Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-5627-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Introducing new lightning schemes into the CHASER (MIROC) chemistry–climate model
Graduate School of Environment Studies, Nagoya University, Nagoya,
464-8601, Japan
Hossain Mohammed Syedul Hoque
Graduate School of Environment Studies, Nagoya University, Nagoya,
464-8601, Japan
Kengo Sudo
Graduate School of Environment Studies, Nagoya University, Nagoya,
464-8601, Japan
Japan Agency for Marine–Earth Science and Technology (JAMSTEC),
Yokohama, 237-0061, Japan
Related authors
Yanfeng He and Kengo Sudo
Atmos. Chem. Phys., 23, 13061–13085, https://doi.org/10.5194/acp-23-13061-2023, https://doi.org/10.5194/acp-23-13061-2023, 2023
Short summary
Short summary
Lightning has big social impacts. Lightning-produced NOx (LNOx) plays a vital role in atmospheric chemistry and climate. Investigating past lightning and LNOx trends can provide essential indicators of all lightning-related phenomena. Simulations show almost flat global lightning and LNOx trends during 1960–2014. Past global warming enhances the trends positively, but increases in aerosol have the opposite effect. Moreover, global lightning decreased markedly after the Pinatubo eruption.
Katharina Perny, Timofei Sukhodolov, Ales Kuchar, Pavle Arsenovic, Bernadette Rosati, Christoph Brühl, Sandip S. Dhomse, Andrin Jörimann, Anton Laakso, Graham Mann, Ulrike Niemeier, Giovanni Pitari, Ilaria Quaglia, Takashi Sekiya, Kengo Sudo, Claudia Timmreck, Simone Tilmes, Daniele Visioni, and Harald E. Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2025-5915, https://doi.org/10.5194/egusphere-2025-5915, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Major volcanic eruptions, such as the one of Mt. Pinatubo in 1991, can inject large amounts of sulfur dioxide into the stratosphere. The resulting aerosol cloud affects stratospheric temperature and thereby middle atmospheric dynamics and chemistry. Here we investigate similarities and differences across an ensemble of climate models in reproducing the stratospheric temperature signal following the Mt. Pinatubo eruption.
Ngoc Thi Nhu Do, Kengo Sudo, Akihiko Ito, Louisa K. Emmons, Vaishali Naik, Kostas Tsigaridis, Øyvind Seland, Gerd A. Folberth, and Douglas I. Kelley
Geosci. Model Dev., 18, 2079–2109, https://doi.org/10.5194/gmd-18-2079-2025, https://doi.org/10.5194/gmd-18-2079-2025, 2025
Short summary
Short summary
Understanding historical isoprene emission changes is important for predicting future climate, but trends and their controlling factors remain uncertain. This study shows that long-term isoprene trends vary among Earth system models mainly due to partially incorporating CO2 effects and land cover changes rather than to climate. Future models that refine these factors’ effects on isoprene emissions, along with long-term observations, are essential for better understanding plant–climate interactions.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Yanfeng He and Kengo Sudo
Atmos. Chem. Phys., 23, 13061–13085, https://doi.org/10.5194/acp-23-13061-2023, https://doi.org/10.5194/acp-23-13061-2023, 2023
Short summary
Short summary
Lightning has big social impacts. Lightning-produced NOx (LNOx) plays a vital role in atmospheric chemistry and climate. Investigating past lightning and LNOx trends can provide essential indicators of all lightning-related phenomena. Simulations show almost flat global lightning and LNOx trends during 1960–2014. Past global warming enhances the trends positively, but increases in aerosol have the opposite effect. Moreover, global lightning decreased markedly after the Pinatubo eruption.
Phuc Thi Minh Ha, Yugo Kanaya, Fumikazu Taketani, Maria Dolores Andrés Hernández, Benjamin Schreiner, Klaus Pfeilsticker, and Kengo Sudo
Geosci. Model Dev., 16, 927–960, https://doi.org/10.5194/gmd-16-927-2023, https://doi.org/10.5194/gmd-16-927-2023, 2023
Short summary
Short summary
HONO affects tropospheric oxidizing capacity; thus, it is implemented into the chemistry–climate model CHASER. The model substantially underpredicts daytime HONO, while nitrate photolysis on surfaces can supplement the daytime HONO budget. Current HONO chemistry predicts reductions of 20.4 % for global tropospheric NOx, 40–67 % for OH, and 30–45 % for O3 in the summer North Pacific. In contrast, OH and O3 winter levels in China are greatly enhanced.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Alessandro Damiani, Manish Naja, and Al Mashroor Fatmi
Atmos. Chem. Phys., 22, 12559–12589, https://doi.org/10.5194/acp-22-12559-2022, https://doi.org/10.5194/acp-22-12559-2022, 2022
Short summary
Short summary
Nitrogen dioxide (NO2) and formaldehyde (HCHO) are essential trace graces regulating tropospheric ozone chemistry. These trace constituents are measured using an optical passive remote sensing technique. In addition, NO2 and HCHO are simulated with a computer model and evaluated against the observations. Such evaluations are essential to assess model uncertainties and improve their predictability. The results yielded good agreement between the two datasets with some discrepancies.
