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Abstract. A parameterization for the collision–coalescence
process is presented based on the methodology of basis func-
tions. The whole drop spectrum is depicted as a linear com-
bination of two lognormal distribution functions, leaving no
parameters fixed. This basis function parameterization avoids
the classification of drops in artificial categories such as
cloud water (cloud droplets) or rainwater (raindrops). The to-
tal moment tendencies are predicted using a machine learn-
ing approach, in which one deep neural network was trained
for each of the total moment orders involved. The neural net-
works were trained and validated using randomly generated
data over a wide range of parameters employed by the param-
eterization. An analysis of the predicted total moment errors
was performed, aimed to establish the accuracy of the pa-
rameterization at reproducing the integrated distribution mo-
ments representative of physical variables. The applied ma-
chine learning approach shows a good accuracy level when
compared to the output of an explicit collision–coalescence
model.

1 Introduction

Drop populations are represented using drop size distribu-
tions (DSDs). The first attempt at characterizing drop spectra
in space as opposed to distributions over a surface was made
by Marshall and Palmer (1948), who employed exponential
distributions based on drop diameter to describe the DSDs.
More recently, the use of a three-parameter gamma distri-
bution has shown good agreement with observations (Ul-

brich, 1983). However, lognormal distributions have shown
a better squared-error fit to measurements of rain DSDs than
gamma or exponential distributions (Feingold and Levin,
1986; Pruppacher and Klett, 2010). The analysis of several
important characteristics of the Brownian coagulation pro-
cess showed that the lognormal distribution adequately rep-
resents the particle distributions (Lee et al., 1984, 1997). In
addition, some authors have employed this type of distribu-
tion function, which is lognormal, to parameterize cloud pro-
cesses with promising results (Clark, 1976; Feingold et al.,
1998; Huang, 2014).

There are two main approaches to modeling cloud pro-
cesses: the explicit approach (bin microphysics) and the
bulk approach (bulk microphysics). The bin microphysics
approach is based on the discretization of a DSD into sec-
tions (bins) and calculates the evolution of the DSD due to
the influence of different processes that could be dynami-
cal and/or microphysical (Berry, 1967; Berry and Reinhardt,
1974; Bott, 1998a; Khain et al., 2004, 2010). The core of
this method is the solution of the kinetic coagulation equa-
tion (KCE) (von Smoluchowski, 1916a, b) for the collision–
coalescence of liquid drops (also known as the stochastic
coalescence equation or kinetic collection equation within
the cloud physics community) in a previously designed grid,
which could be over mass or radius. Thus, previous knowl-
edge of the characteristics or parameters of the distributions
is not necessary. This way of solving the KCE is very ac-
curate, but its operational utility is compromised because it
is computationally very expensive due to the need to calcu-
late a large number of equations, ranging from several dozen
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to hundreds, at each grid point and time step. Also, as the
KCE has no analytical solution (with the exception of some
simple cases), it has to be solved via numerical schemes,
which are very diffusive by nature, depending on the grid
choice and numerical method used to solve it. While diffu-
sive schemes could be appropriate for certain microphysical
processes such as sedimentation (Khain et al., 2015), it is a
disadvantage that has to be dealt with. However, the numeri-
cal solutions of the KCE have evolved in such a way that to-
day we can find models that are specifically designed to limit
the diffusiveness of these numerical methods (Bott, 1998a).

