Articles | Volume 15, issue 16
Geosci. Model Dev., 15, 6341–6358, 2022
https://doi.org/10.5194/gmd-15-6341-2022
Geosci. Model Dev., 15, 6341–6358, 2022
https://doi.org/10.5194/gmd-15-6341-2022
Model description paper
17 Aug 2022
Model description paper | 17 Aug 2022

A machine learning methodology for the generation of a parameterization of the hydroxyl radical

Daniel C. Anderson et al.

Related authors

Technical Note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers: First steps toward assessing the feasibility of a global observation strategy
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-763,https://doi.org/10.5194/acp-2022-763, 2023
Preprint under review for ACP
Short summary
Ground-based investigation of HOx and ozone chemistry in biomass burning plumes in rural Idaho
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022,https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
FORest Canopy Atmosphere Transfer (FORCAsT) 2.0: model updates and evaluation with observations at a mixed forest site
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329, https://doi.org/10.5194/gmd-14-6309-2021,https://doi.org/10.5194/gmd-14-6309-2021, 2021
Short summary
Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021,https://doi.org/10.5194/acp-21-6481-2021, 2021
Short summary
Characterization of ozone production in San Antonio, Texas, using measurements of total peroxy radicals
Daniel C. Anderson, Jessica Pavelec, Conner Daube, Scott C. Herndon, Walter B. Knighton, Brian M. Lerner, J. Robert Roscioli, Tara I. Yacovitch, and Ezra C. Wood
Atmos. Chem. Phys., 19, 2845–2860, https://doi.org/10.5194/acp-19-2845-2019,https://doi.org/10.5194/acp-19-2845-2019, 2019
Short summary

Related subject area

Atmospheric sciences
Isoprene and monoterpene simulations using the chemistry–climate model EMAC (v2.55) with interactive vegetation from LPJ-GUESS (v4.0)
Ryan Vella, Matthew Forrest, Jos Lelieveld, and Holger Tost
Geosci. Model Dev., 16, 885–906, https://doi.org/10.5194/gmd-16-885-2023,https://doi.org/10.5194/gmd-16-885-2023, 2023
Short summary
A modern-day Mars climate in the Met Office Unified Model: dry simulations
Danny McCulloch, Denis E. Sergeev, Nathan Mayne, Matthew Bate, James Manners, Ian Boutle, Benjamin Drummond, and Kristzian Kohary
Geosci. Model Dev., 16, 621–657, https://doi.org/10.5194/gmd-16-621-2023,https://doi.org/10.5194/gmd-16-621-2023, 2023
Short summary
The AirGAM 2022r1 air quality trend and prediction model
Sam-Erik Walker, Sverre Solberg, Philipp Schneider, and Cristina Guerreiro
Geosci. Model Dev., 16, 573–595, https://doi.org/10.5194/gmd-16-573-2023,https://doi.org/10.5194/gmd-16-573-2023, 2023
Short summary
Evaluation of a cloudy cold-air pool in the Columbia River basin in different versions of the High-Resolution Rapid Refresh (HRRR) model
Bianca Adler, James M. Wilczak, Jaymes Kenyon, Laura Bianco, Irina V. Djalalova, Joseph B. Olson, and David D. Turner
Geosci. Model Dev., 16, 597–619, https://doi.org/10.5194/gmd-16-597-2023,https://doi.org/10.5194/gmd-16-597-2023, 2023
Short summary
Comparing Sentinel-5P TROPOMI NO2 column observations with the CAMS regional air quality ensemble
John Douros, Henk Eskes, Jos van Geffen, K. Folkert Boersma, Steven Compernolle, Gaia Pinardi, Anne-Marlene Blechschmidt, Vincent-Henri Peuch, Augustin Colette, and Pepijn Veefkind
Geosci. Model Dev., 16, 509–534, https://doi.org/10.5194/gmd-16-509-2023,https://doi.org/10.5194/gmd-16-509-2023, 2023
Short summary

Cited articles

Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, G. M.: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, 2021. 
Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J. M., Liu, J., Ivatt, P. D., and Duncan, B. N.: Code for the development of a parameterization of OH for CCMs, Zenodo [code], https://doi.org/10.5281/zenodo.6046037, 2022a. 
Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J .M., Liu, J., Ivatt, P. D., and Duncan, B. N.: Sample ECCOH OH Parameterization (1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.6604130, 2022b. 
CEDA Archive: CCMI-1 Data Archive, CEDA Archive [data set], http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output, last access: 4 Aug. 2022. 
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Download
Short summary
The hydroxyl radical (OH) is the most important chemical in the atmosphere for removing certain pollutants, including methane, the second-most-important greenhouse gas. We present a methodology to create an easily modifiable parameterization that can calculate OH concentrations in a computationally efficient way. The parameterization, which predicts OH within 5 %, can be integrated into larger climate models to allow for calculation of the interactions between OH, methane, and other chemicals.