Takashi Sekiya, Kazuyuki Miyazaki, Henk Eskes, Kengo Sudo, Masayuki Takigawa, and Yugo Kanaya
Atmos. Meas. Tech., 15, 1703–1728, https://doi.org/10.5194/amt-15-1703-2022, https://doi.org/10.5194/amt-15-1703-2022, 2022
Short summary
Short summary
This study gives a systematic comparison of TROPOMI version 1.2 and OMI QA4ECV tropospheric NO2 column through global chemical data assimilation (DA) integration for April–May 2018. DA performance is controlled by measurement sensitivities, retrieval errors, and coverage. Due to reduced errors in TROPOMI, agreements against assimilated and independent observations were improved by TROPOMI DA compared to OMI DA. These results demonstrate that TROPOMI DA improves global analyses of NO2 and ozone.
Hossain M. S. Hoque, Kengo Sudo, Hitoshi Irie, Alessandro Damiani, and Al Mashroor Fatmi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-815, https://doi.org/10.5194/acp-2021-815, 2021
Revised manuscript not accepted
Short summary
Short summary
Nitrogen dioxide (NO2) and formaldehyde (HCHO) profiles, retrieved from remote sensing observations, are used to evaluate the global chemistry transport model CHASER. Overall, CHASER has demonstrated good skills in reproducing the seasonal climatology of NO2 and HCHO on a local scale at sites in South and East Asia. Around mountainous terrains, the model performs better on a regional scale. The improved spatial resolution of CHASER can likely reduce the observed discrepancies in the datasets.
Phuc T. M. Ha, Ryoki Matsuda, Yugo Kanaya, Fumikazu Taketani, and Kengo Sudo
Geosci. Model Dev., 14, 3813–3841, https://doi.org/10.5194/gmd-14-3813-2021, https://doi.org/10.5194/gmd-14-3813-2021, 2021
Short summary
Short summary
Policies to mitigate air pollution require an understanding of tropospheric oxidizing capacity, which is controlled by mechanisms including heterogeneous processes on aerosols and clouds. This study uses a chemistry–climate model CHASER (MIROC) to explore the heterogeneous effects in the troposphere for -2.96 % O3, -2.19 % NOx, +3.28 % CO, and +5.91 % CH4 lifetime. Besides, these processes affect polluted areas and remote areas and can bring challenges to pollution reduction efforts.
Na Zhao, Xinyi Dong, Kan Huang, Joshua S. Fu, Marianne Tronstad Lund, Kengo Sudo, Daven Henze, Tom Kucsera, Yun Fat Lam, Mian Chin, and Simone Tilmes
Atmos. Chem. Phys., 21, 8637–8654, https://doi.org/10.5194/acp-21-8637-2021, https://doi.org/10.5194/acp-21-8637-2021, 2021
Short summary
Short summary
Black carbon acts as a strong climate forcer, especially in vulnerable pristine regions such as the Arctic. This work utilizes ensemble modeling results from the task force Hemispheric Transport of Air Pollution Phase 2 to investigate the responses of Arctic black carbon and surface temperature to various source emission reductions. East Asia contributed the most to Arctic black carbon. The response of Arctic temperature to black carbon was substantially more sensitive than the global average.
Cited articles
Allen, D. J., Pickering, K. E., Bucsela, E., Krotkov, N., and Holzworth,
R.: Lightning NOx Production in the Tropics as Determined Using OMI
NO2 Retrievals and WWLLN Stroke Data, J. Geophys. Res.-Atmos., 124,
13498–13518, https://doi.org/10.1029/2018JD029824, 2019.
Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, 2014.
