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Abstract. We present a methodology that uses gradient-
boosted regression trees (a machine learning technique) and
a full-chemistry simulation (i.e., training dataset) from a
chemistry–climate model (CCM) to efficiently generate a pa-
rameterization of tropospheric hydroxyl radical (OH) that is
a function of chemical, dynamical, and solar irradiance vari-
ables. This surrogate model of OH is designed to be inte-
grated into a CCM and allow for computationally efficient
simulation of nonlinear feedbacks between OH and tropo-
spheric constituents that have loss by reaction with OH as
their primary sinks (e.g., carbon monoxide (CO), methane
(CH4), volatile organic compounds (VOCs)). Such a model
framework is advantageous for studies that require multi-
decadal simulations of CH4 or multi-year sensitivity simu-
lations to understand the causes of trends and variations of
CO and CH4. To allow the user to easily target the train-
ing dataset towards a desired application, we are outlining
a methodology to generate a parameterization of OH and not
presenting an “off-the-shelf” version of a parameterization to
be incorporated into a CCM. This provides for the relatively
easy creation of a new parameterization in response to, for
example, changes in research goals or the underlying CCM
chemistry and/or dynamics schemes. We show that a sample
parameterization of OH generated from a CCM simulation
is able to reproduce OH concentrations with a normalized
root-mean-square error of approximately 5 % and capture the
global mean methane lifetime within approximately 1 %. Our
calculated accuracy of the parameterization assumes inputs

being within the bounds of the training dataset. Large excur-
sions from these bounds will likely decrease the overall ac-
curacy. However, we show that the sample parameterization
predicts large deviations in OH for an El Niño event that was
not part of the training dataset and that the spatial distribu-
tion and strength of these deviations are consistent with the
event. This result gives confidence in the fidelity of a param-
eterization developed with our methodology to simulate the
spatial and temporal responses of OH to perturbations from
large variations in the chemical, dynamical, and solar irra-
diance drivers of OH. In addition, we discuss how two ma-
chine learning metrics, Gain feature importance and Shapley
additive explanations values, indicate that the behavior of a
parameterization of OH generally accords with our under-
standing of OH chemistry, even though there are no physics-
or chemistry-based constraints on the parameterization.

1 Introduction

The hydroxyl radical (OH) is the dominant tropospheric ox-
idant. It removes numerous species from the atmosphere, in-
cluding carbon monoxide (CO) and methane (CH4), which
are the largest OH sinks on a global scale (Spivakovsky
et al., 2000, 1990). Recent trends in CH4, the second-
most-important anthropogenic greenhouse gas, can poten-
tially be explained by changes in OH abundance (Rigby et
al., 2017), although changes in emissions are also a likely
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contributor (Turner et al., 2017). Likewise, the large in-
crease in CH4 during 2020 has been attributed to decreases
in OH resulting from COVID-19 related changes in NOx
(NOx =NO+NO2) abundance (Laughner et al., 2021). Un-
derstanding the nonlinear chemistry of the drivers of OH
and feedbacks among these species is therefore important for
characterizing past and present changes in the atmosphere
and in projecting future climate scenarios.

Chemistry–climate models (CCMs) with detailed chemi-
cal mechanisms are used to investigate the complex, nonlin-
ear chemistry between these species and their impacts on the
atmosphere (e.g., Fiore et al., 2006; Voulgarakis et al., 2015;
Gaubert et al., 2017; Holmes, 2018). The utility of CCMs for
this purpose is limited, however, by the large computational
expense of a CCM with a full representation of O3–NOx–
VOC (ozone, NOx , volatile organic compound) chemistry
combined with the need to model over decadal timescales in
order to let CH4 perturbations fully evolve (Prather, 1996).
Because of this computational expense, simulations are nec-
essarily limited to a short time frame, performed at coarse
horizontal resolutions, and/or limited in the number of sen-
sitivity runs that can be performed (e.g., Fiore et al., 2006;
Holmes, 2018; Voulgarakis et al., 2015).

There are several alternatives (i.e., surrogate models) to
running a full-chemical mechanism that capture some of the
relationship between OH and trace gases, such as CO and
CH4, and are less computationally expensive. Prescribed OH
fields, either static or annually varying, from a full-chemistry
simulation or a climatology have been used for decades to
simulate and understand trends in CO and CH4 in a compu-
tationally efficient way (e.g., Saito et al., 2013; Wang et al.,
2004). However, this method linearizes CO and CH4 chem-
istry with OH, preventing the simulation of nonlinear feed-
backs in changes in CO and CH4 on OH, and thus could
bias, for instance, interannual CH4 changes (Chen and Prinn,
2006).

For over 30 years, parameterizations of OH have provided
a viable alternative to climatologies in helping to understand
OH–CO–CH4 feedbacks. Spivakovsky et al. (1990) devel-
oped a parameterization of OH, later updated by Duncan et
al. (2000), that captures many of the nonlinear feedbacks
between OH and tropospheric constituents (e.g., CO, CH4,
VOCs) that have loss by reaction with OH as their primary
sinks. The method to generate the parameterization uses
higher-order polynomials with various chemical species, me-
teorological variables, and variables related to solar irradi-
ance as inputs. The degree of the nonlinear impacts simu-
lated by the parameterization of OH depends on the method
used to populate these inputs. For instance, many of the me-
teorological and solar irradiance variables may be provided
by the model at run time. The chemical variables that are
not all simulated explicitly in the surrogate model may be
provided as climatological or monthly means from a full-
chemistry simulation. Duncan et al. (2007a) and Duncan and
Logan (2008) used this parameterization of OH in an atmo-

spheric model of CO to elucidate the causes of trends and
interannual variations in CO from 1988–1997 on regional to
global scales, as well as those observed by individual in situ
monitors around the world.

Building on the CO–OH studies of Duncan et al. (2007a)
and Duncan and Logan (2008), Elshorbany et al. (2016) de-
veloped the computationally Efficient CH4–CO–OH (EC-
COH) chemistry module, which captures many of the non-
linearities and feedbacks of the CH4–CO–OH system with-
out the computational expense of a full-chemistry simulation.
ECCOH calculates 24 h averaged OH from a combination of
archived (e.g., multiple VOCs, NOx) and online (e.g., pres-
sure, temperature, cloud albedo) chemical, meteorological,
and solar irradiance variables. Despite the partial reliance of
the parameterization of OH in ECCOH on archived fields,
its strength lies in the ability to calculate OH at a signifi-
cantly reduced computational expense (Duncan et al., 2000;
Elshorbany et al., 2016). ECCOH has been successfully im-
plemented in the NASA Goddard Earth Observing System
(GEOS) general circulation model (GCM).

