Articles | Volume 15, issue 16
https://doi.org/10.5194/gmd-15-6341-2022
https://doi.org/10.5194/gmd-15-6341-2022
Model description paper
 | 
17 Aug 2022
Model description paper |  | 17 Aug 2022

A machine learning methodology for the generation of a parameterization of the hydroxyl radical

Daniel C. Anderson, Melanie B. Follette-Cook, Sarah A. Strode, Julie M. Nicely, Junhua Liu, Peter D. Ivatt, and Bryan N. Duncan

Related authors

Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024,https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Opinion: Beyond Global Means: Novel Space-Based Approaches to Indirectly Constrain the Concentrations, Trends, and Variations of Tropospheric Hydroxyl Radical (OH)
Bryan Duncan, Daniel Anderson, Arlene Fiore, Joanna Joiner, Nickolay Krotkov, Can Li, Dylan Millet, Julie Nicely, Luke Oman, Jason St. Clair, Joshua Shutter, Amir Souri, Sarah Strode, Brad Weir, Glenn Wolfe, Helen Worden, and Qindan Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2024-2331,https://doi.org/10.5194/egusphere-2024-2331, 2024
Short summary
OH, HO2, and RO2 radical chemistry in a rural forest environment: measurements, model comparisons, and evidence of a missing radical sink
Brandon Bottorff, Michelle M. Lew, Youngjun Woo, Pamela Rickly, Matthew D. Rollings, Benjamin Deming, Daniel C. Anderson, Ezra Wood, Hariprasad D. Alwe, Dylan B. Millet, Andrew Weinheimer, Geoff Tyndall, John Ortega, Sebastien Dusanter, Thierry Leonardis, James Flynn, Matt Erickson, Sergio Alvarez, Jean C. Rivera-Rios, Joshua D. Shutter, Frank Keutsch, Detlev Helmig, Wei Wang, Hannah M. Allen, Johnathan H. Slade, Paul B. Shepson, Steven Bertman, and Philip S. Stevens
Atmos. Chem. Phys., 23, 10287–10311, https://doi.org/10.5194/acp-23-10287-2023,https://doi.org/10.5194/acp-23-10287-2023, 2023
Short summary
Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023,https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Ground-based investigation of HOx and ozone chemistry in biomass burning plumes in rural Idaho
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022,https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary

Related subject area

Atmospheric sciences
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024,https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024,https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024,https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024,https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Assessment of object-based indices to identify convective organization
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024,https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary

Cited articles

Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, G. M.: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, 2021. 
Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J. M., Liu, J., Ivatt, P. D., and Duncan, B. N.: Code for the development of a parameterization of OH for CCMs, Zenodo [code], https://doi.org/10.5281/zenodo.6046037, 2022a. 
Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J .M., Liu, J., Ivatt, P. D., and Duncan, B. N.: Sample ECCOH OH Parameterization (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.6604130, 2022b. 
CEDA Archive: CCMI-1 Data Archive, CEDA Archive [data set], http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output, last access: 4 Aug. 2022. 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Download
Short summary
The hydroxyl radical (OH) is the most important chemical in the atmosphere for removing certain pollutants, including methane, the second-most-important greenhouse gas. We present a methodology to create an easily modifiable parameterization that can calculate OH concentrations in a computationally efficient way. The parameterization, which predicts OH within 5 %, can be integrated into larger climate models to allow for calculation of the interactions between OH, methane, and other chemicals.