Betz, H. D., Schumann, U., and Laroche, P.: Lightning: Principles,
instruments and applications: Review of modern lightning research, Springer
Netherlands, 1–641, https://doi.org/10.1007/978-1-4020-9079-0, 2009.
Boccippio, D. J., Koshak, W. J., and Blakeslee, R. J.:
Performance Assessment of the Optical Transient Detector and Lightning
Imaging Sensor. Part I: Predicted Diurnal Variability, J.
Atmos. Ocean. Tech., 19, 1318–1332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2, 2002.
Bucsela, E. J., Pickering, K. E., Allen, D. J., Holzworth, R. H., and
Krotkov, N. A.: Midlatitude Lightning NOx Production Efficiency
Inferred From OMI and WWLLN Data, J. Geophys. Res.-Atmos., 124,
13475–13497, https://doi.org/10.1029/2019JD030561, 2019.
Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded lightning
climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res.,
135–136, 404–414, https://doi.org/10.1016/j.atmosres.2012.06.028, 2014.
Charn, A. B. and Parishani, H.: Predictive Proxies of Present and Future
Lightning in a Superparameterized Model, J. Geophys. Res.-Atmos., 126,
e2021JD035461, https://doi.org/10.1029/2021JD035461, 2021.
Clark, S. K., Ward, D. S., and Mahowald, N. M.: Parameterization-based
uncertainty in future lightning flash density, Geophys. Res. Lett., 44,
2893–2901, https://doi.org/10.1002/2017GL073017, 2017.
Cooray, V., Rahman, M., and Rakov, V.: On the NOx production by
laboratory electrical discharges and lightning, J. Atmos. Solar-Terr.
Phy., 71, 1877–1889, https://doi.org/10.1016/j.jastp.2009.07.009, 2009.
Finney, D. L., Doherty, R. M., Wild, O., Huntrieser, H., Pumphrey, H. C., and Blyth, A. M.: Using cloud ice flux to parametrise large-scale lightning, Atmos. Chem. Phys., 14, 12665–12682, https://doi.org/10.5194/acp-14-12665-2014, 2014.
Finney, D. L., Doherty, R. M., Wild, O., and Abraham, N. L.: The impact of lightning on tropospheric ozone chemistry using a new global lightning parametrisation, Atmos. Chem. Phys., 16, 7507–7522, https://doi.org/10.5194/acp-16-7507-2016, 2016a.
Finney, D. L., Doherty, R. M., Wild, O., Young, P. J., and Butler, A.:
Response of lightning NOx emissions and ozone production to climate
change: Insights from the Atmospheric Chemistry and Climate Model
Intercomparison Project, Geophys. Res. Lett., 43, 5492–5500,
https://doi.org/10.1002/2016GL068825, 2016b.
Finney, D. L., Doherty, R. M., Wild, O., Stevenson, D. S., MacKenzie, I.
A., and Blyth, A. M.: A projected decrease in lightning under climate
change, Nat. Clim. Chang., 8, 210–213,
https://doi.org/10.1038/s41558-018-0072-6, 2018.
Finney, D. L., Marsham, J. H., Wilkinson, J. M., Field, P. R., Blyth, A.
M., Jackson, L. S., Kendon, E. J., Tucker, S. O., and Stratton, R. A.:
African Lightning and its Relation to Rainfall and Climate Change in a
Convection-Permitting Model, Geophys. Res. Lett., 47, e2020GL088163,
https://doi.org/10.1029/2020GL088163, 2020.
Goldberg, D. L., Saide, P. E., Lamsal, L. N., de Foy, B., Lu, Z., Woo, J.-H., Kim, Y., Kim, J., Gao, M., Carmichael, G., and Streets, D. G.: A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 19, 1801–1818, https://doi.org/10.5194/acp-19-1801-2019, 2019.
Grewe, V.: Impact of climate variability on tropospheric ozone, Sci. Total
Environ., 374, 167–181, https://doi.org/10.1016/j.scitotenv.2007.01.032,
2007.
Ha, P. T. M., Matsuda, R., Kanaya, Y., Taketani, F., and Sudo, K.: Effects of heterogeneous reactions on tropospheric chemistry: a global simulation with the chemistry–climate model CHASER V4.0, Geosci. Model Dev., 14, 3813–3841, https://doi.org/10.5194/gmd-14-3813-2021, 2021.