Through manipulation of the input parameters (i.e., chemi-
cal, meteorological, and solar irradiance variables) to the pa-
rameterization of OH, as well as emissions and dynamics,
ECCOH can produce multiple computationally cheap sensi-
tivity simulations that help deconvolve the causes of local to
global trends and variations in OH, CO, and CH4. For ex-
ample, Strode et al. (2015) used the ECCOH module to in-
vestigate the effects of different model biases in GEOS on
simulated OH. To do this, they performed multiple sensitiv-
ity simulations, adjusting tropospheric water vapor, ozone,
and NOx to match satellite observations, to understand the
impacts on OH and CH4 lifetime. Similarly, Elshorbany et
al. (2016) investigated the impacts of varying CH4 and CO
emissions on the growth rate of atmospheric methane con-
centrations through multiple sensitivity runs. One limitation
of ECCOH in the configuration used in Strode et al. (2015)
and Elshorbany et al. (2016), however, is the difficulty in
updating the parameterization to reflect advances in atmo-
spheric chemistry.

Machine learning algorithms are one potential method to
quickly and accurately generate a new parameterization of
OH, offering an advance over the methods used in Duncan
et al. (2000) and Spivakovsky et al. (1990). A variety of ma-
chine learning techniques, such as neural networks (Nicely et
al., 2017, 2020; Kelp et al., 2020), ridge regression (Nowack
et al., 2018), random forest regression (Keller and Evans,
2019; Sherwen et al., 2019), and gradient-boosted regression
trees (GBRTs) (Ivatt and Evans, 2020; Stirnberg et al., 2020)
have been successfully used in atmospheric chemistry appli-
cations. In particular, GBRT models (Elith et al., 2008; Chen
and Guestrin, 2016) use an ensemble of decision trees to pre-
dict the value of a target based on multiple inputs and have
been used to predict surface OH using a combination of satel-
lite observations and output from three-dimensional models
(Zhu et al., 2022). Decision trees are created sequentially,
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with each new tree minimizing a cost function based on the
results of the previous tree (Elith et al., 2008; Stirnberg et
al., 2020). Unlike some other machine learning algorithms,
such as neural networks, regression tree methods have eas-
ily interpretable metrics that help highlight the influence of
the different input variables (Yan et al., 2016). These metrics
can help further understanding of the model behavior in ways
other machine learning techniques cannot. GBRT models are
also relatively quick to generate and can capture the highly
nonlinear relationships that describe tropospheric chemistry
(Ivatt and Evans, 2020).

We present a new method for the efficient generation of a
parameterization of OH using GBRTs and a full-chemistry
simulation from a CCM, which serves as the training dataset.
We illustrate our method by generating a parameterization of
OH for the ECCOH module (Elshorbany et al., 2016), which
captures many of the nonlinearities and feedbacks of the
CH4–CO–OH system, as implemented into the NASA GEOS
GCM. Our methodology allows for the parameterization to
be easily and rapidly regenerated in response to changes
in, for instance, the underlying model chemical mechanism
(e.g., updates to the chemical rate constants or absorption
cross sections) or model dynamics, which affect many of
the variables that influence OH (e.g., Anderson et al., 2021).
Likewise, the parameterization can be modified to include
new input variables. This represents a significant advance
over previous, much more laborious, methodologies to gen-
erate a parameterization of OH. Users can and should retrain
the parameterization with datasets that are appropriate for the
intended application. That is, we are not offering a parame-
terization for “off-the-shelf” use but a methodology by which
a user can easily create a parameterization suitable for their
needs. In Sect. 2, we outline the methodology used to de-
velop the parameterization of OH, while in Sect. 3 we eval-
uate performance of the parameterization. Finally, in Sect. 4
we summarize the results and discuss implications for scien-
tific research.

2 Description of the methodology to generate a
parameterization of OH

In this section, we outline the methodology to generate a pa-
rameterization of OH that may be used in research studies as
discussed above. Specifically, we illustrate the methodology
by describing the creation of a sample parameterization of
OH for the ECCOH module that predicts daily averaged OH.
In Sect. 2.1, we present the creation of the training dataset,
and in Sect. 2.2 we outline the methodology used to create
the parameterization of OH.

2.1 Creation of the training dataset for a
parameterization

We created the training dataset using output from a
40-year (1980–2019) GEOS CCM simulation, consis-
tent with our intent to integrate the parameterization
into the ECCOH modeling framework. This simula-
tion, called MERRA2 GMI (https://acd-ext.gsfc.nasa.gov/
Projects/GEOSCCM/MERRA2GMI/, last access: 4 Au-
gust 2022), was run in replay mode (Orbe et al., 2017)
with MERRA2 (Modern Era Retrospective analysis for Re-
search and Applications) meteorology (Gelaro et al., 2017)
and the Global Modeling Initiative (GMI) chemical mecha-
nism (Duncan et al., 2007b; Strahan et al., 2007). Aerosols
were calculated with the Goddard Chemistry Aerosol Radi-
ation and Transport (GOCART) module (Chin et al., 2002;
Colarco et al., 2010). The model was run at a resolution of
c180 on the cubed sphere (approximately 0.625◦ longitude
by 0.5◦ latitude) with 72 vertical layers. In this analysis, we
use only tropospheric output at daily and monthly resolu-
tions. The GMI chemical mechanism includes approximately
120 species and 400 reactions, characterizing the photochem-
istry of the troposphere and stratosphere. Further simulation
details, including a description of the emissions, are available
elsewhere (Anderson et al., 2021; Strode et al., 2019).

We created a dataset of training targets, representing the
full range of simulated OH values, for each month. We gen-
erate parameterizations for each month instead of one yearly
parameterization to increase computational efficiency of the
generation of the parameterization. The spatiotemporal vari-
ability in the abundance and emissions of OH drivers on the
yearly scale would necessitate a far larger dataset and more
complicated sampling procedures to ensure representative-
ness of both OH and the input variables. As demonstrated
in Sect. 3, the adopted monthly approach accurately captures
OH while limiting the size of the training dataset.

We generated the training dataset using daily averaged
data. For each day of a month, we divided all simulated tro-
pospheric OH concentrations from the 40-year simulation
into 20 equally sized percentile bins (i.e., 0–5th percentile,
5th–10th percentile, etc.). Following this, we randomly se-
lected 200 000 values from each bin, resulting in 4 000 000
training targets for each day of the month. We also included
the maximum and minimum OH values of the entire dataset
to represent the full range of values. We then combined train-
ing targets to form one large dataset with 120 000 000 values
(for a 30 d month), encompassing the full range of OH con-
centrations from each day of the month. To limit the size of
the training dataset, we then subsampled these targets, again
randomly selecting 200 000 values from equally sized per-
centile bins of OH concentration. The procedure resulted in
a dataset with 4 000 000 training targets that span all days
within a given month. A schematic of this process is shown
in Fig. S1. We omitted data from 4 years (1985, 1995, 2005,
2015) from the training dataset for model evaluation and
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from an additional year, 2016, for an El Niño case study dis-
cussed in Sect. 3.3. We also created a training dataset for
monthly averaged output, discussed in Sect. 4, using an anal-
ogous process.

