Articles | Volume 15, issue 16
https://doi.org/10.5194/gmd-15-6341-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-6341-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A machine learning methodology for the generation of a parameterization of the hydroxyl radical
Daniel C. Anderson
CORRESPONDING AUTHOR
GESTAR II, University of Maryland, Baltimore County, Baltimore, MD,
USA
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
Melanie B. Follette-Cook
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
GESTAR II, Morgan State University, Baltimore, MD, USA
now at: Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Sarah A. Strode
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
GESTAR II, Morgan State University, Baltimore, MD, USA
Julie M. Nicely
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Junhua Liu
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
GESTAR II, Morgan State University, Baltimore, MD, USA
Peter D. Ivatt
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
Bryan N. Duncan
Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space
Flight Center, Greenbelt, MD, USA
Related authors
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024, https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Brandon Bottorff, Michelle M. Lew, Youngjun Woo, Pamela Rickly, Matthew D. Rollings, Benjamin Deming, Daniel C. Anderson, Ezra Wood, Hariprasad D. Alwe, Dylan B. Millet, Andrew Weinheimer, Geoff Tyndall, John Ortega, Sebastien Dusanter, Thierry Leonardis, James Flynn, Matt Erickson, Sergio Alvarez, Jean C. Rivera-Rios, Joshua D. Shutter, Frank Keutsch, Detlev Helmig, Wei Wang, Hannah M. Allen, Johnathan H. Slade, Paul B. Shepson, Steven Bertman, and Philip S. Stevens
Atmos. Chem. Phys., 23, 10287–10311, https://doi.org/10.5194/acp-23-10287-2023, https://doi.org/10.5194/acp-23-10287-2023, 2023
Short summary
Short summary
The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2) radicals play important roles in atmospheric chemistry and have significant air quality implications. Here, we compare measurements of OH, HO2, and total peroxy radicals (XO2) made in a remote forest in Michigan, USA, to predictions from a series of chemical models. Lower measured radical concentrations suggest that the models may be missing an important radical sink and overestimating the rate of ozone production in this forest.
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023, https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Short summary
We describe a methodology that combines machine learning, satellite observations, and 3D chemical model output to infer the abundance of the hydroxyl radical (OH), a chemical that removes many trace gases from the atmosphere. The methodology successfully captures the variability of observed OH, although further observations are needed to evaluate absolute accuracy. Current satellite observations are of sufficient quality to infer OH, but retrieval validation in the remote tropics is needed.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329, https://doi.org/10.5194/gmd-14-6309-2021, https://doi.org/10.5194/gmd-14-6309-2021, 2021
Short summary
Short summary
Over the past decade, understanding of isoprene oxidation has improved, and proper representation of isoprene oxidation and isoprene-derived SOA (iSOA) formation in canopy–chemistry models is now recognized to be important for an accurate understanding of forest–atmosphere exchange. The updated FORCAsT version 2.0 improves the estimation of some isoprene oxidation products and is one of the few canopy models currently capable of simulating SOA formation from monoterpenes and isoprene.
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, https://doi.org/10.5194/acp-21-6481-2021, 2021
Short summary
Short summary
We demonstrate that large-scale climate features are the primary driver of year-to-year variability in simulated values of the hydroxyl radical, the primary atmospheric oxidant, over 1980–2018. The El Niño–Southern Oscillation is the dominant mode of hydroxyl variability, resulting in large-scale global decreases in OH during El Niño events. Other climate modes, such as the Australian monsoon and the North Atlantic Oscillation, have impacts of similar magnitude but on on more localized scales.
Daniel C. Anderson, Jessica Pavelec, Conner Daube, Scott C. Herndon, Walter B. Knighton, Brian M. Lerner, J. Robert Roscioli, Tara I. Yacovitch, and Ezra C. Wood
Atmos. Chem. Phys., 19, 2845–2860, https://doi.org/10.5194/acp-19-2845-2019, https://doi.org/10.5194/acp-19-2845-2019, 2019
Short summary
Short summary
San Antonio is one of the largest cities in the United States and is in non-attainment of the 8 h ozone standard. Using the Aerodyne Mobile Laboratory, we made observations of ozone and its precursors at three sites in the San Antonio region to determine the main drivers of its production. We found that compounds produced by plants were the dominant organic compound for ozone production and that to limit ozone production at the study site, emissions of nitrogen oxides should be reduced.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
T. P. Canty, L. Hembeck, T. P. Vinciguerra, D. C. Anderson, D. L. Goldberg, S. F. Carpenter, D. J. Allen, C. P. Loughner, R. J. Salawitch, and R. R. Dickerson
Atmos. Chem. Phys., 15, 10965–10982, https://doi.org/10.5194/acp-15-10965-2015, https://doi.org/10.5194/acp-15-10965-2015, 2015
Bryan N. Duncan, Daniel C. Anderson, Arlene M. Fiore, Joanna Joiner, Nickolay A. Krotkov, Can Li, Dylan B. Millet, Julie M. Nicely, Luke D. Oman, Jason M. St. Clair, Joshua D. Shutter, Amir H. Souri, Sarah A. Strode, Brad Weir, Glenn M. Wolfe, Helen M. Worden, and Qindan Zhu
Atmos. Chem. Phys., 24, 13001–13023, https://doi.org/10.5194/acp-24-13001-2024, https://doi.org/10.5194/acp-24-13001-2024, 2024
Short summary
Short summary
Trace gases emitted to or formed within the atmosphere may be chemically or physically removed from the atmosphere. One trace gas, the hydroxyl radical (OH), is responsible for initiating the chemical removal of many trace gases, including some greenhouse gases. Despite its importance, scientists have not been able to adequately measure OH. In this opinion piece, we discuss promising new methods to indirectly constrain OH using satellite data of trace gases that control the abundance of OH.
Yasin Elshorbany, Jerald R. Ziemke, Sarah Strode, Hervé Petetin, Kazuyuki Miyazaki, Isabelle De Smedt, Kenneth Pickering, Rodrigo J. Seguel, Helen Worden, Tamara Emmerichs, Domenico Taraborrelli, Maria Cazorla, Suvarna Fadnavis, Rebecca R. Buchholz, Benjamin Gaubert, Néstor Y. Rojas, Thiago Nogueira, Thérèse Salameh, and Min Huang
Atmos. Chem. Phys., 24, 12225–12257, https://doi.org/10.5194/acp-24-12225-2024, https://doi.org/10.5194/acp-24-12225-2024, 2024
Short summary
Short summary
We investigated tropospheric ozone spatial variability and trends from 2005 to 2019 and related those to ozone precursors on global and regional scales. We also investigate the spatiotemporal characteristics of the ozone formation regime in relation to ozone chemical sources and sinks. Our analysis is based on remote sensing products of the tropospheric column of ozone and its precursors, nitrogen dioxide, formaldehyde, and total column CO, as well as ozonesonde data and model simulations.
Pinchas Nürnberg, Sarah A. Strode, and Ralf Sussmann
Atmos. Chem. Phys., 24, 10001–10012, https://doi.org/10.5194/acp-24-10001-2024, https://doi.org/10.5194/acp-24-10001-2024, 2024
Short summary
Short summary
We created a set of scaling factors describing the diurnal increase in stratospheric nitrogen oxides above Zugspitze, Germany. We used these factors to validate recently published model simulation data. On the one hand, this validation enables the use of the validated data to better understand the stratospheric photochemistry. On the other hand, it can improve satellite validation, which has implications for the understanding of urban smog events and other pollution events in the troposphere.
Amir H. Souri, Bryan N. Duncan, Sarah A. Strode, Daniel C. Anderson, Michael E. Manyin, Junhua Liu, Luke D. Oman, Zhen Zhang, and Brad Weir
Atmos. Chem. Phys., 24, 8677–8701, https://doi.org/10.5194/acp-24-8677-2024, https://doi.org/10.5194/acp-24-8677-2024, 2024
Short summary
Short summary
We explore a new method of using the wealth of information obtained from satellite observations of Aura OMI NO2, HCHO, and MERRA-2 reanalysis in NASA’s GEOS model equipped with an efficient tropospheric OH (TOH) estimator to enhance the representation of TOH spatial distribution and its long-term trends. This new framework helps us pinpoint regional inaccuracies in TOH and differentiate between established prior knowledge and newly acquired information from satellites on TOH trends.
Amir H. Souri, Gonzalo González Abad, Glenn M. Wolfe, Tijl Verhoelst, Corinne Vigouroux, Gaia Pinardi, Steven Compernolle, Bavo Langerock, Bryan N. Duncan, and Matthew S. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1947, https://doi.org/10.5194/egusphere-2024-1947, 2024
Short summary
Short summary
We establish a simple yet robust relationship between ozone production rates and several geophysical parameters obtained from several intensive atmospheric composition campaigns. We have shown that satellite remote sensing data can effectively constrain these parameters, enabling us to produce the first global maps of ozone production rates with unprecedented resolution.
Jin Liao, Glenn M. Wolfe, Alex E. Kotsakis, Julie M. Nicely, Jason M. St. Clair, Thomas F. Hanisco, Gonzalo Gonzalez Abad, Caroline R. Nowlan, Zolal Ayazpour, Isabelle De Smedt, Eric C. Apel, and Rebecca S. Hornbrook
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-72, https://doi.org/10.5194/amt-2024-72, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Validation of satellite HCHO over the remote marine regions is relatively few and modeled HCHO in these regions is usually added as a global satellite HCHO background. This paper intercompares three satellite HCHO retrievals and validates them against in situ observations from the NASA ATom mission. All retrievals are correlated with ATom integrated columns over remote oceans, with OMI SAO (v004) showing the best agreement. A persistent low bias is found in all retrievals at high latitudes.
