Articles | Volume 15, issue 2
https://doi.org/10.5194/gmd-15-493-2022
https://doi.org/10.5194/gmd-15-493-2022
Model description paper
 | 
21 Jan 2022
Model description paper |  | 21 Jan 2022

Parameterization of the collision–coalescence process using series of basis functions: COLNETv1.0.0 model development using a machine learning approach

Camilo Fernando Rodríguez Genó and Léster Alfonso

Viewed

Total article views: 1,872 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
1,183 608 81 1,872 45 41
  • HTML: 1,183
  • PDF: 608
  • XML: 81
  • Total: 1,872
  • BibTeX: 45
  • EndNote: 41
Views and downloads (calculated since 21 May 2021)
Cumulative views and downloads (calculated since 21 May 2021)

Viewed (geographical distribution)

Total article views: 1,872 (including HTML, PDF, and XML) Thereof 1,763 with geography defined and 109 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Latest update: 20 Nov 2024
Download
Short summary
The representation of the collision–coalescence process in models of different scales has been a great source of uncertainty for many years. The aim of this paper is to show that machine learning techniques can be a useful tool in order to incorporate this process by emulating the explicit treatment of microphysics. Our results show that the machine learning parameterization mimics the evolution of actual droplet size distributions very well.