Finally, for each OH target, we extracted the inputs for
the regression tree parameterization from the MERRA2 GMI
simulation from the corresponding model grid box. We list
parameterization inputs in Table 1. The parameterizations
of Spivakovsky et al. (2000), Duncan et al. (2007a), and
Elshorbany et al. (2016), along with expert knowledge of
OH chemistry, informed our choice of inputs. The relative
location of a particular OH target is indicated with the lat-
itude and pressure variables. As discussed in the next sec-
tion, NO2 serves as a sufficient proxy for the impact of NOx
and NOy on OH, and thus NO2 is the only reactive nitro-
gen species included as an input parameter. For both ice and
water cloud and aerosol optical depths, we include the optical
depth above and below each data point as separate inputs. We
use aerosol optical depth (AOD) at 550 nm, calculated from
the GOCART aerosol module. We took all 27 inputs from the
MERRA2 GMI simulation except surface UV albedo, which
we took from the Ozone Monitoring Instrument (OMI) cli-
matology of Kleipool et al. (2008).

While we have used the publicly available MERRA2 GMI
dataset to train the sample parameterization described in this
paper, the training data could come from any simulation or
combination of self-consistent simulations that has output
of the variables outlined in Table 1. These training datasets
could come from existing simulations, which would greatly
reduce computational expense, or from a training dataset tai-
lored for the purposes of a given study. Even though we use
daily averaged training data for ECCOH, a user could train
the parameterization with a dataset at any temporal resolu-
tion in order to make the parameterization compatible with
a specific modeling platform or research goal. As discussed
later, the parameterization performs best when applied to
photochemical environments analogous to those on which
it was trained. Therefore, users should carefully ensure that
the training dataset reasonably encompasses the full range of
photochemical environments necessary for a given sensitiv-
ity test or experiment. For example, as we will discuss further
in Sect. 4, because the MERRA2 GMI training dataset only
covers 1980–2018, it is inappropriate to use this for an ap-
plication exploring changes in CH4 from the pre-industrial
period to 2100. Instead, a new training dataset covering that
time period would be required.

2.2 Creation of the GBRT parameterization

While other machine learning methods could likely produce
parameterizations with similar performance as the one we de-
scribe here, we use GBRTs because of the speed in training a
new parameterization, their accuracy, and the interpretability
of the parameterization itself. We refer to the GBRT models

as parameterizations to prevent confusion when referring to
three-dimensional models.

We used the XGBoost package (Chen and Guestrin, 2016)
version 0.81 in Python version 3.6 to create 12 parameteriza-
tions of OH (one for each month), training the parameteriza-
tions on the MERRA2 GMI datasets described in Sect. 2.1.
Each parameterization outputs 24 h averaged OH. For each
month, we used 80 % of the dataset (3.2 million data points)
for model training and the remainder for model validation.
In addition, as outlined in-depth in Sects. 2.1 and 3, we also
evaluated the model on 5 years of data not included in the
model training. Increasing the size of the training dataset did
not improve model performance but did increase model train-
ing time, and thus the training set was restricted to a size that
represented the full range of OH values.

To maximize parameterization performance while also
balancing the potential of overfitting, we tuned hyperparam-
eters, including the learning rate, the maximum tree depth,
and the number of trees. We chose hyperparameter values
that minimized the parameterization normalized root-mean-
square error (NRMSE) (Eq. 1) of the training dataset. In
Eq. (1), N is the number of samples, y is the MERRA2 GMI
OH, ŷ is the parameterized OH, and IQR is the interquar-
tile range of the dataset. We set the learning rate, which
controls the magnitude of change when adding a new tree,
to 0.1, while we varied the maximum tree depth and num-
ber of trees from 6 to 22 and from 10 to 150, respectively.
For both maximum tree depth and number of trees, NRMSE
initially dropped significantly with increasing value, repre-
senting sharp improvement in parameterization performance.
NRMSE values eventually plateaued, increasing parameter-
ization runtime without noticeably improving performance.
A combination of a maximum tree depth of 18 and 100 trees
balanced performance with model training and run time.

NRMSE=

√
1
N

∑N
i=1
(
ŷi − yi

)2
IQR

(1)

We also evaluated inputs into the parameterization to ensure
that each did not lead to decreased performance, finding that
no single variable dominates model performance and no vari-
able reduces performance. We retrained the parameterization
27 times for July, removing each input successively, to deter-
mine its impact on the NRMSE. When we applied the resul-
tant models to the July 2005 validation dataset, the percent-
age change in the NRMSE generally increased by less than
1 %. The small differences in NRMSE indicate that there are
likely variables that provide duplicate information to the pa-
rameterization. As will be discussed in Sect. 3.2, however,
the relative importance of inputs varies by month, and some
variables, though not important on average, have a large in-
fluence in specific chemical environments. Because of these
factors and a desire to use a consistent set of input variables
across all months, we did not remove any inputs from the
parameterization as a result of this analysis.
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Table 1. Inputs to the machine learning parameterization of OH. UV albedo is the value at the surface. Cloud fraction is the fraction at a
given model level. C4 and C5 alkanes are one input as they originate from a lumped variable in the GMI mechanism.

Chemical inputs Meteorological or radiative inputs

NO2 Formaldehyde (HCHO) Temperature Stratospheric O3 column

CO Hydrogen peroxide (H2O2) Cloud fraction Aerosol optical depth above

CH4 Methyl hydroperoxide
(CH3OOH; MHP)

Latitude Aerosol optical depth below

O3 Acetone (CH3COCH3) UV albedo Water cloud optical depth above

Isoprene (C5H8) C4 and C5 alkanes Water vapor Water cloud optical depth below

Propene (C3H6) Ethane (C2H6) Pressure Ice cloud optical depth above

Propane (C3H8) Solar zenith angle Ice cloud optical depth below

Finally, we omit NOx and NOy as parameterization inputs
because we find that NO2 is sufficient as an input to capture
the impact of reactive nitrogen on OH in the parameteriza-
tion. Because of the importance of NOx in OH production
(Spivakovsky et al., 2000; Anderson et al., 2021), we tested
performance by substituting different reactive nitrogen
species for NO2 as inputs to the parameterization. We trained
three additional parameterizations, including ones with NOx ,
NOy (NOy =NO+NO2+PAN+ 2N2O5+HNO3+ alkyl
nitrates), and the individual NOy species. Parameterization
performance did not improve noticeably with the inclusion
of NOx or the individual NOy species. Including NOy as a
group actually decreased performance.

3 Evaluation of the parameterization of OH for the
ECCOH module

We now evaluate the performance of the parameterization of
OH for the ECCOH module created with the machine learn-
ing methodology. In Sect. 3.1, we compare the OH calculated
with the parameterization to that from the MERRA2 GMI
simulation, showing agreement in both local OH concentra-
tions and in global metrics, such as CH4 lifetime (τCH4 ).
In Sect. 3.2, we investigate the parameterization Gain fea-
ture importance and Shapley additive explanations (SHAP)
values to understand the relative contributions of inputs to
parameterization performance and to demonstrate that, even
though there are no physics- or chemistry-based constraints,
parameterization behavior accords with our understanding of
OH chemistry. We explore the ability of the parameterization
to predict OH in response to strong deviations in its drivers
from the climatological mean in Sect. 3.3 by examining two
El Niño events. Finally, we note that we evaluate an offline
version of the parameterization of OH and not one integrated
within the ECCOH framework. However, the performance
will be similar based on preliminary testing and similarities
in implementation to the previous parameterization, which

has been extensively evaluated (Elshorbany et al., 2016) in
the GEOS GCM.