Brandon Bottorff, Michelle M. Lew, Youngjun Woo, Pamela Rickly, Matthew D. Rollings, Benjamin Deming, Daniel C. Anderson, Ezra Wood, Hariprasad D. Alwe, Dylan B. Millet, Andrew Weinheimer, Geoff Tyndall, John Ortega, Sebastien Dusanter, Thierry Leonardis, James Flynn, Matt Erickson, Sergio Alvarez, Jean C. Rivera-Rios, Joshua D. Shutter, Frank Keutsch, Detlev Helmig, Wei Wang, Hannah M. Allen, Johnathan H. Slade, Paul B. Shepson, Steven Bertman, and Philip S. Stevens
Atmos. Chem. Phys., 23, 10287–10311, https://doi.org/10.5194/acp-23-10287-2023, https://doi.org/10.5194/acp-23-10287-2023, 2023
Short summary
Short summary
The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2) radicals play important roles in atmospheric chemistry and have significant air quality implications. Here, we compare measurements of OH, HO2, and total peroxy radicals (XO2) made in a remote forest in Michigan, USA, to predictions from a series of chemical models. Lower measured radical concentrations suggest that the models may be missing an important radical sink and overestimating the rate of ozone production in this forest.
Daniel C. Anderson, Bryan N. Duncan, Julie M. Nicely, Junhua Liu, Sarah A. Strode, and Melanie B. Follette-Cook
Atmos. Chem. Phys., 23, 6319–6338, https://doi.org/10.5194/acp-23-6319-2023, https://doi.org/10.5194/acp-23-6319-2023, 2023
Short summary
Short summary
We describe a methodology that combines machine learning, satellite observations, and 3D chemical model output to infer the abundance of the hydroxyl radical (OH), a chemical that removes many trace gases from the atmosphere. The methodology successfully captures the variability of observed OH, although further observations are needed to evaluate absolute accuracy. Current satellite observations are of sufficient quality to infer OH, but retrieval validation in the remote tropics is needed.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven C. Wofsy
Atmos. Chem. Phys., 23, 99–117, https://doi.org/10.5194/acp-23-99-2023, https://doi.org/10.5194/acp-23-99-2023, 2023
Short summary
Short summary
We have prepared a unique and unusual result from the recent ATom aircraft mission: a measurement-based derivation of the production and loss rates of ozone and methane over the ocean basins. These are the key products of chemistry models used in assessments but have thus far lacked observational metrics. It also shows the scales of variability of atmospheric chemical rates and provides a major challenge to the atmospheric models.
Amy Christiansen, Loretta J. Mickley, Junhua Liu, Luke D. Oman, and Lu Hu
Atmos. Chem. Phys., 22, 14751–14782, https://doi.org/10.5194/acp-22-14751-2022, https://doi.org/10.5194/acp-22-14751-2022, 2022
Short summary
Short summary
Understanding tropospheric ozone trends is crucial for accurate predictions of future air quality and climate, but drivers of trends are not well understood. We analyze global tropospheric ozone trends since 1980 using ozonesonde and surface measurements, and we evaluate two models for their ability to reproduce trends. We find observational evidence of increasing tropospheric ozone, but models underestimate these increases. This hinders our ability to estimate ozone radiative forcing.
Sarah A. Strode, Ghassan Taha, Luke D. Oman, Robert Damadeo, David Flittner, Mark Schoeberl, Christopher E. Sioris, and Ryan Stauffer
Atmos. Meas. Tech., 15, 6145–6161, https://doi.org/10.5194/amt-15-6145-2022, https://doi.org/10.5194/amt-15-6145-2022, 2022
Short summary
Short summary
We use a global atmospheric chemistry model simulation to generate scaling factors that account for the daily cycle of NO2 and ozone. These factors facilitate comparisons between sunrise and sunset observations from SAGE III/ISS and observations from other instruments. We provide the scaling factors as monthly zonal means for different latitudes and altitudes. We find that applying these factors yields more consistent comparisons between observations from SAGE III/ISS and other instruments.
Andrew J. Lindsay, Daniel C. Anderson, Rebecca A. Wernis, Yutong Liang, Allen H. Goldstein, Scott C. Herndon, Joseph R. Roscioli, Christoph Dyroff, Ed C. Fortner, Philip L. Croteau, Francesca Majluf, Jordan E. Krechmer, Tara I. Yacovitch, Walter B. Knighton, and Ezra C. Wood
Atmos. Chem. Phys., 22, 4909–4928, https://doi.org/10.5194/acp-22-4909-2022, https://doi.org/10.5194/acp-22-4909-2022, 2022
Short summary
Short summary
Wildfire smoke dramatically impacts air quality and often has elevated concentrations of ozone. We present measurements of ozone and its precursors at a rural site periodically impacted by wildfire smoke. Measurements of total peroxy radicals, key ozone precursors that have been studied little within wildfires, compare well with chemical box model predictions. Our results indicate no serious issues with using current chemistry mechanisms to model chemistry in aged wildfire plumes.
Kelvin H. Bates, Daniel J. Jacob, Ke Li, Peter D. Ivatt, Mat J. Evans, Yingying Yan, and Jintai Lin
Atmos. Chem. Phys., 21, 18351–18374, https://doi.org/10.5194/acp-21-18351-2021, https://doi.org/10.5194/acp-21-18351-2021, 2021
Short summary
Short summary
Simple aromatic compounds (benzene, toluene, xylene) have complex gas-phase chemistry that is inconsistently represented in atmospheric models. We compile recent experimental and theoretical insights to develop a new mechanism for gas-phase aromatic oxidation that is sufficiently compact for use in multiscale models. We compare our new mechanism to chamber experiments and other mechanisms, and implement it in a global model to quantify the impacts of aromatic oxidation on tropospheric chemistry.
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329, https://doi.org/10.5194/gmd-14-6309-2021, https://doi.org/10.5194/gmd-14-6309-2021, 2021
Short summary
Short summary
Over the past decade, understanding of isoprene oxidation has improved, and proper representation of isoprene oxidation and isoprene-derived SOA (iSOA) formation in canopy–chemistry models is now recognized to be important for an accurate understanding of forest–atmosphere exchange. The updated FORCAsT version 2.0 improves the estimation of some isoprene oxidation products and is one of the few canopy models currently capable of simulating SOA formation from monoterpenes and isoprene.
Hao Guo, Clare M. Flynn, Michael J. Prather, Sarah A. Strode, Stephen D. Steenrod, Louisa Emmons, Forrest Lacey, Jean-Francois Lamarque, Arlene M. Fiore, Gus Correa, Lee T. Murray, Glenn M. Wolfe, Jason M. St. Clair, Michelle Kim, John Crounse, Glenn Diskin, Joshua DiGangi, Bruce C. Daube, Roisin Commane, Kathryn McKain, Jeff Peischl, Thomas B. Ryerson, Chelsea Thompson, Thomas F. Hanisco, Donald Blake, Nicola J. Blake, Eric C. Apel, Rebecca S. Hornbrook, James W. Elkins, Eric J. Hintsa, Fred L. Moore, and Steven Wofsy
Atmos. Chem. Phys., 21, 13729–13746, https://doi.org/10.5194/acp-21-13729-2021, https://doi.org/10.5194/acp-21-13729-2021, 2021
Short summary
Short summary
The NASA Atmospheric Tomography (ATom) mission built a climatology of the chemical composition of tropospheric air parcels throughout the middle of the Pacific and Atlantic oceans. The level of detail allows us to reconstruct the photochemical budgets of O3 and CH4 over these vast, remote regions. We find that most of the chemical heterogeneity is captured at the resolution used in current global chemistry models and that the majority of reactivity occurs in the
hottest20 % of parcels.
Daniel C. Anderson, Bryan N. Duncan, Arlene M. Fiore, Colleen B. Baublitz, Melanie B. Follette-Cook, Julie M. Nicely, and Glenn M. Wolfe
Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, https://doi.org/10.5194/acp-21-6481-2021, 2021
Short summary
Short summary
We demonstrate that large-scale climate features are the primary driver of year-to-year variability in simulated values of the hydroxyl radical, the primary atmospheric oxidant, over 1980–2018. The El Niño–Southern Oscillation is the dominant mode of hydroxyl variability, resulting in large-scale global decreases in OH during El Niño events. Other climate modes, such as the Australian monsoon and the North Atlantic Oscillation, have impacts of similar magnitude but on on more localized scales.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Short summary
The 13C : 12C isotopic ratio in methane (CH4) provides information about CH4 sources, but loss of CH4 by reaction with OH and chlorine (Cl) also affects this ratio. Tropospheric Cl provides a small and uncertain sink for CH4 but has a large effect on its isotopic ratio. We use the GEOS model with several different Cl fields to test the sensitivity of methane's isotopic composition to tropospheric Cl. Cl affects the global mean, hemispheric gradient, and seasonal cycle of the isotopic ratio.
Junhua Liu, Jose M. Rodriguez, Luke D. Oman, Anne R. Douglass, Mark A. Olsen, and Lu Hu
Atmos. Chem. Phys., 20, 6417–6433, https://doi.org/10.5194/acp-20-6417-2020, https://doi.org/10.5194/acp-20-6417-2020, 2020
Short summary
Short summary
Our paper quantifies and identifies the importance of stratospheric ozone influence on the tropospheric ozone IAV in Northern Hemisphere mid-high latitudes. Our analysis provides an in-depth understanding of how 3-D dynamics influences the O3 redistribution in the troposphere. These findings are particularly important considering the potential changes in these dynamical conditions in the future as a result of climate change
Sungyeon Choi, Lok N. Lamsal, Melanie Follette-Cook, Joanna Joiner, Nickolay A. Krotkov, William H. Swartz, Kenneth E. Pickering, Christopher P. Loughner, Wyat Appel, Gabriele Pfister, Pablo E. Saide, Ronald C. Cohen, Andrew J. Weinheimer, and Jay R. Herman
Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020, https://doi.org/10.5194/amt-13-2523-2020, 2020
Alexander B. Thames, William H. Brune, David O. Miller, Hannah M. Allen, Eric C. Apel, Donald R. Blake, T. Paul Bui, Roisin Commane, John D. Crounse, Bruce C. Daube, Glenn S. Diskin, Joshua P. DiGangi, James W. Elkins, Samuel R. Hall, Thomas F. Hanisco, Reem A. Hannun, Eric Hintsa, Rebecca S. Hornbrook, Michelle J. Kim, Kathryn McKain, Fred L. Moore, Julie M. Nicely, Jeffrey Peischl, Thomas B. Ryerson, Jason M. St. Clair, Colm Sweeney, Alex Teng, Chelsea R. Thompson, Kirk Ullmann, Paul O. Wennberg, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 4013–4029, https://doi.org/10.5194/acp-20-4013-2020, https://doi.org/10.5194/acp-20-4013-2020, 2020
Short summary
Short summary
Oceans and the atmosphere exchange volatile gases that react with the hydroxyl radical (OH). During a NASA airborne study, measurements of the total frequency of OH reactions, called the OH reactivity, were made in the marine boundary layer of the Atlantic and Pacific oceans. The measured OH reactivity often exceeded the OH reactivity calculated from measured chemical species. This missing OH reactivity appears to be from unmeasured volatile organic compounds coming out of the ocean.
