Articles | Volume 15, issue 14
https://doi.org/10.5194/gmd-15-5627-2022
https://doi.org/10.5194/gmd-15-5627-2022
Development and technical paper
 | 
21 Jul 2022
Development and technical paper |  | 21 Jul 2022

Introducing new lightning schemes into the CHASER (MIROC) chemistry–climate model

Yanfeng He, Hossain Mohammed Syedul Hoque, and Kengo Sudo

Related authors

Historical (1960–2014) lightning and LNOx trends and their controlling factors in a chemistry–climate model
Yanfeng He and Kengo Sudo
Atmos. Chem. Phys., 23, 13061–13085, https://doi.org/10.5194/acp-23-13061-2023,https://doi.org/10.5194/acp-23-13061-2023, 2023
Short summary

Related subject area

Climate and Earth system modeling
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024,https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024,https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024,https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024,https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024,https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary

Cited articles

Allen, D. J., Pickering, K. E., Bucsela, E., Krotkov, N., and Holzworth, R.: Lightning NOx Production in the Tropics as Determined Using OMI NO2 Retrievals and WWLLN Stroke Data, J. Geophys. Res.-Atmos., 124, 13498–13518, https://doi.org/10.1029/2018JD029824, 2019. 
Banerjee, A., Archibald, A. T., Maycock, A. C., Telford, P., Abraham, N. L., Yang, X., Braesicke, P., and Pyle, J. A.: Lightning NOx, a key chemistry–climate interaction: impacts of future climate change and consequences for tropospheric oxidising capacity, Atmos. Chem. Phys., 14, 9871–9881, https://doi.org/10.5194/acp-14-9871-2014, 2014. 
Betz, H. D., Schumann, U., and Laroche, P.: Lightning: Principles, instruments and applications: Review of modern lightning research, Springer Netherlands, 1–641, https://doi.org/10.1007/978-1-4020-9079-0, 2009. 
Boccippio, D. J., Koshak, W. J., and Blakeslee, R. J.: Performance Assessment of the Optical Transient Detector and Lightning Imaging Sensor. Part I: Predicted Diurnal Variability, J. Atmos. Ocean. Tech., 19, 1318–1332, https://doi.org/10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2, 2002. 
Bucsela, E. J., Pickering, K. E., Allen, D. J., Holzworth, R. H., and Krotkov, N. A.: Midlatitude Lightning NOx Production Efficiency Inferred From OMI and WWLLN Data, J. Geophys. Res.-Atmos., 124, 13475–13497, https://doi.org/10.1029/2019JD030561, 2019. 
Download
Short summary
Lightning-produced NOx (LNOx) is a major source of NOx. Hence, it is crucial to improve the prediction accuracy of lightning and LNOx in chemical climate models. By modifying existing lightning schemes and testing them in the chemical climate model CHASER, we improved the prediction accuracy of lightning in CHASER. Different lightning schemes respond very differently under global warming, which indicates further research is needed considering the reproducibility of long-term trends of lightning.