3.1 Ability of the parameterization to reproduce
modeled OH and global OH metrics

The parameterization is able to reproduce both the spatial
distribution and concentration of daily averaged OH, al-
though with noticeable errors at high latitudes in the winter
hemisphere, which is unimportant as OH is seasonally low.
Figure 1a shows the fractional difference between OH calcu-
lated with the parameterization and OH from the MERRA2
GMI simulation for 15 July 2005, a date omitted from the
training dataset. The parameterized and MERRA2 GMI OH
fields are shown in Fig. S2. The OH in Fig. 1 has been av-
eraged over the lower free troposphere (LFT), defined as
pressures between the top of the planetary boundary layer
(PBL) and 500 hPa. Agreement is similar throughout the tro-
posphere, but we highlight this region because of its impor-
tance for CH4 and CO loss (Spivakovsky et al., 2000). For
15 July there are notable regions of bias, particularly pole-
ward of 30◦ S where OH is low (Fig. S2). While the source
of this error is unknown, it could result from a tendency of
regression tree models to have larger bias for lower values
(Nowack et al., 2021). This results in a NRMSE for the entire
troposphere of 13.9 % (Fig. 2a). At higher concentrations,
the correlation between the MERRA2 GMI simulation and
the parameterized OH is much tighter than at lower concen-
trations, although the highest density at all concentrations is
centered around the 1 : 1 line. Because the CO and CH4 life-
times are much longer than 1 d, the accuracy of the parame-
terization on monthly timescales is more relevant to the ap-
plications of the parameterization than an individual day.

When we average the daily output to the monthly scale,
the parameterization can reproduce the global OH distribu-
tion with little error (Figs. 1–2). For July 2005, the per-
centage difference between the parameterized OH and out-
put from the MERRA2 GMI simulation in the LFT (Fig. 1b)
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Figure 1. Fractional difference between the parameterized and MERRA2 GMI OH averaged over the LFT (top of the PBL to 500 hPa) for
15 July 2005 (a) and averaged across all days for July 2005 (b). Regions with low OH, defined as a mixing ratio of less than 0.005 pptv, are
indicated with stippling.

Figure 2. Scatter density plot of tropospheric OH from the MERRA2 GMI simulation plotted against OH calculated by the parameterization
for 15 July 2005 (a). Panel (b) shows the 24 h averaged OH output by the parameterization averaged across all July days for 2005. Colors
indicate the number of data points in each bin. The r2 of a linear least-squares regression and the NRMSE are also indicated.

and throughout the troposphere (Fig. S3) is generally within
10 %, outside of the Southern Hemispheric high latitudes,
where it is polar night and OH concentrations are negligi-
ble. The random errors evident in the daily data in Fig. 1a
average out on the monthly timescale, resulting in a tight cor-
relation (r2

= 0.996) and a NRMSE of 4.94 % for all tropo-
spheric values (Fig. 2b). Similar results are found for the July
model when applied to other years (Table S1) and for param-
eterizations developed for other months (Figs. S3 and S4).
Averaging the daily output over the monthly period yields
a better NRMSE by more than a factor of 2 over climatol-
ogy (NRMSE= 11 %), defined as the mean OH from the
MERRA2 GMI simulation averaged over 1980 to 2019.

In regions where global CO and CH4 loss are most im-
portant, parameterization biases and errors are low. For CO
and CH4, tropospheric loss to OH maximizes in the LFT
in the 0–30◦ latitude band of the summer hemisphere with
near-negligible loss in the winter hemisphere polar region
(Fig. 3). The comparatively large overestimates and under-
estimates over Antarctica evident in Fig. 1 are irrelevant to
the OH–CO–CH4 cycle because of the low loss rate in this
region. In contrast, in regions where CO and CH4 loss max-

imize, the parameterization is biased low by only −0.3 % to
−1.4 %. The normalized absolute error varies between 2.2 %
and 4.6 % in the tropics and Northern Hemispheric midlat-
itudes for all tropospheric layers (MFT: pressures between
500 and 300 hPa; UFT: pressures between 300 hPa and the
tropopause). Results are similar for other months.

The parameterization is also able to reproduce global
mean metrics of OH, such as τCH4 , within 1.3 % on aver-
age. For each month of 2005, we calculated the global, mean
mass-weighted tropospheric OH as described in Lawrence et
al. (2001) and the mean tropospheric τCH4 with respect to
OH as described in Nicely et al. (2020) for the MERRA2
GMI simulation, the parameterization, and the climatologi-
cal mean, defined as the average value from the MERRA2
GMI simulation between 1980 and 2019. Results for τCH4

are shown in Fig. 4 and for mass-weighted OH in Fig. S5.
The parameterization captures the seasonality of the τCH4 ,
with a minimum in boreal summer and a maximum in bo-
real winter. Agreement varies slightly by month, differing by
only 0.8 % in January and up to 2.5 % in August, although
the bias is systematically low for 2005 and the other val-
idation years (Table S1). These values are reasonable and
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Figure 3. (a) Percentage of total tropospheric CH4 lost to reaction with OH for July 2005 averaged over 30◦ zonal mean bins and four
atmospheric layers is shown by the background colors. The percentage loss values account for the mass of each region relative to the total
atmospheric mass. Percentages indicate the normalized mean bias of the parameterization with respect to the MERRA2 GMI simulation.
Statistics for the polar UFT are omitted because low tropopause heights limit the data amount in these regions. Panel (b) is the same as panel
(a) except it is for tropospheric CO loss and the normalized absolute error.

much smaller than the inter-model variability often seen in
model intercomparison projects (e.g., Nicely et al., 2020;
Voulgarakis et al., 2013). Similar results are found for the
global mean mass-weighted OH. The Northern Hemispher-
ic/Southern Hemispheric OH ratio (Fig. S5) also generally
agrees within 0.5 % for all months, again with the excep-
tion of August. The comparatively weaker performance for
August is limited to 2005, however, as performance of the
August parameterization in the other validation years (1985,
1995, and 2015) is closer to the 1 % difference shown by the
parameterizations for the other months. The parameteriza-
tions present a significant improvement over the climatolog-
ical mean, which for 2005 consistently underestimates τCH4

for all months and by up to 6 % in March.

3.2 Understanding the relative importance of input
parameters

While we have demonstrated that the parameterization is able
to reproduce OH accurately, it is also instructive to under-
stand the relative importance the parameterization places on
each of the inputs. Although this parameterization is not a
process-based example, understanding how the parameteri-
zation responds to different inputs can help determine if the
regression tree is responding in a way consistent with current
understanding of OH chemistry, although there are limita-
tions to the information that can be gleaned from these met-
rics. We evaluate the regression tree parameterization using
two metrics, the Gain feature importance as output by the
XGBoost package, and SHAP values.