In the case of bulk microphysics, the KCE is parameter-
ized and the evolution of a chosen set of statistical moments
related to physical variables is calculated, instead of the evo-
lution of the DSD itself. A pioneering approach to this kind
of parameterization can be found in Kessler (1969), where
a simple but relatively accurate representation of the auto-
conversion process is introduced. One- or two-moment pa-
rameterizations are common (Cohard and Pinty, 2000; Lim
and Hong, 2010; Milbrandt and McTaggart-Cowan, 2010;
Morrison et al., 2009; Thompson et al., 2008). However, re-
cently it has been extended to three-moment parameteriza-
tions (Huang, 2014; Milbrandt and Yau, 2005). This type of
parameterization is computationally efficient, which makes
it popular within the operational weather forecasting com-
munity. The main disadvantage of this approach is that the
equations for solving the rates of the pth moment include
moments of a higher order, so the system of equations em-
ployed to calculate the evolution of the moments is not closed
(Seifert and Beheng, 2001). This could be avoided by us-
ing predefined parameters for the distributions that describe
the DSD, which normally take the form of exponential (Mar-
shall and Palmer, 1948), gamma (Milbrandt and McTaggart-
Cowan, 2010; Milbrandt and Yau, 2005) or lognormal distri-
butions (Huang, 2014). In addition, artificial categories are
often used to separate hydrometeors (cloud and rainwater);
depending on drop radius, values between 20 and 41 µm are
examples of employed threshold values (Cohard and Pinty,
2000; Khairoutdinov and Kogan, 2000), with the moments
for each category being calculated by means of partial inte-
gration of the KCE.

An additional approach to modeling microphysical pro-
cesses is the particle-based one, which is based on the appli-
cation of a stochastic model such as the Monte Carlo method
to the coagulation (coalescence) of drop particles inside a
cloud. This method has been approached from a number of
perspectives. For example, Alfonso et al. (2008) analyzed the
possible ways of solving the KCE by using a Monte Carlo al-
gorithm and several collision kernels, with good correspon-
dence between the analytical and numerical approaches for
all the kernels, by estimating the KCE following Gillespie’s
Monte Carlo algorithm (Gillespie, 1972) and several ana-
lytical solutions. Also, the possible implications of this ap-
proach for cloud physics are discussed. Other variants of
this approach are analyzed in Alfonso et al. (2011), and it

has also been used to simulate the sub-processes of autocon-
version and accretion by applying a Monte Carlo-based al-
gorithm within the framework of Lagrangian cloud models
(Noh et al., 2018). This approach is accurate and represents
the stochastic nature of the collision–coalescence of drops
well.

An alternative to these main approaches is a hybrid ap-
proach to parameterize the cloud microphysical processes.
This approach simulates the explicit approach in the way that
it describes the shape of the DSD through a linear combina-
tion of basis functions (Clark, 1976; Clark and Hall, 1983),
and it could be considered a middle point between bulk and
bin microphysics. This is done by having time-varying dis-
tribution parameters instead of fixed ones, as is common in
conventional bulk approaches. A system of prognostic equa-
tions is solved to obtain the parameters’ tendencies related
to the statistical distribution functions based on the evolu-
tion of their total moments (the combination of the statis-
tical moments with same order of all distribution functions
involved), describing their tendencies due to condensation
and collision–coalescence. Since the integration process cov-
ers the entire size spectrum, the artificial separation of the
droplet spectrum is avoided, making the terms cloud droplet
and raindrop meaningless (they are just drops), and it is pos-
sible to solve a fully closed system of equations without the
need to keep any parameter of the distribution constant. An-
other advantage of this approach is its independence from a
specific collision kernel type, as is common in the bulk ap-
proach; in order to obtain analytical expressions from the in-
tegrals of the KCE, a polynomial-type kernel such as the one
derived by Long (1974) is frequently used. Having said that,
a limitation of this approach is that the total moment tenden-
cies have to be solved at each time step for the needed param-
eters. An alternative solution for this shortcoming is to first
calculate the moment’s rates by including a sufficiently wide
range of parameters, and then to store the results in lookup
tables that should be consulted several times at every time
step.