Julie M. Nicely, Bryan N. Duncan, Thomas F. Hanisco, Glenn M. Wolfe, Ross J. Salawitch, Makoto Deushi, Amund S. Haslerud, Patrick Jöckel, Béatrice Josse, Douglas E. Kinnison, Andrew Klekociuk, Michael E. Manyin, Virginie Marécal, Olaf Morgenstern, Lee T. Murray, Gunnar Myhre, Luke D. Oman, Giovanni Pitari, Andrea Pozzer, Ilaria Quaglia, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Kane Stone, Susan Strahan, Simone Tilmes, Holger Tost, Daniel M. Westervelt, and Guang Zeng
Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, https://doi.org/10.5194/acp-20-1341-2020, 2020
Short summary
Short summary
Differences in methane lifetime among global models are large and poorly understood. We use a neural network method and simulations from the Chemistry Climate Model Initiative to quantify the factors influencing methane lifetime spread among models and variations over time. UV photolysis, tropospheric ozone, and nitrogen oxides drive large model differences, while the same factors plus specific humidity contribute to a decreasing trend in methane lifetime between 1980 and 2015.
Le Kuai, Kevin W. Bowman, Kazuyuki Miyazaki, Makoto Deushi, Laura Revell, Eugene Rozanov, Fabien Paulot, Sarah Strode, Andrew Conley, Jean-François Lamarque, Patrick Jöckel, David A. Plummer, Luke D. Oman, Helen Worden, Susan Kulawik, David Paynter, Andrea Stenke, and Markus Kunze
Atmos. Chem. Phys., 20, 281–301, https://doi.org/10.5194/acp-20-281-2020, https://doi.org/10.5194/acp-20-281-2020, 2020
Short summary
Short summary
The tropospheric ozone increase from pre-industrial to the present day leads to a radiative forcing. The top-of-atmosphere outgoing fluxes at the ozone band are controlled by ozone, water vapor, and temperature. We demonstrate a method to attribute the models’ flux biases to these key players using satellite-constrained instantaneous radiative kernels. The largest spread between models is found in the tropics, mainly driven by ozone and then water vapor.
Fei Liu, Bryan N. Duncan, Nickolay A. Krotkov, Lok N. Lamsal, Steffen Beirle, Debora Griffin, Chris A. McLinden, Daniel L. Goldberg, and Zifeng Lu
Atmos. Chem. Phys., 20, 99–116, https://doi.org/10.5194/acp-20-99-2020, https://doi.org/10.5194/acp-20-99-2020, 2020
Short summary
Short summary
We present a novel method to infer CO2 emissions from individual power plants, based on satellite observations of co-emitted NO2. We find that the CO2 emissions estimated by our satellite-based method during 2005–2017 are in reasonable agreement with the CEMS measurements for US power plants. The broader implication of our methodology is that it has the potential to provide an additional constraint on CO2 emissions from power plants in regions of the world without reliable emissions accounting.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Paul I. Palmer, Emily L. Wilson, Geronimo L. Villanueva, Giuliano Liuzzi, Liang Feng, Anthony J. DiGregorio, Jianping Mao, Lesley Ott, and Bryan Duncan
Atmos. Meas. Tech., 12, 2579–2594, https://doi.org/10.5194/amt-12-2579-2019, https://doi.org/10.5194/amt-12-2579-2019, 2019
Short summary
Short summary
We describe the potential impact of a new, low-cost, portable ground instrument (the mini-LHR) that measures methane and carbon dioxide in the atmospheric column. This region is key in quantifying the global carbon budget but has geographical gaps in measurements left by ground-based networks and space-based observations. A deployment of 50 mini-LHRs would add new data products in the Amazon, the Arctic, and southern Asia and significantly improve knowledge of regional and global carbon budgets.
Jerry R. Ziemke, Luke D. Oman, Sarah A. Strode, Anne R. Douglass, Mark A. Olsen, Richard D. McPeters, Pawan K. Bhartia, Lucien Froidevaux, Gordon J. Labow, Jacquie C. Witte, Anne M. Thompson, David P. Haffner, Natalya A. Kramarova, Stacey M. Frith, Liang-Kang Huang, Glen R. Jaross, Colin J. Seftor, Mathew T. Deland, and Steven L. Taylor
Atmos. Chem. Phys., 19, 3257–3269, https://doi.org/10.5194/acp-19-3257-2019, https://doi.org/10.5194/acp-19-3257-2019, 2019
Short summary
Short summary
Both a 38-year merged satellite record of tropospheric ozone from TOMS/OMI/MLS/OMPS and a MERRA-2 GMI model simulation show large increases of 6–7 Dobson units from the Near East to India–East Asia and eastward over the Pacific. These increases in tropospheric ozone are attributed to increases in pollution over the region over the last several decades. Secondary 38-year increases of 4–5 Dobson units with both GMI model and satellite measurements occur over central African–tropical Atlantic.
Kai-Lan Chang, Owen R. Cooper, J. Jason West, Marc L. Serre, Martin G. Schultz, Meiyun Lin, Virginie Marécal, Béatrice Josse, Makoto Deushi, Kengo Sudo, Junhua Liu, and Christoph A. Keller
Geosci. Model Dev., 12, 955–978, https://doi.org/10.5194/gmd-12-955-2019, https://doi.org/10.5194/gmd-12-955-2019, 2019
Short summary
Short summary
We developed a new method for combining surface ozone observations from thousands of monitoring sites worldwide with the output from multiple atmospheric chemistry models. The result is a global surface ozone distribution with greater accuracy than any single model can achieve. We focused on an ozone metric relevant to human mortality caused by long-term ozone exposure. Our method can be applied to studies that quantify the impacts of ozone on human health and mortality.
Daniel C. Anderson, Jessica Pavelec, Conner Daube, Scott C. Herndon, Walter B. Knighton, Brian M. Lerner, J. Robert Roscioli, Tara I. Yacovitch, and Ezra C. Wood
Atmos. Chem. Phys., 19, 2845–2860, https://doi.org/10.5194/acp-19-2845-2019, https://doi.org/10.5194/acp-19-2845-2019, 2019
Short summary
Short summary
San Antonio is one of the largest cities in the United States and is in non-attainment of the 8 h ozone standard. Using the Aerodyne Mobile Laboratory, we made observations of ozone and its precursors at three sites in the San Antonio region to determine the main drivers of its production. We found that compounds produced by plants were the dominant organic compound for ozone production and that to limit ozone production at the study site, emissions of nitrogen oxides should be reduced.
Samuel R. Hall, Kirk Ullmann, Michael J. Prather, Clare M. Flynn, Lee T. Murray, Arlene M. Fiore, Gustavo Correa, Sarah A. Strode, Stephen D. Steenrod, Jean-Francois Lamarque, Jonathan Guth, Béatrice Josse, Johannes Flemming, Vincent Huijnen, N. Luke Abraham, and Alex T. Archibald
Atmos. Chem. Phys., 18, 16809–16828, https://doi.org/10.5194/acp-18-16809-2018, https://doi.org/10.5194/acp-18-16809-2018, 2018
Short summary
Short summary
Photolysis (J rates) initiates and drives atmospheric chemistry, and Js are perturbed by factors of 2 by clouds. The NASA Atmospheric Tomography (ATom) Mission provides the first comprehensive observations on how clouds perturb Js through the remote Pacific and Atlantic basins. We compare these cloud-perturbation J statistics with those from nine global chemistry models. While basic patterns agree, there is a large spread across models, and all lack some basic features of the observations.
Caroline R. Nowlan, Xiong Liu, Scott J. Janz, Matthew G. Kowalewski, Kelly Chance, Melanie B. Follette-Cook, Alan Fried, Gonzalo González Abad, Jay R. Herman, Laura M. Judd, Hyeong-Ahn Kwon, Christopher P. Loughner, Kenneth E. Pickering, Dirk Richter, Elena Spinei, James Walega, Petter Weibring, and Andrew J. Weinheimer
Atmos. Meas. Tech., 11, 5941–5964, https://doi.org/10.5194/amt-11-5941-2018, https://doi.org/10.5194/amt-11-5941-2018, 2018
Short summary
Short summary
The GEO-CAPE Airborne Simulator (GCAS) was developed in support of future air quality and ocean color geostationary satellite missions. GCAS flew in its first field campaign on NASA's King Air B-200 aircraft during DISCOVER-AQ Texas in 2013. In this paper, we determine nitrogen dioxide and formaldehyde columns over Houston from the GCAS air quality sensor and compare those results with measurements made from ground-based Pandora spectrometers and in situ airborne instruments.