3.2.1 Investigating the Gain feature importance

The Gain feature importance (Chen and Guestrin, 2016) is
a measure of the improvement in model accuracy achieved
from adding branches in the model corresponding to a spe-
cific input variable. The Gain value therefore indicates the
relative importance of each input for the model as a whole but
not for individual data points. The Gain values for each input

for the January and July models are shown in Fig. 5. While
there are differences between the 2 months, several features
are similar. Variables that indicate geographic location (e.g.,
SZA, latitude, and pressure) and chemical species that have
previously shown to be dominant drivers of OH variability
(e.g., NO2, O3, CO) and/or OH proxies (e.g., HCHO) (Wolfe
et al., 2019; Murray et al., 2021) have some of the highest
Gain values. As we show below, caution should be used in
extrapolating results from the Gain values to a process-based
understanding of OH without prior knowledge of its response
to chemical and dynamical drivers.

The relative importance of variables that indicate loca-
tion is consistent with OH chemistry and previous parame-
terization studies. Primary OH production is driven by the
photolysis of O3 followed by the subsequent reaction of the
O1D radical, produced from that photolysis, with water va-
por (e.g., Spivakovsky et al., 2000). Thus, the OH distribution
is strongly dependent on SZA, latitude, and pressure. This is
consistent with the parameterization, where SZA and latitude
have the highest Gain values for both months examined here,
as well as with the results of Duncan et al. (2000), who high-
lighted the importance of latitude in their parameterization.

Similarly, the chemical species that are most important for
controlling OH distribution on the global scale also tend to
have higher Gain values. As discussed above, O3 and NOx
chemistry is instrumental in controlling primary and sec-
ondary OH production on global scales (e.g., Spivakovsky et
al., 2000; Anderson et al., 2021), consistent with their com-
paratively high Gain values. HCHO, an oxidation product of
the reaction of OH with many VOCs, has been found to be
a suitable proxy for OH in the remote atmosphere (Wolfe et
al., 2019), consistent with its relative importance in both the
July and January models.

The relative importance of global OH sinks in the param-
eterization, however, demonstrates the limitations of using
the Gains values to interpret the regression tree model in a
process-based way. CO, the dominant OH sink on a global
scale (Spivakovsky et al., 2000), is the most important chem-
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Figure 4. Global mean methane lifetime with respect to tropospheric OH from the parameterization (green squares) and MERRA2 GMI
(orange circles) for 2005 and the climatological average (black triangles) calculated from MERRA2 GMI for 1980–2019.

Figure 5. The feature importance (gains) of the January (a) and July (b) parameterizations as calculated by XGBoost. Variables are sorted by
their relative importance. WCLD stands for water cloud, ICLD stands for ice cloud, and OD stands for optical depth. “Above” and “below”
for the optical depth variables indicate the optical depth above and below a particular model grid box. Colors are assigned to the variables to
permit easier comparison of the panels.

ical input for the January parameterization, although it is
relatively unimportant in the parameterizations for all other
months. While tropical CO variability in MERRA2 GMI and
biomass burning emissions (Duncan, 2003b) are larger in bo-
real winter than July, there is no process-based explanation
for why CO should be different in January from December
or February. Differences in the relative importance of CO
between the 2 months does not imply that OH sensitivity to
CO in MERRA2 GMI or the atmosphere varies in the same
manner. Instead, the differences simply indicate that the pa-
rameterization algorithm finds CO to be more useful in pre-

dicting OH in January than July. Similarly, CH4, the second-
most-important OH sink on the global scale, has low Gain
values, suggesting it has little impact on model performance.
This is likely because, in the MERRA2 GMI simulation, CH4
concentrations vary little within a given latitude band due to
CH4 surface concentrations being set as a boundary condi-
tion. The methane distribution therefore provides little addi-
tional information beyond that already contained in the vari-
ables that indicate location.
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3.2.2 Investigating parameterization SHAP values

While the Gain values indicate the relative importance of
species in the parameterization and can provide some in-
formation as to whether the parameterization behaves in a
manner consistent with our understanding of OH chemistry,
the metric only provides information about the dataset as a
whole. Gain values can therefore obscure the importance of
variables that only strongly impact the parameterization for a
small subset of the data. To better understand the relative im-
portance of variables as well as the spatial variability in that
importance, we also calculate the SHAP values (Lundberg
and Lee, 2017), which provide information on the relative
importance of each data point input into the model.

In the context of machine learning, Shapley values, an idea
first developed for game theory (Shapley, 1953), indicate the
average contribution of an individual model input to all pos-
sible combinations of inputs. For example, to calculate the
Shapley value of the variable X for a hypothetical machine
learning model with three input variables X, Y , and Z, first
a model would be trained with all three variables. A new
model would then be retrained, omitting X, and the differ-
ence between the two models would be calculated to deter-
mine the contribution of X. This process would then be re-
peated with different permutations of input variables (e.g., X
and Y , X and Z) to determine the contribution of X in those
instances. The final Shapley value is the average of the con-
tribution from these different models. SHAP values use the
same concept but in a manner that reduces the computation
time (Lundberg and Lee, 2017), as this process could become
prohibitive for a model, such as the parameterization of OH,
that contains 27 inputs.

We calculate SHAP values using the TreeExplainer API
of the SHAP package available for Python. One limitation of
the algorithm used to calculate SHAP values is that it is too
computationally expensive to calculate the SHAP values for
the tuned regression tree model. Computational time to cal-
culate SHAP values for the troposphere at the native model
resolution for 1 d is several months. Maximizing computa-
tional speed by degrading the model resolution and running
the SHAP package with GPUs would take approximately 4 d
for one model day. Calculating SHAP values for a model
with default model hyperparameters, however, takes minutes.
This is due to the large reduction in the number of trees (100
to 10) and the maximum tree depth (18 to 6) in the parame-
terization, which significantly speeds up the creation of new
regression trees needed in the SHAP value calculation.

We first evaluate the feasibility of using the SHAP val-
ues for the untuned model to explain the parameterization
behavior. To test this, we created a subset of 5000 OH val-
ues from the parameterization training dataset that spanned
the full range of OH concentrations. We then calculated the
SHAP values for the July parameterization with tuned hy-
perparameters and for a July parameterization using the de-
fault XGBoost hyperparameters. For the variables found to

be most important for the parameterization (e.g., SZA, NO2,
O3, isoprene, HCHO, latitude), there are strong correlations
(r2 of 0.97 or higher) for the SHAP values between the tuned
and untuned model, resulting in similar spatial distributions,
although there are differences in the magnitude. For other
variables, correlation is much weaker, although the relative
importance of variables is similar for the tuned and untuned
parameterizations. We therefore restrict our analysis primar-
ily to variables that have highly correlated SHAP values be-
tween the tuned and untuned models and our discussion to
the relative importance of the different variables.