Machine learning (ML) is the study of computer algo-
rithms that improve automatically through experience and
the use of data (training) (Mitchell, 1997). ML algorithms
build a model based on sample data in order to make predic-
tions or decisions without being explicitly programmed to do
so (Koza et al., 1996). They are used in a wide variety of ap-
plications, such as in medicine, email filtering and computer
vision, for which it is difficult or unfeasible to develop con-
ventional algorithms to perform the needed tasks. In particu-
lar, neural networks (NNs) are especially well suited for solv-
ing nonlinear fitting problems and for establishing relation-
ships within complex data such as the outputs of the KCE.
In the field of atmospheric sciences, the use of deep neu-
ral networks (DNNs) has been extended to the parameteriza-
tion of sub-grid processes in climate models (Brenowitz and
Bretherton, 2018; Rasp et al., 2018), while in cloud micro-
physics, the autoconversion process was parameterized using
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DNNs with a superior level of accuracy when compared with
equivalent bulk models (Alfonso and Zamora, 2021; Loft
et al., 2018). Also, a partial parameterization of collision–
coalescence was tested in Seifert and Rasp (2020), who de-
veloped an ML parameterization that includes the processes
of autoconversion and accretion, describing the droplet spec-
tra as a gamma distribution and establishing a comparative
study that exposed the advantages and disadvantages of the
use of ML techniques in cloud microphysics.

In order to eliminate the need to solve the rate equations
for the total moments of the KCE at every time step (Thomp-
son, 1968) or resort to the use of lookup tables, we pro-
pose predicting the total moment tendencies using an ML
approach within this parameterization. Thus, the objective
of this study is to apply DNN to the parameterized for-
mulation of the collision–coalescence process developed by
Clark (1976) in order to replicate the rate equations for the
total moments, eliminating the need for lookup tables or nu-
merical solution of integrals. By doing this, a complete rep-
resentation of collision–coalescence based on ML could be
achieved (except drop breakup).

The research article is structured as follows: in Sect. 2, the
parameterization framework is described, as is the reference
model used for comparison purposes; in Sect. 3, the proce-
dures of DNN methodology are explained, the network archi-
tecture is introduced, the training data set is generated, and
the DNN is trained and validated; in Sect. 4, the experiment
design is explained; in Sect. 5, the results of the experiment
are discussed, an assessment of the results is made by con-
trasting them with the reference solution, and the predicted
total moment errors are analyzed; and in Sect. 6 several con-
clusions are drawn.

2 Description of the collision–coalescence
parameterization

2.1 Formulation of the total moment tendencies

Under the framework of the parameterization developed in
this study, any given drop spectrum can be approximated by
a series of basis functions. Therefore, the distribution that
characterizes the evolution of the spectrum is given by a lin-
ear combination of probability density functions as shown
below:

f 〈r〉 =

I∑
i=1

fi〈r〉, (1)

where fi〈r〉 represents the individual members of the set of
distributions considered, I stands for the number of distribu-
tion functions that make up the set and r refers to the radius
of drops. In the case at hand, a set of two statistical distribu-
tions is employed. At each time step, the rates of the parame-
ters of each distribution will be calculated. It should be noted
that, in any set of distributions considered, all the members

have the same type of distribution. For the proposed parame-
terization, as described in Clark (1976), a distribution of log-
normal type is used, as follows:

f 〈r〉 =
N

√
2πσr

e
[
−(lnr−µ)2/

(
2σ 2)]

, (2)

where µ and σ 2 stand for the mean and variance of lnr , re-
spectively, while N represents the number concentration of
drops. Considering that moment of order p

(
Rp
)

of any dis-
tribution can be defined as (Straka, 2009)

NRp =

∞∫
0

rpf (r)dr, (3)

the following analytical solution of Eq. (3) can be found for
the moments of the lognormal distribution.

Rp = epµ+
1
2p

2σ 2
(4)

Combining Eqs. (1), (3) and (4), the pth total moment of a
linear combination of lognormal distributions could be ex-
pressed as (Clark and Hall, 1983)

NRp =

I∑
i=1

NiR
p
i =

I∑
i=1

Nie
pµi+

1
2p

2σ 2
i , (5)

where the index i indicates each of the individual members
of the set (I = 2). Deriving Eq. (5) with respect to time, we
obtain the tendencies of the total moments of a series of log-
normal distributions.