Arlene M. Fiore, Emily V. Fischer, George P. Milly, Shubha Pandey Deolal, Oliver Wild, Daniel A. Jaffe, Johannes Staehelin, Olivia E. Clifton, Dan Bergmann, William Collins, Frank Dentener, Ruth M. Doherty, Bryan N. Duncan, Bernd Fischer, Stefan Gilge, Peter G. Hess, Larry W. Horowitz, Alexandru Lupu, Ian A. MacKenzie, Rokjin Park, Ludwig Ries, Michael G. Sanderson, Martin G. Schultz, Drew T. Shindell, Martin Steinbacher, David S. Stevenson, Sophie Szopa, Christoph Zellweger, and Guang Zeng
Atmos. Chem. Phys., 18, 15345–15361, https://doi.org/10.5194/acp-18-15345-2018, https://doi.org/10.5194/acp-18-15345-2018, 2018
Short summary
Short summary
We demonstrate a proof-of-concept approach for applying northern midlatitude mountaintop peroxy acetyl nitrate (PAN) measurements and a multi-model ensemble during April to constrain the influence of continental-scale anthropogenic precursor emissions on PAN. Our findings imply a role for carefully coordinated multi-model ensembles in helping identify observations for discriminating among widely varying (and poorly constrained) model responses of atmospheric constituents to changes in emissions.
Sarah A. Strode, Junhua Liu, Leslie Lait, Róisín Commane, Bruce Daube, Steven Wofsy, Austin Conaty, Paul Newman, and Michael Prather
Atmos. Chem. Phys., 18, 10955–10971, https://doi.org/10.5194/acp-18-10955-2018, https://doi.org/10.5194/acp-18-10955-2018, 2018
Short summary
Short summary
The GEOS-5 atmospheric model provided forecasts for the Atmospheric Tomography Mission (ATom). GEOS-5 shows skill in simulating the carbon monoxide (CO) measured in ATom-1. African fires contribute to high CO over the tropical Atlantic, but non-fire sources are the main contributors elsewhere. ATom aims to provide a chemical climatology, so we consider whether ATom-1 occurred during a typical summer month. Satellite observations suggest ATom-1 occurred in a clean but not exceptional month.
Michael J. Prather, Clare M. Flynn, Xin Zhu, Stephen D. Steenrod, Sarah A. Strode, Arlene M. Fiore, Gustavo Correa, Lee T. Murray, and Jean-Francois Lamarque
Atmos. Meas. Tech., 11, 2653–2668, https://doi.org/10.5194/amt-11-2653-2018, https://doi.org/10.5194/amt-11-2653-2018, 2018
Short summary
Short summary
A new protocol for merging in situ atmospheric chemistry measurements with 3-D models is developed. This technique can identify the most reactive air parcels in terms of tropospheric production/loss of O3 & CH4. This approach highlights differences in 6 global chemistry models even with composition specified. Thus in situ measurements from, e.g., NASA's ATom mission can be used to develop a chemical climatology of, not only the key species, but also the rates of key reactions in each air parcel.
Pieternel F. Levelt, Joanna Joiner, Johanna Tamminen, J. Pepijn Veefkind, Pawan K. Bhartia, Deborah C. Stein Zweers, Bryan N. Duncan, David G. Streets, Henk Eskes, Ronald van der A, Chris McLinden, Vitali Fioletov, Simon Carn, Jos de Laat, Matthew DeLand, Sergey Marchenko, Richard McPeters, Jerald Ziemke, Dejian Fu, Xiong Liu, Kenneth Pickering, Arnoud Apituley, Gonzalo González Abad, Antti Arola, Folkert Boersma, Christopher Chan Miller, Kelly Chance, Martin de Graaf, Janne Hakkarainen, Seppo Hassinen, Iolanda Ialongo, Quintus Kleipool, Nickolay Krotkov, Can Li, Lok Lamsal, Paul Newman, Caroline Nowlan, Raid Suleiman, Lieuwe Gijsbert Tilstra, Omar Torres, Huiqun Wang, and Krzysztof Wargan
Atmos. Chem. Phys., 18, 5699–5745, https://doi.org/10.5194/acp-18-5699-2018, https://doi.org/10.5194/acp-18-5699-2018, 2018
Short summary
Short summary
The aim of this paper is to highlight the many successes of the Ozone Monitoring Instrument (OMI) spanning more than 13 years. Data from OMI have been used in a wide range of applications. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. OMI data continue to be used for new research and applications.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Jerald R. Ziemke, Sarah A. Strode, Anne R. Douglass, Joanna Joiner, Alexander Vasilkov, Luke D. Oman, Junhua Liu, Susan E. Strahan, Pawan K. Bhartia, and David P. Haffner
Atmos. Meas. Tech., 10, 4067–4078, https://doi.org/10.5194/amt-10-4067-2017, https://doi.org/10.5194/amt-10-4067-2017, 2017
Short summary
Short summary
We combine satellite measurements of ozone and cloud properties from the Aura OMI and MLS instruments for 2004–2016 to measure ozone in the mid–upper levels of deep convective clouds. Our results ascribe upward injection of low boundary layer ozone (varying from low to high amounts) as a major driver of the measured concentrations of ozone in thick clouds. Our OMI/MLS generated ozone product is made available to the public for use in science applications.
Michael J. Prather, Xin Zhu, Clare M. Flynn, Sarah A. Strode, Jose M. Rodriguez, Stephen D. Steenrod, Junhua Liu, Jean-Francois Lamarque, Arlene M. Fiore, Larry W. Horowitz, Jingqiu Mao, Lee T. Murray, Drew T. Shindell, and Steven C. Wofsy
Atmos. Chem. Phys., 17, 9081–9102, https://doi.org/10.5194/acp-17-9081-2017, https://doi.org/10.5194/acp-17-9081-2017, 2017
Short summary
Short summary
We present a new approach for comparing atmospheric chemistry models with measurements based on what these models are used to do, i.e., calculate changes in ozone and methane, prime greenhouse gases. This method anticipates a new type of measurements from the NASA Atmospheric Tomography (ATom) mission. In comparing the mixture of species within air parcels, we focus on those responsible for key chemical changes and weight these parcels by their chemical reactivity.
Hyun-Deok Choi, Hongyu Liu, James H. Crawford, David B. Considine, Dale J. Allen, Bryan N. Duncan, Larry W. Horowitz, Jose M. Rodriguez, Susan E. Strahan, Lin Zhang, Xiong Liu, Megan R. Damon, and Stephen D. Steenrod
Atmos. Chem. Phys., 17, 8429–8452, https://doi.org/10.5194/acp-17-8429-2017, https://doi.org/10.5194/acp-17-8429-2017, 2017
Short summary
Short summary
We evaluate global ozone–carbon monoxide (O3–CO) correlations in a chemistry and transport model during July–August with TES-Aura satellite observations and examine the sensitivity of model simulations to input meteorological data and emissions. Results show that O3–CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.
Junhua Liu, Jose M. Rodriguez, Stephen D. Steenrod, Anne R. Douglass, Jennifer A. Logan, Mark A. Olsen, Krzysztof Wargan, and Jerald R. Ziemke
Atmos. Chem. Phys., 17, 3279–3299, https://doi.org/10.5194/acp-17-3279-2017, https://doi.org/10.5194/acp-17-3279-2017, 2017
Short summary
Short summary
We quantify the relative contribution of processes controlling the interannual variability (IAV) of tropospheric ozone over the southern hemispheric tropospheric ozone maximum (SHTOM) with GMI chemistry transport model. We use various GMI tracer diagnostics, including a StratO3 tracer to quantify the stratospheric impact, and tagged CO tracers to track the emission sources. Our result shows that the stratospheric contribution is the most important factor driving the IAV of upper tropospheric O3.
Raquel A. Silva, J. Jason West, Jean-François Lamarque, Drew T. Shindell, William J. Collins, Stig Dalsoren, Greg Faluvegi, Gerd Folberth, Larry W. Horowitz, Tatsuya Nagashima, Vaishali Naik, Steven T. Rumbold, Kengo Sudo, Toshihiko Takemura, Daniel Bergmann, Philip Cameron-Smith, Irene Cionni, Ruth M. Doherty, Veronika Eyring, Beatrice Josse, Ian A. MacKenzie, David Plummer, Mattia Righi, David S. Stevenson, Sarah Strode, Sophie Szopa, and Guang Zengast
Atmos. Chem. Phys., 16, 9847–9862, https://doi.org/10.5194/acp-16-9847-2016, https://doi.org/10.5194/acp-16-9847-2016, 2016
Short summary
Short summary
Using ozone and PM2.5 concentrations from the ACCMIP ensemble of chemistry-climate models for the four Representative Concentration Pathway scenarios (RCPs), together with projections of future population and baseline mortality rates, we quantify the human premature mortality impacts of future ambient air pollution in 2030, 2050 and 2100, relative to 2000 concentrations. We also estimate the global mortality burden of ozone and PM2.5 in 2000 and each future period.
Caroline R. Nowlan, Xiong Liu, James W. Leitch, Kelly Chance, Gonzalo González Abad, Cheng Liu, Peter Zoogman, Joshua Cole, Thomas Delker, William Good, Frank Murcray, Lyle Ruppert, Daniel Soo, Melanie B. Follette-Cook, Scott J. Janz, Matthew G. Kowalewski, Christopher P. Loughner, Kenneth E. Pickering, Jay R. Herman, Melinda R. Beaver, Russell W. Long, James J. Szykman, Laura M. Judd, Paul Kelley, Winston T. Luke, Xinrong Ren, and Jassim A. Al-Saadi
Atmos. Meas. Tech., 9, 2647–2668, https://doi.org/10.5194/amt-9-2647-2016, https://doi.org/10.5194/amt-9-2647-2016, 2016
Short summary
Short summary
The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) instrument is a remote sensing airborne instrument developed in support of future air quality satellite missions that will operate from geostationary orbit. GeoTASO flew in its first intensive field campaign during the DISCOVER-AQ 2013 Earth Venture Mission over Houston, Texas. This paper introduces the instrument and data analysis, and presents GeoTASO's first observations of NO2 at 250 m x 250 m spatial resolution.
Sarah A. Strode, Helen M. Worden, Megan Damon, Anne R. Douglass, Bryan N. Duncan, Louisa K. Emmons, Jean-Francois Lamarque, Michael Manyin, Luke D. Oman, Jose M. Rodriguez, Susan E. Strahan, and Simone Tilmes
Atmos. Chem. Phys., 16, 7285–7294, https://doi.org/10.5194/acp-16-7285-2016, https://doi.org/10.5194/acp-16-7285-2016, 2016
Short summary
Short summary
We use global models to interpret trends in MOPITT observations of CO. Simulations with time-dependent emissions reproduce the observed trends over the eastern USA and Europe, suggesting that the emissions are reasonable for these regions. The simulations produce a positive trend over eastern China, contrary to the observed negative trend. This may indicate that the assumed emission trend over China is too positive. However, large variability in the overhead ozone column also contributes.