He, Y., Hoque, M. S. H., and Sudo, K.: Introducing new lightning schemes
into the CHASER (MIROC) chemistry climate model, Zenodo [code],
https://doi.org/10.5281/ZENODO.5835796, 2022.
Heath, N. K., Pleim, J. E., Gilliam, R. C., and Kang, D.: A simple
lightning assimilation technique for improving retrospective WRF
simulations, J. Adv. Model. Earth Sy., 8, 1806–1824, https://doi.org/10.1002/2016MS000735, 2016.
Holzworth, R. H., Brundell, J. B., McCarthy, M. P., Jacobson, A. R., Rodger,
C. J., and Anderson, T. S.: Lightning in the Arctic, Geophys. Res. Lett.,
48, e2020GL091366, https://doi.org/10.1029/2020GL091366, 2021.
Hussain, M. and Mahmud, I.: pyMannKendall: a python package for non
parametric Mann Kendall family of trend tests., J. Open Source Softw., 4,
1556, https://doi.org/10.21105/joss.01556, 2019.
Inness, A., Baier, F., Benedetti, A., Bouarar, I., Chabrillat, S., Clark, H., Clerbaux, C., Coheur, P., Engelen, R. J., Errera, Q., Flemming, J., George, M., Granier, C., Hadji-Lazaro, J., Huijnen, V., Hurtmans, D., Jones, L., Kaiser, J. W., Kapsomenakis, J., Lefever, K., Leitão, J., Razinger, M., Richter, A., Schultz, M. G., Simmons, A. J., Suttie, M., Stein, O., Thépaut, J.-N., Thouret, V., Vrekoussis, M., Zerefos, C., and the MACC team: The MACC reanalysis: an 8 yr data set of atmospheric composition, Atmos. Chem. Phys., 13, 4073–4109, https://doi.org/10.5194/acp-13-4073-2013, 2013.
Isaksen, I. S. A. and Hov, Ø.: Calculation of trends in the tropospheric
concentration of O3, OH, CO, CH4 and NOx, Tellus B, 39 B,
271–285, https://doi.org/10.1111/j.1600-0889.1987.tb00099.x, 1987.
Jiang, H. and Liao, H.: Projected Changes in NOx Emissions from Lightning
as a Result of 2000–2050 Climate Change, Atmos. Ocean. Sci. Lett., 6,
284–289, https://doi.org/10.3878/j.issn.1674-2834.13.0042, 2013.
Kang, D., Foley, K. M., Mathur, R., Roselle, S. J., Pickering, K. E., and Allen, D. J.: Simulating lightning NO production in CMAQv5.2: performance evaluations, Geosci. Model Dev., 12, 4409–4424, https://doi.org/10.5194/gmd-12-4409-2019, 2019a.
Kang, D., Pickering, K. E., Allen, D. J., Foley, K. M., Wong, D. C., Mathur, R., and Roselle, S. J.: Simulating lightning NO production in CMAQv5.2: evolution of scientific updates, Geosci. Model Dev., 12, 3071–3083, https://doi.org/10.5194/gmd-12-3071-2019, 2019b.
Kang, D., Mathur, R., Pouliot, G. A., Gilliam, R. C., and Wong, D. C.:
Significant ground-level ozone attributed to lightning-induced nitrogen
oxides during summertime over the Mountain West States, npj Clim. Atmos.
Sci., 31, 1–7, https://doi.org/10.1038/s41612-020-0108-2, 2020.
Kelley, O. A., Thomas, J. N., Solorzano, N. N., and Holzworth, R. H.: Fire
and Ice: Intense convective precipitation observed at high latitudes by the
GPM satellite's Dual-frequency Precipitation Radar (DPR) and the
ground-based World Wide Lightning Location Network (WWLLN), AGU Poster,
2018, H43F-2487, 2018.
Krause, A., Kloster, S., Wilkenskjeld, S., and Paeth, H.: The sensitivity
of global wildfires to simulated past, present, and future lightning
frequency, J. Geophys. Res.-Biogeo., 119, 312–322,
https://doi.org/10.1002/2013JG002502, 2014.
Krotkov, N. A., Lamsal, L. N., Marchenko, S. V., Celarier, E. A.,
Bucsela, E. J., Swartz, W. H., Joiner, J., and the OMI core team:
OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global
Gridded 0.25 degree × 0.25 degree V3, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/Aura/OMI/DATA3007, 2019.