∂NRp

∂t
=

I∑
i=1

NiR
p
i

(
∂ lnNi
∂t
+p

∂µi

∂t
+
p2

2
∂σ 2

i

∂t

)
(6)

Equation (6) can be expressed as a system of equations:

AX = F , (7)

where X is a vector representing the tendencies of the distri-
bution parameters.

XT
=

[
∂ lnN1

∂t
,
∂ lnN2

∂t
, . . .,

∂ lnNI
∂t

,
∂µ1

∂t
,
∂µ2

∂t
, . . .,

∂µI

∂t
,
∂σ 2

1
∂t
,
∂σ 2

2
∂t
, . . .,

∂σ 2
I

∂t

]
(8)

The coefficient’s matrix A is a squared matrix of order ν (ν =
3× I ) defined as

A=


ai,j =NjR

i−1
j /

(
NRi−1

)
ai,j+I = (i− 1)NjRi−1

j /
(
NRi−1

)
ai,j+2I =

1
2 (i− 1)2NjRi−1

j /
(
NRi−1

)
,

(9)
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with i = 1, 2, . . ., ν and j = 1, 2, . . ., I . The components
of the independent vector F are the tendencies of the total
moments of the distributions.

F T
=

[
∂ lnNR0

∂t
,
∂ lnNR1

∂t
, . . .,

∂ lnNRν−1

∂t

]
(10)

Both A and F are normalized in order to achieve better
numerical stability in the solution of the system of equa-
tions. The evolution of the distribution functions’ parameters
is calculated by applying a simple forward finite-difference
scheme (Clark and Hall, 1983).

Nk+1
i =Nk

i e
∂ lnNk

i
∂t

1t (11a)

µk+1
i = µki +

∂µki

∂t
1t (11b)

(
σ 2
)k+1

i
=

(
σ 2
)k
i
+
∂
(
σ 2)k

i

∂t
1t (11c)

Here, k is the time index in the finite-difference notation.

2.2 Description of the calculation of the total moment
tendencies due to collision–coalescence

The KCE determines the evolution of a DSD due to
collision–coalescence. This equation can be expressed in a
continuous form as a function of mass as follows (Pruppacher
and Klett, 2010)

∂f

∂t
=

m/2∫
0

f (m−m′)f (m′)K(m−m′|m′)dm′

−

∞∫
0

f (m)f (m′)K(m|m′)dm′, (12)

where K(m|m′) is the collection kernel. Reformulating
Eq. (12) in the form of Thompson (1968) and as a function of
radius, we can calculate the total moment tendencies (vector
F from the previous section) as follows:

dNRp

dt
=

1
2

∞∫
0

∞∫
0

Bp (r1, r2)K (r1|r2)f 〈r1〉f 〈r2〉dr1dr2,

(13)

where

Bp (r1, r2)=
(
r3

1 + r
3
2

)p/3
− r

p

1 − r
p

2 , (14)

K〈r1|r2〉 = π(r1+ r2)
2E(r1r2) |VT (r1)−VT (r2)| . (15)

Equation (15) represents the hydrodynamic kernel and
E(r1r2) stands for the collection efficiencies taken from
Hall (1980), which are based on a lookup table representing

the effectiveness of drop collisions under given environmen-
tal conditions. A set of two lognormal distributions (Eq. 2) is
used as members of the set in Eq. (1). Hence, the prognos-
tic variables under the parameterization formulation will be
the corresponding parameters of both distribution functions:
N1, µ1, σ1, N2, µ2 and σ2. At this point in the parameteriza-
tion the total moment tendencies should be calculated either
by solving Eq. (13) at each time step for all the moments
involved or by searching in a lookup table calculated a pri-
ori. Instead, the following chapter explains in detail the ML
approach proposed and its implementation.

