Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-493-2022
https://doi.org/10.5194/gmd-15-493-2022
Model description paper
 | 
21 Jan 2022
Model description paper |  | 21 Jan 2022

Parameterization of the collision–coalescence process using series of basis functions: COLNETv1.0.0 model development using a machine learning approach

Camilo Fernando Rodríguez Genó and Léster Alfonso

Related authors

The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 2: Observational evidence of gel formation in warm clouds
Lester Alfonso, Graciela B. Raga, and Darrel Baumgardner
Atmos. Chem. Phys., 19, 14917–14932, https://doi.org/10.5194/acp-19-14917-2019,https://doi.org/10.5194/acp-19-14917-2019, 2019
Short summary
The impact of fluctuations and correlations in droplet growth by collision–coalescence revisited – Part 1: Numerical calculation of post-gel droplet size distribution
Lester Alfonso and Graciela B. Raga
Atmos. Chem. Phys., 17, 6895–6905, https://doi.org/10.5194/acp-17-6895-2017,https://doi.org/10.5194/acp-17-6895-2017, 2017
Short summary
An algorithm for the numerical solution of the multivariate master equation for stochastic coalescence
L. Alfonso
Atmos. Chem. Phys., 15, 12315–12326, https://doi.org/10.5194/acp-15-12315-2015,https://doi.org/10.5194/acp-15-12315-2015, 2015
Short summary

Related subject area

Atmospheric sciences
On the use of Infrared Atmospheric Sounding Interferometer (IASI) spectrally resolved radiances to test the EC-Earth climate model (v3.3.3) in clear-sky conditions
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023,https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Incorporation of aerosol into the COSPv2 satellite lidar simulator for climate model evaluation
Marine Bonazzola, Hélène Chepfer, Po-Lun Ma, Johannes Quaas, David M. Winker, Artem Feofilov, and Nick Schutgens
Geosci. Model Dev., 16, 1359–1377, https://doi.org/10.5194/gmd-16-1359-2023,https://doi.org/10.5194/gmd-16-1359-2023, 2023
Short summary
The impact of altering emission data precision on compression efficiency and accuracy of simulations of the community multiscale air quality model
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023,https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
AerSett v1.0: a simple and straightforward model for the settling speed of big spherical atmospheric aerosols
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023,https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Optimization of weather forecasting for cloud cover over the European domain using the meteorological component of the Ensemble for Stochastic Integration of Atmospheric Simulations version 1.0
Yen-Sen Lu, Garrett H. Good, and Hendrik Elbern
Geosci. Model Dev., 16, 1083–1104, https://doi.org/10.5194/gmd-16-1083-2023,https://doi.org/10.5194/gmd-16-1083-2023, 2023
Short summary

Cited articles

Alfonso, L. and Zamora, J. M.: A two-moment machine learning parameterization of the autoconversion process, Atmos. Res., 249, 105269, https://doi.org/10.1016/j.atmosres.2020.105269, 2021. 
Alfonso, L., Raga, G. B., and Baumgardner, D.: The validity of the kinetic collection equation revisited, Atmos. Chem. Phys., 8, 969–982, https://doi.org/10.5194/acp-8-969-2008, 2008. 
Alfonso, L., Raga, G., and Baumgardner, D.: A Monte Carlo framework to simulate multicomponent droplet growth by stochastic coalescence, in: Applications of Monte Carlo Method in Science and Engineering, edited by: Mordechai, S., InTech., https://doi.org/10.5772/14522, 2011. 
Barros, A. P., Prat, O. P., Shrestha, P., Testik, F. Y., and Bliven, L. F.: Revisiting Low and List (1982): Evaluation of raindrop collision parameterizations using laboratory observations and modeling, J. Atmos. Sci., 65, 2983–2993, https://doi.org/10.1175/2008JAS2630.1, 2008. 
Berry, E. X.: Cloud droplet growth by collection, J. Atmos. Sci., 24, 688–701, https://doi.org/10.1175/1520-0469(1967)024<0688:CDGBC>2.0.CO;2, 1967. 
Download
Short summary
The representation of the collision–coalescence process in models of different scales has been a great source of uncertainty for many years. The aim of this paper is to show that machine learning techniques can be a useful tool in order to incorporate this process by emulating the explicit treatment of microphysics. Our results show that the machine learning parameterization mimics the evolution of actual droplet size distributions very well.