Labrador, L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NOx and its vertical distribution on atmospheric chemistry: sensitivity simulations with MATCH-MPIC, Atmos. Chem. Phys., 5, 1815–1834, https://doi.org/10.5194/acp-5-1815-2005, 2005.
Lamarque, J.-F., Shindell, D. T., Josse, B., Young, P. J., Cionni, I., Eyring, V., Bergmann, D., Cameron-Smith, P., Collins, W. J., Doherty, R., Dalsoren, S., Faluvegi, G., Folberth, G., Ghan, S. J., Horowitz, L. W., Lee, Y. H., MacKenzie, I. A., Nagashima, T., Naik, V., Plummer, D., Righi, M., Rumbold, S. T., Schulz, M., Skeie, R. B., Stevenson, D. S., Strode, S., Sudo, K., Szopa, S., Voulgarakis, A., and Zeng, G.: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics, Geosci. Model Dev., 6, 179–206, https://doi.org/10.5194/gmd-6-179-2013, 2013.
Liaskos, C. E., Allen, D. J., and Pickering, K. E.: Sensitivity of tropical
tropospheric composition to lightning NOx production as determined by
replay simulations with GEOS-5, J. Geophys. Res., 120, 8512–8534,
https://doi.org/10.1002/2014JD022987, 2015.
Lopez, P.: A lightning parameterization for the ECMWF integrated
forecasting system, Mon. Weather Rev., 144, 3057–3075,
https://doi.org/10.1175/MWR-D-16-0026.1, 2016.
McCaul, E. W., Goodman, S. J., LaCasse, K. M., and Cecil, D. J.:
Forecasting lightning threat using cloud-resolving model simulations,
Weather Forecast., 24, 709–729, https://doi.org/10.1175/2008WAF2222152.1,
2009.
Murray, L. T.: Lightning NOx and Impacts on Air Quality,
https://doi.org/10.1007/s40726-016-0031-7, 25 April 2016.
Ott, L. E., Pickering, K. E., Stenchikov, G. L., Allen, D. J., DeCaria, A.
J., Ridley, B., Lin, R. F., Lang, S., and Tao, W. K.: Production of
lightning NOx and its vertical distribution calculated from
three-dimensional cloud-scale chemical transport model simulations, J.
Geophys. Res.-Atmos., 115, D04301, https://doi.org/10.1029/2009JD011880,
2010.
Petersen, W. A. and Buechler, D.: Global tropical lightning trends: Has
tropical lightning frequency responded to global climate change?, in: Third
Conference on Meteorological Applications of Lightning Data, New Orleans,
USA, 20–28 January 2008, 2.1, 2008.
Pickering, K. E., Wang, Y., Tao, W. K., Price, C., and Müller, J. F.:
Vertical distributions of lightning NOx for use in regional and global
chemical transport models, J. Geophys. Res.-Atmos., 103, 31203–31216,
https://doi.org/10.1029/98JD02651, 1998.
Price, C. and Rind, D.: A simple lightning parameterization for calculating
global lightning distributions, J. Geophys. Res., 97, 9919–9933,
https://doi.org/10.1029/92JD00719, 1992.
Price, C. and Rind, D.: What determines the cloud-to-ground lightning
fraction in thunderstorms?, Geophys. Res. Lett., 20, 463–466,
https://doi.org/10.1029/93GL00226, 1993.
Price, C. and Rind, D.: Possible implications of global climate change on
global lightning distributions and frequencies, J. Geophys. Res., 99,
823–833, https://doi.org/10.1029/94jd00019, 1994.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res.-Atmos., 108, D14, https://doi.org/10.1029/2002JD002670, 2003.
Ridley, B. A., Pickering, K. E., and Dye, J. E.: Comments on the
parameterization of lightning-produced NO in global chemistry-transport
models, Atmos. Environ., 39, 6184–6187,
https://doi.org/10.1016/j.atmosenv.2005.06.054, 2005.
Romps, D. M.: Evaluating the Future of Lightning in Cloud-Resolving Models,
Geophys. Res. Lett., 46, 14863–14871, https://doi.org/10.1029/2019GL085748,
2019.
Romps, D. M., Seeley, J. T., Vollaro, D., and Molinari, J.: Projected
increase in lightning strikes in the united states due to global warming,
Science, 346, 851–854, https://doi.org/10.1126/science.1259100,
2014.
Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, Atmos. Chem. Phys., 7, 3823–3907, https://doi.org/10.5194/acp-7-3823-2007, 2007.