The distribution of SHAP values for the training dataset
for July demonstrates the importance of including each of the
variables as inputs to the parameterization and the large vari-
ability in their relative importance. Figure 6 shows the distri-
bution of the SHAP values for each input parameter of the ap-
proximately 3.2 million data points used to train the July pa-
rameterization. The median SHAP values (Fig. 6) show sim-
ilar ordering as the Gains feature importance (Fig. 5), with
variables that indicate location, as well as O3 and NO2 being
the most important in both cases. When looking at the dis-
tribution of the SHAP values, however, it becomes apparent
that variables that appear to be unimportant for parameteri-
zation performance in the mean (e.g., propene and CH4) can
have large importance for individual data points. For exam-
ple, although propene can be locally important for OH chem-
istry, due to its reactivity, concentrations in the remote atmo-
sphere are low, making the species seem unimportant in the
aggregate. Similar results are found for the January param-
eterization (Fig. S6). As discussed in Sect. 2.2, the SHAP
values provide a rationale for including each of these species
in the parameterization.

The SHAP values also demonstrate the spatial distribu-
tion of the relative importance of the different chemical OH
drivers. Figure 7 shows the relative importance of NO2, as
determined by the SHAP values for the untuned parameteri-
zation, for both the zonal mean and the LFT. Note that the un-
tuned parameterization has large errors for low OH concen-
trations, and thus SHAP values poleward of 45◦ S should be
viewed as more uncertain than those elsewhere. In both the
horizontal and vertical, the SHAP values demonstrate that the
parameterization captures the spatial pattern of the relative
importance of NOx for OH production. The spatial pattern in
Fig. 7a, for example, has the highest contribution of NO2 to
the total SHAP value in the tropical UFT and in the North-
ern Hemisphere midlatitudes. This is nearly identical to the
spatial pattern of the relative contribution of the NO+HO2
reaction to overall OH production in the MERRA2 GMI sim-
ulation (Anderson et al., 2021). Likewise, in the LFT, the
contribution from NO2 maximizes over continental regions
with high emission and minimizes over the remote oceans.
The spatial pattern of SHAP values of isoprene also agree
with OH chemistry, maximizing in regions of strong bio-
genic emissions and minimizing over oceans (Fig. S7). These
SHAP values demonstrate that although the parameterization
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Figure 6. Distribution of the absolute SHAP value for each parameterization input for July from an untuned version of the parameterization
of OH. Input parameters are sorted by order of relative importance. The median is indicated with the black line, the edges of the box represent
the interquartile range, and the whiskers represent the 5th and 95th percentile. Values outside this range are indicated with circles. Note that
the SHAP value for propane is zero, indicating that it is not used by the untuned parameterization.

is not process-based, its behavior at least partially accords
with our understanding of OH chemistry.

3.3 Case study: testing the parameterization response
to the 2016 El Niño Event

While we have demonstrated that the parameterization can
satisfactorily reproduce OH during all months of 2005, we
now investigate its ability to capture OH accurately during
the 2016 El Niño event that we excluded from the training
dataset. Evaluating how the parameterization responds to de-
viations from the climatological mean of the inputs during
a large-scale event on which it was not trained, such as the
2016 El Niño, is a strong test of its ability to predict extremes
in OH and to respond to deviations from the climatological
mean of the parameterization inputs. The response of the pa-
rameterized OH to these extremes in inputs will also provide
a further test of the ability of the parameterization to behave
in a process-based way.

El Niño events lead to dramatic changes in the concen-
trations and distributions of many OH drivers, including O3
(Oman et al., 2011, 2013), CO (Duncan, 2003a; Rowlinson
et al., 2019), NOx (Murray et al., 2013, 2014), and water va-
por (Shi et al., 2018; Anderson et al., 2021). As such, the
El Niño–Southern Oscillation (ENSO) is the dominant mode
of OH variability throughout much of the troposphere and
can result in localized changes in OH on the order of 40 %–
50 % from the climatological mean (Anderson et al., 2021;
Turner et al., 2018). Changes in secondary production from
NOx in the UFT and changes in primary production from
O3 in the PBL and LFT drive the ENSO-related variability
of OH (Anderson et al., 2021). Methane emissions also vary
strongly with the ENSO phase (Zhang et al., 2018; Worden et
al., 2013). In order to capture the OH–CH4–CO system cor-

rectly, the parameterization must be able to capture ENSO-
related OH variability.

Here, we investigate the ability of the parameterization to
capture OH during the El Niño events of 1997–1998 and
2015–2016, two of the largest such events during the period
of the MERRA2 GMI simulation according to the Multivari-
ate ENSO Index (Wolter and Timlin, 2011). The 1997–1998
event, which was included in the training dataset, was a pro-
totypical example of an eastern Pacific (EP) El Niño, charac-
terized by sea surface temperature (SST) anomalies extend-
ing to the coast of South America. In contrast, the 2015/2016
event was a blend of an EP and a central Pacific (CP) El Niño,
also known as El Niño Modoki, where SST anomalies extend
only to the international dateline (Paek et al., 2017). These
different “flavors” of El Niño affect atmospheric distributions
of OH drivers, such as water vapor (Du et al., 2021), in differ-
ent ways, suggesting different impacts on OH. While we did
include other blended El Niños (1986–1987, 1987–1988, and
1991–1992) (Kug et al., 2009) in the training dataset, each
had responses in the atmospheric distribution of OH and its
drivers distinct from the 2015–2016 event. We focus our in-
vestigation on January and the MFT, the time and location of
the strongest correlation between ENSO and OH (Anderson
et al., 2021) in the MERRA2 GMI simulation. We also re-
strict the analysis to the OH precursors, NO2, CO, and O3, as
they have both a strong influence on the variability of ENSO-
related OH production and loss and have comparatively large
feature importance and SHAP values in the January parame-
terization.

For both the 1997–1998 and 2015–2016 El Niño events,
each OH driver examined deviates strongly from the cli-
matological mean, defined as the average value from the
MERRA2 GMI simulation over all January months from
1980–2019. Both O3 and NO2 have pronounced positive
anomalies over the western Pacific and Maritime Continent
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Figure 7. The fraction of the contribution of the NO2 SHAP value to the sum of the absolute SHAP value of all inputs in July is shown
for the zonal mean (a) and the LFT (b). Regions where mean OH mixing ratios are below 0.03 pptv, the point below which the untuned
parameterization is unable to reasonably predict OH, are indicated by the stippling.

and negative anomalies over the eastern Pacific (Fig. 8) that
extend throughout much of the free troposphere (Fig. S8),
likely associated with changes in the Walker circulation as
described in Oman et al. (2011). The positive anomalies over
Indonesia show a distinct westward shift during the 1997–
1998 event as compared to 2015–2016, highlighting the vari-
ability in the effects of ENSO on emissions and transport.
CO has a large positive anomaly over much of the globe, at-
tributable to the increases in biomass burning during El Niño
events (e.g., Duncan, 2003a). As with O3 and NO2, there are
large differences in the spatial pattern of the CO anomalies
between the two events, particularly over the Indian Ocean,
central Africa, and South America.