2.3 Description of the reference model

To obtain a reference solution (KCE from now onwards), the
explicit model developed by Bott (1998a, b) was employed.
This scheme is conservative with respect to mass and very
efficient computationally speaking. It is based on the numer-
ical integration of the KCE (Eq. 12), combined with the mass
density function g(y, t) (Berry, 1967), in order to simplify
the calculations:

g(y, t)dy =mn(x, t)dx, (16)

n(m,t)=
1

3m2 g(y, t), (17)

where y = lnr and r is the radius of a drop of mass m. By
substituting Eq. (17) in Eq. (12) we obtain the KCE for the
mass density function (Bott, 1998a):

dg(y, t)
dt

=

y1∫
y0

m2

m2
cm
′
g (yc, t)K

(
yc,y

′
)
g(y′, t)dy′

−

∞∫
y0

g(y, t)
K(y,y′)

m′
g(y′, t)dy′, (18)

where mc =m−m
′. The first integral of the right-hand side

of Eq. (18) represents the gain of drops of mass m due to
collision–coalescence of two smaller droplets, while the sec-
ond integral portrays the loss of drops of mass m being cap-
tured by bigger drops (Bott, 1998a). For the numerical solu-
tion of Eq. (18), a logarithmic equidistant mass grid is used
and is generated as

mk+1 = αmk, k = 1,2, . . .,n, (19)

where n is the total number of grid points.

3 Machine learning architecture and training data set

ML methodology can be classified into three main categories
according to the problem at hand: supervised, unsupervised
and reinforced learning. In our case, supervised learning is
used. Supervised learning algorithms build a mathematical
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model of a set of data that contains both the inputs and the
desired outputs (Russell and Norvig, 2010). Under this clas-
sification, there is previous knowledge of the set of input val-
ues xk , and their corresponding outputs yk , with k = 1, 2, . . .,
n, where n is the number of input values. The objective is to
obtain a function f (x), by means of which the new data xnew
simulate the output values reasonably well. The set {xk, yk};
k = 1, 2, . . ., n is called the training data set. To test the per-
formance of f (x), the input and output data are separated
into two different data sets: training and testing. As NNs are
able to fit any nonlinear function (Schmidhuber, 2015), an
ML parameterization should approximate the solution of the
KCE in the form of Eq. (13) reasonably well given enough
layers and neurons in the architecture of the network.

3.1 Neural network architecture

Deep neural networks are based on artificial neurons. Each
neuron receives a set of input data, processes it and passes
it to an activation functionσ(z), which returns the activated
output (Fig. 1). The activation value of neuron i in layer l is
denoted by ali and is determined as follows.

ali = σ
(
zli

)
(20)

zli = b
l
i +

ml−1∑
j=!

W l
i,jx

l−1
i (21)

In Eq. (21), bli is the bias, W l
i,j is the ponderation weight,

ml−1 is the number of neurons in layer l−1, σ(z) is the acti-
vation function and z is the processing intermediate value of
the variable. Hence, an NN could be defined as a set of in-
put values (x), bias values (b) and weights (W ) integrated in
a functional form, i.e., y(x,W ,b), and its training procedure
consists of minimizing an error function (known as loss func-
tion) by optimizing the weights and biases for the available
training data. A commonly used loss function is the regres-
sion mean squared error (MSE). Hence, we need a minimiza-
tion algorithm to process the following expression.

C(W ,b)=
1

2n

∑
k

∥∥y (xk,W ,b)− yk
∥∥2 (22)

The selected algorithm for minimization of the loss func-
tion (Eq. 22) is the Bayesian regularization, which updates
the weight and bias values according to the Levenberg–
Marquardt optimization (Marquardt, 1963). Backpropaga-
tion is used to calculate the Jacobian of the performance with
respect to the weight and bias variables (Dan Foresee and Ha-
gan, 1997; MacKay, 1992).