Nickolay A. Krotkov, Chris A. McLinden, Can Li, Lok N. Lamsal, Edward A. Celarier, Sergey V. Marchenko, William H. Swartz, Eric J. Bucsela, Joanna Joiner, Bryan N. Duncan, K. Folkert Boersma, J. Pepijn Veefkind, Pieternel F. Levelt, Vitali E. Fioletov, Russell R. Dickerson, Hao He, Zifeng Lu, and David G. Streets
Atmos. Chem. Phys., 16, 4605–4629, https://doi.org/10.5194/acp-16-4605-2016, https://doi.org/10.5194/acp-16-4605-2016, 2016
Short summary
Short summary
We examine changes in SO2 and NO2 over the world's most polluted regions during the first decade of Aura OMI observations. Over the eastern US, both NO2 and SO2 levels decreased by 40 % and 80 %, respectively. OMI confirmed large reductions in SO2 over eastern Europe's largest coal power plants. The North China Plain has the world's most severe SO2 pollution, but a decreasing trend been observed since 2011, with a 50 % reduction in 2012–2014. India's SO2 and NO2 levels are growing at a fast pace.
Yasin F. Elshorbany, Bryan N. Duncan, Sarah A. Strode, James S. Wang, and Jules Kouatchou
Geosci. Model Dev., 9, 799–822, https://doi.org/10.5194/gmd-9-799-2016, https://doi.org/10.5194/gmd-9-799-2016, 2016
Short summary
Short summary
The ECCOH (pronounced "echo") chemistry module interactively simulates the photochemistry of the CH4–CO–OH system within a chemistry climate model, carbon cycle model, or Earth system model. The computational efficiency of the module allows many multi-decadal sensitivity simulations of the CH4–CO–OH system. This capability is important for capturing nonlinear feedbacks of the CH4–CO–OH system and understanding the perturbations to methane, CO, and OH and the concomitant climate impacts.
S. A. Strode, B. N. Duncan, E. A. Yegorova, J. Kouatchou, J. R. Ziemke, and A. R. Douglass
Atmos. Chem. Phys., 15, 11789–11805, https://doi.org/10.5194/acp-15-11789-2015, https://doi.org/10.5194/acp-15-11789-2015, 2015
Short summary
Short summary
A low bias in carbon monoxide (CO) at northern latitudes is a common feature of chemistry climate models. We find that increasing Northern Hemisphere (NH) CO emissions or reducing NH OH concentrations improves the agreement with CO surface observations, but reducing NH OH leads to a better comparison with MOPITT. Removing model biases in ozone and water vapor increases the simulated methane lifetime, but it does not give the 20% reduction in NH OH suggested by our analysis of the CO bias.
T. P. Canty, L. Hembeck, T. P. Vinciguerra, D. C. Anderson, D. L. Goldberg, S. F. Carpenter, D. J. Allen, C. P. Loughner, R. J. Salawitch, and R. R. Dickerson
Atmos. Chem. Phys., 15, 10965–10982, https://doi.org/10.5194/acp-15-10965-2015, https://doi.org/10.5194/acp-15-10965-2015, 2015
J. L. Schnell, M. J. Prather, B. Josse, V. Naik, L. W. Horowitz, P. Cameron-Smith, D. Bergmann, G. Zeng, D. A. Plummer, K. Sudo, T. Nagashima, D. T. Shindell, G. Faluvegi, and S. A. Strode
Atmos. Chem. Phys., 15, 10581–10596, https://doi.org/10.5194/acp-15-10581-2015, https://doi.org/10.5194/acp-15-10581-2015, 2015
Short summary
Short summary
We test global chemistry--climate models in their ability to simulate present-day surface ozone. Models are tested against observed hourly ozone from 4217 stations in North America and Europe that are averaged over 1°x1° grid cells. Using novel metrics, we find most models match the shape but not the amplitude of regional summertime diurnal and annual cycles and match the pattern but not the magnitude of summer ozone enhancement. Most also match the observed distribution of extreme episode sizes
Z. Lu, D. G. Streets, B. de Foy, L. N. Lamsal, B. N. Duncan, and J. Xing
Atmos. Chem. Phys., 15, 10367–10383, https://doi.org/10.5194/acp-15-10367-2015, https://doi.org/10.5194/acp-15-10367-2015, 2015
Short summary
Short summary
Using an exponentially modified Gaussian method and taking into account the effect of wind on NO2 distributions, we estimate 3-year moving-average emissions of summertime NOx from 35 US urban areas directly from NO2 retrievals of the OMI during 2005−2014. Total OMI-derived NOx emissions over US urban areas decreased by 49%, consistent with reductions of 43, 49, and 44% in the bottom-up NOx emissions, the weak-wind OMI NO2 burdens, and the averaged NO2 concentrations, respectively.
L. K. Emmons, S. R. Arnold, S. A. Monks, V. Huijnen, S. Tilmes, K. S. Law, J. L. Thomas, J.-C. Raut, I. Bouarar, S. Turquety, Y. Long, B. Duncan, S. Steenrod, S. Strode, J. Flemming, J. Mao, J. Langner, A. M. Thompson, D. Tarasick, E. C. Apel, D. R. Blake, R. C. Cohen, J. Dibb, G. S. Diskin, A. Fried, S. R. Hall, L. G. Huey, A. J. Weinheimer, A. Wisthaler, T. Mikoviny, J. Nowak, J. Peischl, J. M. Roberts, T. Ryerson, C. Warneke, and D. Helmig
Atmos. Chem. Phys., 15, 6721–6744, https://doi.org/10.5194/acp-15-6721-2015, https://doi.org/10.5194/acp-15-6721-2015, 2015
Short summary
Short summary
Eleven 3-D tropospheric chemistry models have been compared and evaluated with observations in the Arctic during the International Polar Year (IPY 2008). Large differences are seen among the models, particularly related to the model chemistry of volatile organic compounds (VOCs) and reactive nitrogen (NOx, PAN, HNO3) partitioning. Consistency among the models in the underestimation of CO, ethane and propane indicates the emission inventory is too low for these compounds.
S. R. Arnold, L. K. Emmons, S. A. Monks, K. S. Law, D. A. Ridley, S. Turquety, S. Tilmes, J. L. Thomas, I. Bouarar, J. Flemming, V. Huijnen, J. Mao, B. N. Duncan, S. Steenrod, Y. Yoshida, J. Langner, and Y. Long
Atmos. Chem. Phys., 15, 6047–6068, https://doi.org/10.5194/acp-15-6047-2015, https://doi.org/10.5194/acp-15-6047-2015, 2015
Short summary
Short summary
The extent to which forest fires produce the air pollutant and greenhouse gas ozone (O3) in the atmosphere at high latitudes in not well understood. We have compared how fire emissions produce O3 and its precursors in several models of atmospheric chemistry. We find enhancements in O3 in air dominated by fires in all models, which increase on average as fire emissions age. We also find that in situ O3 production in the Arctic is sensitive to details of organic chemistry and vertical lifting.
S. A. Monks, S. R. Arnold, L. K. Emmons, K. S. Law, S. Turquety, B. N. Duncan, J. Flemming, V. Huijnen, S. Tilmes, J. Langner, J. Mao, Y. Long, J. L. Thomas, S. D. Steenrod, J. C. Raut, C. Wilson, M. P. Chipperfield, G. S. Diskin, A. Weinheimer, H. Schlager, and G. Ancellet
Atmos. Chem. Phys., 15, 3575–3603, https://doi.org/10.5194/acp-15-3575-2015, https://doi.org/10.5194/acp-15-3575-2015, 2015
Short summary
Short summary
Multi-model simulations of Arctic CO, O3 and OH are evaluated using observations. Models show highly variable concentrations but the relative importance of emission regions and types is robust across the models, demonstrating the importance of biomass burning as a source. Idealised tracer experiments suggest that some of the model spread is due to variations in simulated transport from Europe in winter and from Asia throughout the year.