The differences in anomalies of the OH drivers between
the 1997–1998 and 2015–2016 El Niño events lead to dis-
tinct anomaly patterns in OH itself. During the 1997–1998
event, in the MFT there are noticeable positive anomalies
in OH over much of the Indian Ocean basin, the southeast-
ern Pacific, South America, and the western Atlantic Ocean
(Fig. 9). During 2015–2016, the positive anomalies were
more limited and most noticeable in the tropical western Pa-
cific Ocean and southern Indian Ocean. Along the Equator,
the positive anomalies extended throughout a larger portion
of the troposphere during January 1998 than 2016. Both the
parameterization inputs and the OH itself respond strongly
and in different ways to each El Niño event, providing a
strong test to determine the robustness of the parameteriza-
tion.

The parameterization reproduces the ENSO-related OH
anomalies for both El Niño events with remarkable fidelity.
We ran the parameterization for all January months from
1980 to 2016 to calculate a climatology and calculated the
deviations for 1998 and 2016 from that value. For both
events, the parameterization accurately captures the location
and magnitude, as well as the spatial pattern, of the OH
anomalies with a few minor exceptions in the horizontal and
vertical (Figs. 9 and S8). Correlation between the MERRA2
GMI and parameterized anomalies plotted in Fig. 9 has an

r2 of 0.93 or higher for both years. The parameterization
is therefore capable of reproducing both the climatological
mean of OH and large deviations in the mean in response to
strong climatological deviations in the model inputs, even for
years excluded from the training dataset.

4 Discussion and summary: the parameterization of
OH as a tool for scientific research

In this paper, we present a new methodology to generate a
parameterization of OH that is efficient and easy to use com-
pared to previous methods (e.g., Spivakovsky et al., 1990;
Duncan et al., 2000), allowing the user to rapidly update the
parameterization of OH as necessary. The new method uses
GBRTs and a full-chemistry simulation from a CCM as the
training data to generate the parameterization of OH with a
high degree of accuracy relative to the full-chemistry simula-
tion. We illustrated our methodology with a parameterization
designed for the ECCOH module of the GEOS CCM.

The parameterization of OH accurately reproduces OH
from the full-chemistry simulation on which it was trained,
but it may not produce the desired accuracy for a given time
period or scenario outside the range represented in the train-
ing data. Of course, the degree of degradation in accuracy
depends on how far inputs exceed the ranges of the training
dataset. In addition, the parameterization of OH generated
using inputs from one model may not be portable to another
model or even a different configuration of the same model as
shown below. The simulated relationships between OH and
the input parameters may differ because of inter-model varia-
tions in the chemical, dynamical, and radiative schemes. Ul-
timately, it is up to the user to determine an acceptable level
of degradation for a specific research topic. In this section,
we give an example of the degree of degradation in accuracy
for a parameterization of OH that uses (1) a different time
period for the same model and (2) input parameters from a
different model.
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Figure 8. Fractional difference in the indicated variable between January 1998 (a, c, e) and the climatological mean (1980–2019) calculated
from the MERRA2 GMI simulation for the MFT. The same values but for January 2016 are indicated on the right. Species shown are CO (a,
b), NO2 (c, d), and O3 (e, f).

Figure 9. Fractional difference in the indicated variable between January 1998 (a, c) and the climatological mean (1980–2019) calculated
from the MERRA2 GMI simulation averaged over the MFT. The same values but for January 2016 are indicated on the right. Species shown
are OH from the MERRA2 GMI simulation (a, b) and OH calculated by the parameterization (c, d).

4.1 Input parameters from a different time period for
the same model setup

Analysis of a separate model simulation, the Chemistry Cli-
mate Model Initiative (CCMI) GEOS simulation (Morgen-
stern et al., 2017), highlights possible limitations in ex-
tending the parameterization to years outside of those on
which it was trained, particularly if there is a strong trend
in one of the inputs. The GEOS CCMI simulation has un-
constrained meteorology, spans 1960–2100, and has a hori-
zontal resolution of 2.0◦ latitude× 2.5◦ longitude. Emissions
for precursors of tropospheric O3 and aerosols are from the
RCP6.0 scenario. We trained two new parameterizations on
the CCMI dataset, denoted CCMI2019 and CCMI2060, us-
ing data from 1980–2019 and 1980–2061, respectively. We

used the same methodology to create the training datasets as
for the MERRA2 GMI parameterization. CCMI output data
are only available at monthly resolution, and thus we trained
the CCMI parameterizations on monthly, instead of daily, av-
eraged values. Every 10th year, staring in 2000, was omitted
from the training dataset for validation.

While the CCMI2019 parameterization performed simi-
larly to the MERRA2 GMI parameterization for years in-
cluded in the training dataset, performance degraded signifi-
cantly for years beyond 2019. The CCMI2019 parameteriza-
tion captured the τCH4 for 2000 and 2010 within 1 % (Fig. 10,
red line) and the NRMSE within 5 % (not shown). When we
applied the parameterization to years outside of the train-
ing window, however, performance degraded quickly and by
2060 underestimated τCH4 by about 4 %. The CCMI2060 pa-

Geosci. Model Dev., 15, 6341–6358, 2022 https://doi.org/10.5194/gmd-15-6341-2022



D. C. Anderson et al.: A machine learning OH parameterization 6353

Figure 10. Time series showing the percent difference between τCH4 calculated from the CCMI simulation and from three separate param-
eterizations: one trained on MERRA2 GMI output from 1980–2019 (blue circle), one trained on CCMI output spanning 1980–2019 (red
triangle), and one trained on CCMI output spanning 1980–2060 (purple square). The stratospheric O3 column (orange star) from the CCMI
simulation averaged over 30◦ S to 60◦ N, the region where tropospheric CH4 loss to OH maximizes (Fig. 3), is also shown. All data are for
July.

rameterization, on the other hand, captures the τCH4 lifetime
within 0.5 % for all validation years.

The reason for this performance degradation is likely due
to input parameters that extend beyond the range used in
the training dataset. For example, there is a strong positive
trend in the stratospheric O3 column (Fig. 10), which re-
sults in chemical environments in 2060 that did not exist in
the 1980–2019 training dataset. Other variables with strong
trends, such as CH4 and temperature, as well as different
large-scale dynamical patterns, could also decrease param-
eterization performance. These results strongly suggest cau-
tion when applying the parameterization to future scenarios
outside of the training window. As will be discussed in the
following section, care should be taken in choosing the train-
ing dataset to ensure that it represents the full range of pho-
tochemical conditions on which the parameterization will be
applied.

4.2 Input parameters from a different model setup

Similar to applying the parameterization outside of the time
frame on which it was trained, applying the parameterization
to a different model setup also warrants caution, as the differ-
ences can result in new chemical environments on which the
parameterization was not trained. We now discuss parameter-
ization performance when output from the CCMI simulation
discussed in Sect. 4.1 is input into the MERRA2 GMI-trained
parameterization. Despite both simulations being from the
GEOS framework, the CCMI simulation setup differs from
the MERRA2 GMI simulation in emissions, time frame, res-
olution, and meteorology (unconstrained vs. specified dy-
namics), among other factors. Because CCMI output is only
available at a monthly resolution, we created a separate pa-
rameterization, hereafter referred to as “M2GMI-monthly”,
using MERRA2 GMI output with identical parameterization
inputs as the daily parameterization but using monthly av-
eraged values. Performance is similar to that of the param-
eterization trained on daily data and averaged over monthly

timescales, with the NRMSE for the troposphere on the order
of 6 %–7 % depending on the year.