Sudo, K. and Akimoto, H.: Global source attribution of tropospheric ozone:
Long-range transport from various source regions, J. Geophys. Res.-Atmos., 112, D12,
https://doi.org/10.1029/2006JD007992, 2007.
Sudo, K., Takahashi, M., Kurokawa, J. I., and Akimoto, H.: CHASER: A global
chemical model of the troposphere 1. Model description, J. Geophys. Res.-Atmos., 107, ACH 7-1–ACH 7-20, https://doi.org/10.1029/2001JD001113, 2002.
Tack, F., Merlaud, A., Iordache, M.-D., Pinardi, G., Dimitropoulou, E., Eskes, H., Bomans, B., Veefkind, P., and Van Roozendael, M.: Assessment of the TROPOMI tropospheric NO2 product based on airborne APEX observations, Atmos. Meas. Tech., 14, 615–646, https://doi.org/10.5194/amt-14-615-2021, 2021.
Takemura, T., Egashira, M., Matsuzawa, K., Ichijo, H., O'ishi, R., and Abe-Ouchi, A.: A simulation of the global distribution and radiative forcing of soil dust aerosols at the Last Glacial Maximum, Atmos. Chem. Phys., 9, 3061–3073, https://doi.org/10.5194/acp-9-3061-2009, 2009.
Thornhill, G., Collins, W., Olivié, D., Skeie, R. B., Archibald, A., Bauer, S., Checa-Garcia, R., Fiedler, S., Folberth, G., Gjermundsen, A., Horowitz, L., Lamarque, J.-F., Michou, M., Mulcahy, J., Nabat, P., Naik, V., O'Connor, F. M., Paulot, F., Schulz, M., Scott, C. E., Séférian, R., Smith, C., Takemura, T., Tilmes, S., Tsigaridis, K., and Weber, J.: Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models, Atmos. Chem. Phys., 21, 1105–1126, https://doi.org/10.5194/acp-21-1105-2021, 2021.
Tost, H.: Chemistry–climate interactions of aerosol nitrate from lightning, Atmos. Chem. Phys., 17, 1125–1142, https://doi.org/10.5194/acp-17-1125-2017, 2017.
Tost, H., Jöckel, P., and Lelieveld, J.: Lightning and convection parameterisations – uncertainties in global modelling, Atmos. Chem. Phys., 7, 4553–4568, https://doi.org/10.5194/acp-7-4553-2007, 2007.
van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., ter Linden, M., Ludewig, A., Boersma, K. F., and Veefkind, J. P.: Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data, Atmos. Meas. Tech., 15, 2037–2060, https://doi.org/10.5194/amt-15-2037-2022, 2022.
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, 2021.
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
Wild, O.: Modelling the global tropospheric ozone budget: exploring the variability in current models, Atmos. Chem. Phys., 7, 2643–2660, https://doi.org/10.5194/acp-7-2643-2007, 2007.
Williams, E. R.: Lightning and climate: A review, Atmos. Res., 76,
272–287, https://doi.org/10.1016/j.atmosres.2004.11.014, 2005.
Yienger, J. J. and Levy, H.: Empirical model of global soil-biogenic
NOx emissions, J. Geophys. Res., 100, 11447–11464,
https://doi.org/10.1029/95jd00370, 1995.
Zeng, G., Pyle, J. A., and Young, P. J.: Impact of climate change on tropospheric ozone and its global budgets, Atmos. Chem. Phys., 8, 369–387, https://doi.org/10.5194/acp-8-369-2008, 2008.
Ziemke, J. R., Chandra, S., Duncan, B. N., Froidevaux, L., Bhartia, P. K.,
Levelt, P. F., and Waters, J. W.: Tropospheric ozone determined from Aura
OMI and MLS: Evaluation of measurements and comparison with the Global
Modeling Initiative's Chemical Transport Model, J. Geophys. Res.-Atmos., 111, 19303,
https://doi.org/10.1029/2006JD007089, 2006.
Short summary
Lightning-produced NOx (LNOx) is a major source of NOx. Hence, it is crucial to improve the prediction accuracy of lightning and LNOx in chemical climate models. By modifying existing lightning schemes and testing them in the chemical climate model CHASER, we improved the prediction accuracy of lightning in CHASER. Different lightning schemes respond very differently under global warming, which indicates further research is needed considering the reproducibility of long-term trends of lightning.
Lightning-produced NOx (LNOx) is a major source of NOx. Hence, it is crucial to improve the...