S. Choi, J. Joiner, Y. Choi, B. N. Duncan, A. Vasilkov, N. Krotkov, and E. Bucsela
Atmos. Chem. Phys., 14, 10565–10588, https://doi.org/10.5194/acp-14-10565-2014, https://doi.org/10.5194/acp-14-10565-2014, 2014
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
J. X. Warner, R. Yang, Z. Wei, F. Carminati, A. Tangborn, Z. Sun, W. Lahoz, J.-L. Attié, L. El Amraoui, and B. Duncan
Atmos. Chem. Phys., 14, 103–114, https://doi.org/10.5194/acp-14-103-2014, https://doi.org/10.5194/acp-14-103-2014, 2014
J.-F. Lamarque, F. Dentener, J. McConnell, C.-U. Ro, M. Shaw, R. Vet, D. Bergmann, P. Cameron-Smith, S. Dalsoren, R. Doherty, G. Faluvegi, S. J. Ghan, B. Josse, Y. H. Lee, I. A. MacKenzie, D. Plummer, D. T. Shindell, R. B. Skeie, D. S. Stevenson, S. Strode, G. Zeng, M. Curran, D. Dahl-Jensen, S. Das, D. Fritzsche, and M. Nolan
Atmos. Chem. Phys., 13, 7997–8018, https://doi.org/10.5194/acp-13-7997-2013, https://doi.org/10.5194/acp-13-7997-2013, 2013
V. Naik, A. Voulgarakis, A. M. Fiore, L. W. Horowitz, J.-F. Lamarque, M. Lin, M. J. Prather, P. J. Young, D. Bergmann, P. J. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, T. P. C. van Noije, D. A. Plummer, M. Righi, S. T. Rumbold, R. Skeie, D. T. Shindell, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 5277–5298, https://doi.org/10.5194/acp-13-5277-2013, https://doi.org/10.5194/acp-13-5277-2013, 2013
K. W. Bowman, D. T. Shindell, H. M. Worden, J.F. Lamarque, P. J. Young, D. S. Stevenson, Z. Qu, M. de la Torre, D. Bergmann, P. J. Cameron-Smith, W. J. Collins, R. Doherty, S. B. Dalsøren, G. Faluvegi, G. Folberth, L. W. Horowitz, B. M. Josse, Y. H. Lee, I. A. MacKenzie, G. Myhre, T. Nagashima, V. Naik, D. A. Plummer, S. T. Rumbold, R. B. Skeie, S. A. Strode, K. Sudo, S. Szopa, A. Voulgarakis, G. Zeng, S. S. Kulawik, A. M. Aghedo, and J. R. Worden
Atmos. Chem. Phys., 13, 4057–4072, https://doi.org/10.5194/acp-13-4057-2013, https://doi.org/10.5194/acp-13-4057-2013, 2013
D. S. Stevenson, P. J. Young, V. Naik, J.-F. Lamarque, D. T. Shindell, A. Voulgarakis, R. B. Skeie, S. B. Dalsoren, G. Myhre, T. K. Berntsen, G. A. Folberth, S. T. Rumbold, W. J. Collins, I. A. MacKenzie, R. M. Doherty, G. Zeng, T. P. C. van Noije, A. Strunk, D. Bergmann, P. Cameron-Smith, D. A. Plummer, S. A. Strode, L. Horowitz, Y. H. Lee, S. Szopa, K. Sudo, T. Nagashima, B. Josse, I. Cionni, M. Righi, V. Eyring, A. Conley, K. W. Bowman, O. Wild, and A. Archibald
Atmos. Chem. Phys., 13, 3063–3085, https://doi.org/10.5194/acp-13-3063-2013, https://doi.org/10.5194/acp-13-3063-2013, 2013
A. Voulgarakis, V. Naik, J.-F. Lamarque, D. T. Shindell, P. J. Young, M. J. Prather, O. Wild, R. D. Field, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, G. A. Folberth, L. W. Horowitz, B. Josse, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, D. S. Stevenson, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013, https://doi.org/10.5194/acp-13-2563-2013, 2013
P. J. Young, A. T. Archibald, K. W. Bowman, J.-F. Lamarque, V. Naik, D. S. Stevenson, S. Tilmes, A. Voulgarakis, O. Wild, D. Bergmann, P. Cameron-Smith, I. Cionni, W. J. Collins, S. B. Dalsøren, R. M. Doherty, V. Eyring, G. Faluvegi, L. W. Horowitz, B. Josse, Y. H. Lee, I. A. MacKenzie, T. Nagashima, D. A. Plummer, M. Righi, S. T. Rumbold, R. B. Skeie, D. T. Shindell, S. A. Strode, K. Sudo, S. Szopa, and G. Zeng
Atmos. Chem. Phys., 13, 2063–2090, https://doi.org/10.5194/acp-13-2063-2013, https://doi.org/10.5194/acp-13-2063-2013, 2013
J.-F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, V. Eyring, D. Bergmann, P. Cameron-Smith, W. J. Collins, R. Doherty, S. Dalsoren, G. Faluvegi, G. Folberth, S. J. Ghan, L. W. Horowitz, Y. H. Lee, I. A. MacKenzie, T. Nagashima, V. Naik, D. Plummer, M. Righi, S. T. Rumbold, M. Schulz, R. B. Skeie, D. S. Stevenson, S. Strode, K. Sudo, S. Szopa, A. Voulgarakis, and G. Zeng
Geosci. Model Dev., 6, 179–206, https://doi.org/10.5194/gmd-6-179-2013, https://doi.org/10.5194/gmd-6-179-2013, 2013
J. Liu, J. A. Logan, L. T. Murray, H. C. Pumphrey, M. J. Schwartz, and I. A. Megretskaia
Atmos. Chem. Phys., 13, 129–146, https://doi.org/10.5194/acp-13-129-2013, https://doi.org/10.5194/acp-13-129-2013, 2013
Related subject area
Atmospheric sciences
LIMA (v2.0): A full two-moment cloud microphysical scheme for the mesoscale non-hydrostatic model Meso-NH v5-6
SLUCM+BEM (v1.0): a simple parameterisation for dynamic anthropogenic heat and electricity consumption in WRF-Urban (v4.3.2)
NAQPMS-PDAF v2.0: a novel hybrid nonlinear data assimilation system for improved simulation of PM2.5 chemical components
Source-specific bias correction of US background and anthropogenic ozone modeled in CMAQ
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
Accurate space-based NOx emission estimates with the flux divergence approach require fine-scale model information on local oxidation chemistry and profile shapes
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
The MESSy DWARF (based on MESSy v2.55.2)
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Marie Taufour, Jean-Pierre Pinty, Christelle Barthe, Benoît Vié, and Chien Wang
Geosci. Model Dev., 17, 8773–8798, https://doi.org/10.5194/gmd-17-8773-2024, https://doi.org/10.5194/gmd-17-8773-2024, 2024
Short summary
Short summary
We have developed a complete two-moment version of the LIMA (Liquid Ice Multiple Aerosols) microphysics scheme. We have focused on collection processes, where the hydrometeor number transfer is often estimated in proportion to the mass transfer. The impact of these parameterizations on a convective system and the prospects for more realistic estimates of secondary parameters (reflectivity, hydrometeor size) are shown in a first test on an idealized case.
Yuya Takane, Yukihiro Kikegawa, Ko Nakajima, and Hiroyuki Kusaka
Geosci. Model Dev., 17, 8639–8664, https://doi.org/10.5194/gmd-17-8639-2024, https://doi.org/10.5194/gmd-17-8639-2024, 2024
Short summary
Short summary
A new parameterisation for dynamic anthropogenic heat and electricity consumption is described. The model reproduced the temporal variation in and spatial distributions of electricity consumption and temperature well in summer and winter. The partial air conditioning was the most critical factor, significantly affecting the value of anthropogenic heat emission.
Hongyi Li, Ting Yang, Lars Nerger, Dawei Zhang, Di Zhang, Guigang Tang, Haibo Wang, Yele Sun, Pingqing Fu, Hang Su, and Zifa Wang
Geosci. Model Dev., 17, 8495–8519, https://doi.org/10.5194/gmd-17-8495-2024, https://doi.org/10.5194/gmd-17-8495-2024, 2024
Short summary
Short summary
To accurately characterize the spatiotemporal distribution of particulate matter <2.5 µm chemical components, we developed the Nested Air Quality Prediction Model System with the Parallel Data Assimilation Framework (NAQPMS-PDAF) v2.0 for chemical components with non-Gaussian and nonlinear properties. NAQPMS-PDAF v2.0 has better computing efficiency, excels when used with a small ensemble size, and can significantly improve the simulation performance of chemical components.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
Geosci. Model Dev., 17, 8373–8397, https://doi.org/10.5194/gmd-17-8373-2024, https://doi.org/10.5194/gmd-17-8373-2024, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources and individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Felipe Cifuentes, Henk Eskes, Folkert Boersma, Enrico Dammers, and Charlotte Bryan
EGUsphere, https://doi.org/10.5194/egusphere-2024-2225, https://doi.org/10.5194/egusphere-2024-2225, 2024
Short summary
Short summary
We tested the capability of the flux divergence approach (FDA) to reproduce known NOX emissions using synthetic NO2 satellite column retrievals derived from high-resolution model simulations. The FDA accurately reproduced NOX emissions when column observations were limited to the boundary layer and when the variability of NO2 lifetime, NOX:NO2 ratio, and NO2 profile shapes were correctly modeled. This introduces a strong model dependency, reducing the simplicity of the original FDA formulation.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Astrid Kerkweg, Timo Kirfel, Doung H. Do, Sabine Griessbach, Patrick Jöckel, and Domenico Taraborrelli
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-117, https://doi.org/10.5194/gmd-2024-117, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This article introduces the MESSy DWARF. Usually, the Modular Earth Submodel System (MESSy) is linked to full dynamical models to build chemistry climate models. However, due to the modular concept of MESSy, and the newly developed DWARF component, it is now possible to create simplified models containing just one or some process descriptions. This renders very useful for technical optimisation (e.g., GPU porting) and can be used to create less complex models, e.g., a chemical box model.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Cited articles
Anderson, D. C., Duncan, B. N., Fiore, A. M., Baublitz, C. B., Follette-Cook, M. B., Nicely, J. M., and Wolfe, G. M.: Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers, Atmos. Chem. Phys., 21, 6481–6508, https://doi.org/10.5194/acp-21-6481-2021, 2021.
Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J. M., Liu, J., Ivatt, P. D., and Duncan, B. N.: Code for the development of a
parameterization of OH for CCMs, Zenodo [code],
https://doi.org/10.5281/zenodo.6046037, 2022a.
Anderson, D. C., Follette-Cook, M. B., Strode, S. A., Nicely, J .M., Liu, J., Ivatt, P. D., and Duncan, B. N.: Sample ECCOH OH Parameterization
(1.0), Zenodo [code and data set], https://doi.org/10.5281/zenodo.6604130, 2022b.
CEDA Archive: CCMI-1 Data Archive, CEDA Archive [data set], http://data.ceda.ac.uk/badc/wcrp-ccmi/data/CCMI-1/output, last access: 4 Aug. 2022.
Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, KDD
'16: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Chen, Y.-H. and Prinn, R. G.: Estimation of atmospheric methane emissions
between 1996 and 2001 using a three-dimensional global chemical transport
model, J. Geophys. Res.-Atmos., 111, D10307, https://doi.org/10.1029/2005JD006058, 2006.
Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N.,
Martin, R. V., Logan, J. A., Higurashi, A., and Nakajima, T.: Tropospheric
Aerosol Optical Thickness from the GOCART Model and Comparisons with
Satellite and Sun Photometer Measurements, J. Atmos.
