/10.1016/j.ocemod.2019.101530, 2020.
a,
b,
c,
d
Dubos, T. and Kevlahan, N. K.-R.: A conservative adaptive wavelet method for
the shallow water equations on staggered grids, Q. J. Roy. Meteor. Soc., 139,
1997–2020,
https://doi.org/10.1002/qj.2097, 2013.
a,
b
Dubos, T., Dubey, S., Tort, M., Mittal, R., Meurdesoif, Y., and Hourdin, F.: DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 3131–3150,
https://doi.org/10.5194/gmd-8-3131-2015, 2015.
a,
b,
c,
d
Griffies, S., Adcroft, A., and Hallberg, R.: A Primer on the Vertical
Lagrangian-Remap Method in Ocean Models Based on Finite Volume Generalized
Vertical Coordinates, Journal of Advances in Modeling Earth Systems, 12, e2019MS001954,
https://doi.org/10.1029/2019MS001954, 2020.
a
Guinot, V. and Soares-Frazao, S.: Flux and source term discretization in
two-dimensional shallow water models with porosity on unstructured grids,
Int. J. Numer. Meth. Fl., 50, 309–345,
https://doi.org/10.1002/fld.1059,
2006.
a
Guinot, V., Delenne, C., Rousseau, A., and Boutron, O.: Flux closures and
source term models for shallow water models with depth-dependent integral
porosity, Adv. Water Resour., 122, 1–26, 2018. a
Hallberg, R. and Adcroft, A.: Reconciling estimates of the free surface height
in Lagrangian vertical coordinate ocean models with mode-split time stepping,
Ocean Model., 29, 15–26, 2009. a
Kang, H.-G., Evans, K. J., Petersen, M. R., Jones, P. W., and Bishnu, S.: A
Scalable Semi-Implicit Barotropic Mode Solver for the MPAS-Ocean, JAMES,
13, e2020MS002238,
https://doi.org/10.1029/2020MS002238, 2021.
a,
b,
c
Kato, H. and Phillips, O.: On the penetration of a turbulent layer into
stratified fluid, J. Fluid Mech., 37, 643–655, 1969. a
Kevlahan, N. K.-R. and Dubos, T.: WAVETRISK-1.0: an adaptive wavelet hydrostatic dynamical core, Geosci. Model Dev., 12, 4901–4921,
https://doi.org/10.5194/gmd-12-4901-2019, 2019.
a,
b,
c,
d,
e,
f
Kevlahan, N. K.-R., Dubos, T., and Aechtner, M.: Adaptive wavelet simulation of global ocean dynamics using a new Brinkman volume penalization, Geosci. Model Dev., 8, 3891–3909,
https://doi.org/10.5194/gmd-8-3891-2015, 2015.
a,
b,
c,
d
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A
finite-volume, incompressible Navier Stokes model for studies of the ocean on
parallel computers, J. Geophys. Res., 102, 5753–5766, 1997. a
McCorquodale, P., Ullrich, P., Johansen, H., and Colella, P.: An adaptive
multiblock high-order finite-volume method for solving the shallow-water
equations on the sphere, Comm. App. Math. Com. Sc., 10, 121–162,
https://doi.org/10.2140/camcos.2015.10.121, 2015.
a
Morvan, M., Carton, X., L'Hégaret, P., de Marez, C., Corréard, S., and
Louazel, S.: On the dynamics of an idealized bottom density current
overflowing in a semi-enclosed basin: mesoscale and submesoscale eddies
generation, Geophys. Astro. Fluid, 114, 607–630,
https://doi.org/10.1080/03091929.2020.1747058, 2020.
a
Patankar, S.: Numerical heat transfer and fluid flow, Computational methods in
mechanical and thermal sciences, Hemisphere Pub. Corp., ISBN 0-07-048740-5, 1980. a
Popinet, S.: A vertically-Lagrangian, non-hydrostatic, multilayer model for
multiscale free-surface flows, J. Comput. Phys., 418, 109609,
https://doi.org/10.1016/j.jcp.2020.109609, 2021.
a,
b,
c,
d
Rasmussen, J. T., Cottet, G.-H., and Walther, J.: A multiresolution remeshed
Vortex-In-Cell algorithm using patches, J. Comput. Phys., 230,
6742–6755,
https://doi.org/10.1016/j.jcp.2011.05.006, 2011.
a
Ringler, T. D., Thuburn, J., Klemp, J. B., and Skamarock, W. C.: A
unified approach to energy conservation and potential vorticity dynamics for
arbitrarily-structured C-grids, J. Comput. Phys., 229, 3065–3090,
https://doi.org/10.1016/j.jcp.2009.12.007, 2010.
a,
b,
c
Ripa, P.: Conservation laws for primitive equations models with inhomogeneous
layers, Geophys. Astro. Fluid, 70, 85–111, 1993.
a,
b,
c
Salmon, R.: Hamiltonian Fluid Mechanics, Annu. Rev. Fluid Mech., 20, 225–256,
1988.
a,
b
Shchepetkin, A. and McWilliams, J.: A method for computing horizontal
pressure-gradient force in an oceanic model with a nonaligned vertical
coordinate, J. Geophys. Res., 108, 3090,
https://doi.org/10.1029/2001JC001047, 2003.
a,
b,
c,
d,
e
Shchepetkin, A. and McWilliams, J.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
a,
b
Shchepetkin, A. and McWilliams, J.:
Correction and Commentary
for “Ocean Forecasting in Terrain-Following Coordinates: Formulation
and Skill Assessment of the Regional Ocean Modeling
System” by Haidvogel et al., J. Comp. Phys. 227, 3595–3624,
J. Comput. Phys., 228, 8985–9000, 2009.
a,
b,
c
Soufflet, Y., Marchesiello, P., Lemarié, F., Jouannoa, J., Capet, X., and
L. Debreu, R. B.: On effective resolution in ocean models, Ocean Model., 98,
36–50,
https://doi.org/10.1016/j.ocemod.2015.12.004, 2016.
a,
b,
c,
d,
e,
f,
g,
h
Vallis, G. K.: Atmospheric and oceanic fluid dynamics, Cambridge University
Press, ISBN 10 0521849691, 2006. a
Walters, R. A., Lane, E. M., and Hanert, E.: Useful time-stepping methods for
the Coriolis term in a shallow water model, Ocean Model., 28, 66–74,
https://doi.org/10.1016/j.ocemod.2008.10.004, 2009.
a
Yang, X. I. A. and Mittal, R.: Acceleration of the Jacobi iterative method by
factors exceeding 100 using scheduled relaxation, J. Comput. Phys., 274,
695–708,
https://doi.org/10.1016/j.jcp.2014.06.010, 2014.
a