When output from the CCMI simulation is used as in-
puts to the M2GMI-monthly parameterization, performance
degrades significantly. For July 2000, for example, there
are distinct regions of both positive and negative biases
(Fig. 11a) in parameterized OH, resulting in a NRMSE of
13 %, on par with using climatology as an OH estimate. Be-
cause the largest discrepancies are centered outside of the
tropics and/or in regions with low concentrations, τCH4 for
year 2000 is identical between the CCMI and parameterized
OH. When applied to 2060 (Fig. 11c), which is far outside
the training period of the M2GMI-monthly parameterization,
there is a near universal high bias in parameterized OH, re-
sulting in a NRMSE of 16 % and a τCH4 biased low by 4.5 %.
This overestimate results in a negative trend in τCH4 from
parameterized OH from 2000 to 2060 (Fig. 10, blue line),
despite the trend in the CCMI simulation being positive. Ap-
plying the MERRA2 GMI parameterization to a study using
the CCMI setup would therefore misrepresent the OH–CH4
cycle.

Through an analysis of the ranges of input parameters
from both simulations, we found that the differences in pa-
rameterization performance for inputs from MERRA2 GMI
and CCMI are likely largely attributable to differences in the
stratospheric O3 distributions between the two simulations.
In 2060, for example, CCMI stratospheric O3 has a much
higher frequency of values above 300 DU than the M2GMI-
monthly training dataset (Fig. 12). A smaller, but still notice-
able, shift in the distribution is also found for the year 2000
(Fig. S9). Likewise, the accuracy of the M2GMI-monthly
parameterization decreases from 2000–2060 as the strato-
spheric O3 burden increases (Fig. 10, red line). Mechanis-
tically, higher stratospheric ozone in CCMI should result in
lower tropospheric OH because the reduction in incoming
ultraviolet radiation limits tropospheric O3 photolysis. This
could also lead to a higher CO burden, due to the smaller
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Figure 11. Fractional difference between OH calculated by the M2GMI-monthly (a, c) and the CCMI2060 (b, d) parameterizations and OH
output from the CCMI simulation. Data are averaged between 850 and 500 hPa for July 2000 (a, b) and July 2060 (c, d). Regions with low
OH, defined as a mixing ratio of less than 0.005 pptv, are indicated with stippling.

Figure 12. Histograms showing the distribution of stratospheric column O3 (a), tropospheric OH (b), and tropospheric CO (c) from the
M2GMI-monthly parameterization training dataset (red) and from the CCMI simulation for 2060 (blue). Purple indicates areas of overlap
between the two distributions.

OH sink. Comparisons between the OH and CO distribu-
tions from the two simulations are consistent with this hy-
pothesis. Even though the M2GMI-monthly training dataset
spanned the full range of stratospheric O3 values from the
CCMI simulation, the frequency of stratospheric O3 values at
higher concentrations likely creates chemical environments
in the CCMI simulation distinct from those in MERRA2
GMI, forcing the parameterization to extrapolate to a chem-
ical space on which it was not trained. This highlights the
need to compare the distribution of any parameterization in-
puts to that of the training dataset to ensure that the training
dataset fully encompasses the range of photochemical envi-
ronments necessary for a given study. Once integrated into
a modeling framework, safeguards could be added to warn
a user if parameterization input values fall outside of the
bounds of the training dataset, as is done with the current
ECCOH parameterization.

Again, performance improves significantly when we apply
output from the CCMI simulation to the CCMI2060 param-

eterization. The regions of consistent high bias notable when
CCMI output was applied to the M2GMI-monthly parame-
terization are absent for both 2000 and 2060, and NRMSE
shows a factor of 3 improvement over the previously dis-
cussed scenario. Likewise, for all validation years, the pa-
rameterized OH resulted in a τCH4 that agreed with the CCMI
simulation between 0 % and −0.46 % (purple line, Fig. 10).

We conclude that for best performance a separate param-
eterization should be created for each new modeling frame-
work to capture OH variability accurately. This will not cre-
ate an undue computational expense on an experiment. Be-
cause a full-chemistry simulation is necessary to create the
parameterization inputs of chemical species that are not cal-
culated online, the necessary data to create a training dataset
will already be available. The only additional time will be
that required to format the regression tree inputs and to
train the model, which takes approximately 2–3 h for each
month. This process can be performed using previously cre-
ated Python scripts with minimal changes. The flexibility that
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this modeling framework permits will facilitate its use even
if there are major changes to the underlying model chemistry
or dynamics.

The methodology we present here allows for the quick
generation of a parameterization of OH for use in a
chemistry–climate model to help disentangle the compli-
cated relationship between CO, CH4, and OH. The param-
eterization is designed for computationally inexpensive sen-
sitivity runs and, as such, is not designed to capture feed-
backs between OH and all of its chemical and dynamical
drivers (e.g., H2O2 or MHP). Instead, if a user is interested
in these feedbacks, they could use the results of the sensi-
tivity tests to identify times, locations, or chemical regimes
for a targeted full-chemistry simulation. Likewise, the pa-
rameterization reflects the photochemical environments of
the dataset on which it was trained. Therefore, the training
dataset should be carefully chosen to reflect the goals of a
given study. However, we have demonstrated that the sample
parameterization outlined here accurately predicts the mag-
nitude and spatial distribution of the large deviations in OH
for the 2016 El Niño, an event that was not part of the training
dataset. This result gives confidence in the fidelity of a pa-
rameterization developed with our methodology when simu-
lating the spatial and temporal responses of OH to perturba-
tions from large variations in the chemical, dynamical, and
solar irradiance drivers of OH.

Code availability. The scripts used to create the training datasets
and a sample script to create a parameterization have been
archived by Zenodo at https://doi.org/10.5281/zenodo.6046037
(Anderson, 2022a). A sample parameterization for the EC-
COH module trained on MERRA2-GMI output is available at
https://doi.org/10.5281/zenodo.6604130 (Anderson, 2022b).

Data availability. Output from the MERRA2 GMI simulation
are publicly available at https://acd-ext.gsfc.nasa.gov/Projects/
GEOSCCM/MERRA2GMI/ (NASA Goddard Space Flight Cen-
ter, 2022). The training dataset and training targets for
the July parameterization presented here are available at
https://doi.org/10.5281/zenodo.6604130 (Anderson, 2022b). Out-
put from the GEOSCCM simulation for CCMI is available at
the Centre for Environmental Data Analysis (CED), the Natu-
ral Environment Research Council’s Data Repository for Atmo-
spheric Science and Earth Observation, at http://data.ceda.ac.uk/
badc/wcrp-ccmi/data/CCMI-1/output (CEDA Archive, 2022).
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