Sci., 59, 461–483, https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulations of
global aerosol distributions in the NASA GEOS-4 model and comparisons to
satellite and ground-based aerosol optical depth, J. Geophys.
Res.-Atmos., 115, D14207, https://doi.org/10.1029/2009JD012820, 2010.
Du, M., Huang, K., Zhang, S., Huang, C., Gong, Y., and Yi, F.: Water vapor anomaly over the tropical western Pacific in El Niño winters from radiosonde and satellite observations and ERA5 reanalysis data, Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021, 2021.
Duncan, B., Portman, D., Bey, I., and Spivakovsky, C.: Parameterization of
OH for efficient computation in chemical tracer models, J.
Geophys. Res.-Atmos., 105, 12259–12262, https://doi.org/10.1029/1999JD901141,
2000.
Duncan, B. N.: Indonesian wildfires of 1997: Impact on tropospheric
chemistry, J. Geophys. Res., 108, D154458, https://doi.org/10.1029/2002jd003195,
2003a.
Duncan, B. N.: Interannual and seasonal variability of biomass burning
emissions constrained by satellite observations, J. Geophys.
Res., 108, D24100, https://doi.org/10.1029/2002jd002378, 2003b.
Duncan, B. N. and Logan, J. A.: Model analysis of the factors regulating the trends and variability of carbon monoxide between 1988 and 1997, Atmos. Chem. Phys., 8, 7389–7403, https://doi.org/10.5194/acp-8-7389-2008, 2008.
Duncan, B. N., Logan, J. A., Bey, I., Megretskaia, I. A., Yantosca, R. M.,
Novelli, P. C., Jones, N. B., and Rinsland, C. P.: Global budget of CO,
1988–1997: Source estimates and validation with a global model, J.
Geophys. Res., 112, D22301, https://doi.org/10.1029/2007jd008459, 2007a.
Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D., and Livesey, N.: Model study of the cross-tropopause transport of biomass burning pollution, Atmos. Chem. Phys., 7, 3713–3736, https://doi.org/10.5194/acp-7-3713-2007, 2007b.
Elith, J., Leathwick, J. R., and Hastie, T.: A working guide to boosted
regression trees, J. Anim. Ecol., 77, 802–813,
https://doi.org/10.1111/j.1365-2656.2008.01390.x, 2008.
Elshorbany, Y. F., Duncan, B. N., Strode, S. A., Wang, J. S., and Kouatchou, J.: The description and validation of the computationally Efficient CH4–CO–OH (ECCOHv1.01) chemistry module for 3-D model applications, Geosci. Model Dev., 9, 799–822, https://doi.org/10.5194/gmd-9-799-2016, 2016.
Fiore, A. M., Horowitz, L. W., Dlugokencky, E. J., and West, J. J.: Impact
of meteorology and emissions on methane trends, 1990–2004, Geophys.
Res. Lett., 33, L12809, https://doi.org/10.1029/2006gl026199, 2006.
Gaubert, B., Worden, H. M., Arellano, A. F. J., Emmons, L. K., Tilmes, S.,
Barré, J., Martinez Alonso, S., Vitt, F., Anderson, J. L., Alkemade, F.,
Houweling, S., and Edwards, D. P.: Chemical Feedback From Decreasing Carbon
Monoxide Emissions, Geophys. Res. Lett., 44, 9985–9995, https://doi.org/10.1002/2017GL074987, 2017.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy,
L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A., Gu, W., Kim, G. K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M.,
Schubert, S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2), J. Climate,
30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Holmes, C. D.: Methane Feedback on Atmospheric Chemistry: Methods, Models,
and Mechanisms, J. Adv. Model. Earth Sy., 10,
1087–1099, https://doi.org/10.1002/2017MS001196, 2018.
Ivatt, P. D. and Evans, M. J.: Improving the prediction of an atmospheric chemistry transport model using gradient-boosted regression trees, Atmos. Chem. Phys., 20, 8063–8082, https://doi.org/10.5194/acp-20-8063-2020, 2020.
Keller, C. A. and Evans, M. J.: Application of random forest regression to the calculation of gas-phase chemistry within the GEOS-Chem chemistry model v10, Geosci. Model Dev., 12, 1209–1225, https://doi.org/10.5194/gmd-12-1209-2019, 2019.
Kelp, M. M., Jacob, D. J., Kutz, J. N., Marshall, J. D., and Tessum, C. W.:
Toward Stable, General Machine-Learned Models of the Atmospheric Chemical
System, J. Geophys. Res.-Atmos., 125, e2020JD032759,
https://doi.org/10.1029/2020JD032759, 2020.
Kleipool, Q. L., Dobber, M. R., de Haan, J. F., and Levelt, P. F.: Earth
surface reflectance climatology from 3 years of OMI data, J.
Geophys. Res.-Atmos., 113, D18308, https://doi.org/10.1029/2008JD010290, 2008.
Kug, J.-S., Jin, F.-F., and An, S.-I.: Two Types of El Niño Events: Cold
Tongue El Niño and Warm Pool El Niño, J. Climate, 22,
1499–1515, https://doi.org/10.1175/2008JCLI2624.1, 2009.
Laughner, J. L., Neu, J. L., Schimel, D., Wennberg, P. O., Barsanti, K.,
Bowman, K. W., Chatterjee, A., Croes, B. E., Fitzmaurice, H. L., Henze, D.
K., Kim, J., Kort, E. A., Liu, Z., Miyazaki, K., Turner, A. J., Anenberg,
S., Avise, J., Cao, H., Crisp, D., de Gouw, J., Eldering, A., Fyfe, J. C.,
Goldberg, D. L., Gurney, K. R., Hasheminassab, S., Hopkins, F., Ivey, C. E.,
Jones, D. B. A., Liu, J., Lovenduski, N. S., Martin, R. V., McKinley, G. A.,
Ott, L., Poulter, B., Ru, M., Sander, S. P., Swart, N., Yung, Y. L., and
Zeng, Z. C.: Societal shifts due to COVID-19 reveal large-scale complexities
and feedbacks between atmospheric chemistry and climate change, P. Natl.
Acad. Sci. USA, 118, e210948118, https://doi.org/10.1073/pnas.2109481118, 2021.
Lawrence, M. G., Jöckel, P., and von Kuhlmann, R.: What does the global mean OH concentration tell us?, Atmos. Chem. Phys., 1, 37–49, https://doi.org/10.5194/acp-1-37-2001, 2001.
Lundberg, S. M. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions, NeurIPS Proceedings, Adv. Neural In., 30, 4765–4774, 2017.
Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Jöckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marécal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, 2017.
Murray, L. T., Logan, J. A., and Jacob, D. J.: Interannual variability in
tropical tropospheric ozone and OH: The role of lightning, J.
Geophys. Res.-Atmos., 118, 11468–11480, https://doi.org/10.1002/jgrd.50857,
2013.
Murray, L. T., Mickley, L. J., Kaplan, J. O., Sofen, E. D., Pfeiffer, M., and Alexander, B.: Factors controlling variability in the oxidative capacity of the troposphere since the Last Glacial Maximum, Atmos. Chem. Phys., 14, 3589–3622, https://doi.org/10.5194/acp-14-3589-2014, 2014.
Murray, L. T., Fiore, A. M., Shindell, D. T., Naik, V., and Horowitz, L. W.:
Large uncertainties in global hydroxyl projections tied to fate of reactive
nitrogen and carbon, P. Natl. Acad. Sci. USA, 118,
e2115204118, https://doi.org/10.1073/pnas.2115204118, 2021.
NASA Goddard Space Flight Center: MERRA2 GMI, NASA [data set], https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/MERRA2GMI/, last access: 4 August 2022.
Nicely, J. M., Salawitch, R. J., Canty, T., Anderson, D. C., Arnold, S. R.,
Chipperfield, M. P., Emmons, L. K., Flemming, J., Huijnen, V., Kinnison, D.
E., Lamarque, J.-F., Mao, J., Monks, S. A., Steenrod, S. D., Tilmes, S., and
Turquety, S.: Quantifying the causes of differences in tropospheric OH
within global models, J. Geophys. Res.-Atmos., 122, 1983–2007,
https://doi.org/10.1002/2016JD026239, 2017.
Nicely, J. M., Duncan, B. N., Hanisco, T. F., Wolfe, G. M., Salawitch, R. J., Deushi, M., Haslerud, A. S., Jöckel, P., Josse, B., Kinnison, D. E., Klekociuk, A., Manyin, M. E., Marécal, V., Morgenstern, O., Murray, L. T., Myhre, G., Oman, L. D., Pitari, G., Pozzer, A., Quaglia, I., Revell, L. E., Rozanov, E., Stenke, A., Stone, K., Strahan, S., Tilmes, S., Tost, H., Westervelt, D. M., and Zeng, G.: A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., 20, 1341–1361, https://doi.org/10.5194/acp-20-1341-2020, 2020.
Nowack, P., Braesicke, P., Haigh, J., Abraham, N. L., Pyle, J., and
Voulgarakis, A.: Using machine learning to build temperature-based ozone
parameterizations for climate sensitivity simulations, Environ.
Res. Lett., 13, 104016, https://doi.org/10.1088/1748-9326/aae2be, 2018.
Nowack, P., Konstantinovskiy, L., Gardiner, H., and Cant, J.: Machine learning calibration of low-cost NO2 and PM10 sensors: non-linear algorithms and their impact on site transferability, Atmos. Meas. Tech., 14, 5637–5655, https://doi.org/10.5194/amt-14-5637-2021, 2021.
Oman, L. D., Ziemke, J. R., Douglass, A. R., Waugh, D. W., Lang, C.,
Rodriguez, J. M., and Nielsen, J. E.: The response of tropical tropospheric
ozone to ENSO, Geophys. Res. Lett., 38, L13706,
https://doi.org/10.1029/2011gl047865, 2011.
Oman, L. D., Douglass, A. R., Ziemke, J. R., Rodriguez, J. M., Waugh, D. W.,
and Nielsen, J. E.: The ozone response to ENSO in Aura satellite
measurements and a chemistry-climate simulation, J. Geophys.
Res.-Atmos., 118, 965–976, https://doi.org/10.1029/2012jd018546, 2013.
Orbe, C., Oman, L. D., Strahan, S. E., Waugh, D. W., Pawson, S., Takacs, L.
L., and Molod, A. M.: Large-Scale Atmospheric Transport in GEOS Replay
Simulations, J. Adv. Model. Earth Sy., 9, 2545–2560,
https://doi.org/10.1002/2017ms001053, 2017.
Paek, H., Yu, J.-Y., and Qian, C.: Why were the 2015/2016 and 1997/1998
extreme El Niños different?, Geophys. Res. Lett., 44,
1848–1856, https://doi.org/10.1002/2016GL071515, 2017.
Prather, M. J.: Time scales in atmospheric chemistry: Theory, GWPs for CH4
and CO, and runaway growth, Geophys. Res. Lett., 23, 2597–2600,
https://doi.org/10.1029/96GL02371, 1996.
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D.,
O'Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G.,
Salameh, P. K., Harth, C. M., Muhle, J., Weiss, R. F., Fraser, P. J.,
Steele, L. P., Krummel, P. B., McCulloch, A., and Park, S.: Role of
atmospheric oxidation in recent methane growth, P. Natl. Acad. Sci. USA,
114, 5373–5377, https://doi.org/10.1073/pnas.1616426114, 2017.
Rowlinson, M. J., Rap, A., Arnold, S. R., Pope, R. J., Chipperfield, M. P., McNorton, J., Forster, P., Gordon, H., Pringle, K. J., Feng, W., Kerridge, B. J., Latter, B. L., and Siddans, R.: Impact of El Niño–Southern Oscillation on the interannual variability of methane and tropospheric ozone, Atmos. Chem. Phys., 19, 8669–8686, https://doi.org/10.5194/acp-19-8669-2019, 2019.
Saito, R., Patra, P. K., Sweeney, C., Machida, T., Krol, M., Houweling, S.,
Bousquet, P., Agusti-Panareda, A., Belikov, D., Bergmann, D., Bian, H.,
Cameron-Smith, P., Chipperfield, M. P., Fortems-Cheiney, A., Fraser, A.,
Gatti, L. V., Gloor, E., Hess, P., Kawa, S. R., Law, R. M., Locatelli, R.,
Loh, Z., Maksyutov, S., Meng, L., Miller, J. B., Palmer, P. I., Prinn, R.
G., Rigby, M., and Wilson, C.: TransCom model simulations of methane:
Comparison of vertical profiles with aircraft measurements, J.
Geophys. Res.-Atmos., 118, 3891–3904, https://doi.org/10.1002/jgrd.50380, 2013.
Shapley, L. S.: A Value for N-Person Games, in: Contributions to
the Theory of Games II, edited by: Kuhn, H. W. and Tucker, A. W.,
Ann. Math. Studies, 28, Princeton University Press, 307–317,
https://doi.org/10.1515/9781400881970-018, 1953.
Sherwen, T., Chance, R. J., Tinel, L., Ellis, D., Evans, M. J., and Carpenter, L. J.: A machine-learning-based global sea-surface iodide distribution, Earth Syst. Sci. Data, 11, 1239–1262, https://doi.org/10.5194/essd-11-1239-2019, 2019.
Shi, L., Schreck, C., and Schröder, M.: Assessing the Pattern
Differences between Satellite-Observed Upper Tropospheric Humidity and Total
Column Water Vapor during Major El Niño Events, Remote Sensing, 10, 1188,
https://doi.org/10.3390/rs10081188, 2018.
Spivakovsky, C. M., Wofsy, S. C., and Prather, M. J.: A numerical method for
parameterization of atmospheric chemistry: Computation of tropospheric OH,
J. Geophys. Res.-Atmos., 95, 18433–18439, https://doi.org/10.1029/JD095iD11p18433, 1990.
Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski, Y. J.,
Foreman-Fowler, M., Jones, D. B. A., Horowitz, L. W., Fusco, A. C.,
Brenninkmeijer, C. A. M., Prather, M. J., Wofsy, S. C., and McElroy, M. B.:
Three-dimensional climatological distribution of tropospheric OH: Update and
evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999jd901006, 2000.
Stirnberg, R., Cermak, J., Fuchs, J., and Andersen, H.: Mapping and
Understanding Patterns of Air Quality Using Satellite Data and Machine
Learning, J. Geophys. Res.-Atmos., 125, e2019JD031380,
https://doi.org/10.1029/2019JD031380, 2020.
Strahan, S. E., Duncan, B. N., and Hoor, P.: Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model, Atmos. Chem. Phys., 7, 2435–2445, https://doi.org/10.5194/acp-7-2435-2007, 2007.
Strode, S. A., Duncan, B. N., Yegorova, E. A., Kouatchou, J., Ziemke, J. R., and Douglass, A. R.: Implications of carbon monoxide bias for methane lifetime and atmospheric composition in chemistry climate models, Atmos. Chem. Phys., 15, 11789–11805, https://doi.org/10.5194/acp-15-11789-2015, 2015.
Strode, S. A., Ziemke, J. R., Oman, L. D., Lamsal, L. N., Olsen, M. A., and
Liu, J.: Global changes in the diurnal cycle of surface ozone, Atmos.
Environ., 199, 323–333, https://doi.org/10.1016/j.atmosenv.2018.11.028, 2019.
Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.: Ambiguity
in the causes for decadal trends in atmospheric methane and hydroxyl,
P. Natl. Acad. Sci. USA, 114, 5367–5372,
https://doi.org/10.1073/pnas.1616020114, 2017.
Turner, A. J., Fung, I., Naik, V., Horowitz, L. W., and Cohen, R. C.:
Modulation of hydroxyl variability by ENSO in the absence of external
forcing, P. Natl. Acad. Sci. USA, 115, 8931–8936, https://doi.org/10.1073/pnas.1807532115,
2018.
Voulgarakis, A., Naik, V., Lamarque, J.-F., Shindell, D. T., Young, P. J., Prather, M. J., Wild, O., Field, R. D., Bergmann, D., Cameron-Smith, P., Cionni, I., Collins, W. J., Dalsøren, S. B., Doherty, R. M., Eyring, V., Faluvegi, G., Folberth, G. A., Horowitz, L. W., Josse, B., MacKenzie, I. A., Nagashima, T., Plummer, D. A., Righi, M., Rumbold, S. T., Stevenson, D. S., Strode, S. A., Sudo, K., Szopa, S., and Zeng, G.: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations, Atmos. Chem. Phys., 13, 2563–2587, https://doi.org/10.5194/acp-13-2563-2013, 2013.
Voulgarakis, A., Marlier, M. E., Faluvegi, G., Shindell, D. T., Tsigaridis,
K., and Mangeon, S.: Interannual variability of tropospheric trace gases and
aerosols: The role of biomass burning emissions, J. Geophys.
Res.-Atmos., 120, 7157–7173, https://doi.org/10.1002/2014jd022926, 2015.
Wang, J. S., Logan, J. A., McElroy, M. B., Duncan, B. N., Megretskaia, I.
A., and Yantosca, R. M.: A 3-D model analysis of the slowdown and
interannual variability in the methane growth rate from 1988 to 1997, Global
Biogeochem. Cy., 18, GB3011, https://doi.org/10.1029/2003GB002180, 2004.
Wolfe, G. M., Nicely, J. M., St. Clair, J. M., Hanisco, T. F., Liao, J.,
Oman, L. D., Brune, W. B., Miller, D., Thames, A., Gonzalez Abad, G.,
Ryerson, T. B., Thompson, C. R., Peischl, J., McCain, K., Sweeney, C.,
Wennberg, P. O., Kim, M., Crounse, J. D., Hall, S. R., Ullmann, K., Diskin,
G., Bui, P., Chang, C., and Dean-Day, J.: Mapping hydroxyl variability
throughout the global remote troposphere via synthesis of airborne and
satellite formaldehyde observations, P. Natl. Acad. Sci. USA, 116,
11171–11180, https://doi.org/10.1073/pnas.1821661116, 2019.
Wolter, K. and Timlin, M. S.: El Niño/Southern Oscillation behaviour
since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext),
Int. J. Climatol., 31, 1074–1087, https://doi.org/10.1002/joc.2336, 2011.
Worden, J., Jiang, Z., Jones, D. B. A., Alvarado, M., Bowman, K.,
Frankenberg, C., Kort, E. A., Kulawik, S. S., Lee, M., Liu, J., Payne, V.,
Wecht, K., and Worden, H.: El Niño, the 2006 Indonesian peat fires, and
the distribution of atmospheric methane, Geophys. Res. Lett., 40,
4938–4943, https://doi.org/10.1002/grl.50937, 2013.
Yan, R., Ma, Z., Zhao, Y., and Kokogiannakis, G.: A decision tree based
data-driven diagnostic strategy for air handling units, Energ.
Buildings, 133, 37–45, https://doi.org/10.1016/j.enbuild.2016.09.039, 2016.
Zhang, Z., Zimmermann, N. E., Calle, L., Hurtt, G., Chatterjee, A., and
Poulter, B.: Enhanced response of global wetland methane emissions to the
2015–2016 El Niño-Southern Oscillation event, Environ. Res.
Lett., 13, 074009, https://doi.org/10.1088/1748-9326/aac939, 2018.
Zhu, Q., Laughner, J. L., and Cohen, R. C.: Combining Machine Learning and
Satellite Observations to Predict Spatial and Temporal Variation of near
Surface OH in North American Cities, Environ. Sci. Technol.,
https://doi.org/10.1021/acs.est.1c05636, 2022.
Short summary
The hydroxyl radical (OH) is the most important chemical in the atmosphere for removing certain pollutants, including methane, the second-most-important greenhouse gas. We present a methodology to create an easily modifiable parameterization that can calculate OH concentrations in a computationally efficient way. The parameterization, which predicts OH within 5 %, can be integrated into larger climate models to allow for calculation of the interactions between OH, methane, and other chemicals.
The hydroxyl radical (OH) is the most important chemical in the atmosphere for removing certain...