The designed DNN is formed by one layer which receives
the input data (input layer), three intermediate layers (hidden
layers) with 20 neurons each and an output layer with a single
neuron which returns the simulated target values (Fig. 2).

Figure 1. Schematic representation of an artificial neuron.

3.2 Generation of the training and validation data sets

The training procedure consists of feeding the DNN with six
input values corresponding to the distribution parameters of
each distribution and the total moment tendency for the pth
order obtained from Eq. (13) as a target. The NN training
algorithm then processes those values in order to establish
the relationships between the data provided. This process is
repeated until all input and target data are processed. The
resulting trained DNN should be able to estimate the total
moment tendencies from a given set of distribution parame-
ters that falls within the ranges of the training variables. A
schematic representation of the trained NN with the inputs
and output is shown in Fig. 3.

In order to generate the training and test data sets, 100 000
drop spectra derived from the input variables are employed
over a wide range of distribution parameters (N1, µ1, σ1,N2,
µ2 and σ2). Those input parameters are used to calculate the
total moment rates from Eq. (13) and train the DNN. Five
DNNs are trained, one for each total moment tendency in-
volved in the formulation of the parameterization (moment
orders ranged from 0 to 5), with the exception of the to-
tal moment of order 3, as total mass is not affected by the
collision–coalescence process. The same training input pa-
rameters are used to train all NNs, varying only the target
values corresponding to the total moment tendencies of each
order.

The physical variables related to the input parameters are
shown in Fig. 4 for a better representation of the generated
training clouds. The training and test data are created us-
ing a uniformly distributed random number generator, with
means and standard deviations shown in Table 1, as well as
the ranges (minimum and maximum values) of each predic-
tor variable.

Figure 4 shows that within the ranges of the training data
(concentration from 1 to 500 cm−3), the corresponding liquid
water contents (LWCs) are between 10−10 and 10−4 g cm−3,
with the majority of the data concentrated between the limits
of 10−8 and 10−5 g cm−3. Those values cover a sufficiently
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Figure 2. Schematic representation of the architecture of the trained neural network used to calculate the total moment tendencies. The neural
network receives six inputs and then processes them by means of three hidden layers of 20 neurons each and an output layer with a single
neuron and one output value.

Figure 3. Neural network parameterization inputs and output. The
input data are the six distribution parameters (N1, µ1, σ1, N2, µ2
and σ2) needed to feed Eq. (13), while the output is the pth order
total moment tendency

(
dNRp

dt

)
.

Table 1. Statistical description of the input values used in the train-
ing and test data sets. The means, standard deviation and ranges are
shown for each input variable.

Input variable Mean Standard Range
deviation [min, max]

Concentration (N ) (cm−3) 250.80 144.13 [1.00; 500.00]
µ parameter (lncm) −7.00 0.58 [−8.00; −6.00]
σ parameter 0.20 0.06 [0.10; 0.30]

wide range of liquid water content to adequately represent
warm clouds within the parameterization.

3.3 Training and testing of the deep neural network

From the available data, 80 % is employed in training the
DNN, and the remaining 20 % is used for testing purposes.
The total moment tendencies (Eq. 13) are solved using a
trapezoidal rule over a logarithmic radius grid with the ranges

Figure 4. Scatterplot of liquid water content (LWC) calculated from
the input parameters of f1 (a) and f2 (b) vs. drop number concen-
tration. The LWC values are obtained from the statistical moment
of order 3 using the parameters depicted in Table 1 and were calcu-
lated from Eq. (4). The red dots represent the initial conditions for
the experiment case included in Table 4. Only 1 in 100 data points
are shown.

of 1 µm≤ r ≤ 104 µm. The solutions of Eq. (13) are called
the target values. The mean and standard deviation for each
calculated total moment rate are shown in Table 2.

Both input and target values are normalized as follows

xnorm =
x− x

σ
(23)

The input and target values require normalization to facilitate
the work of the optimization algorithm. All nodes in each
layer of the DNN use the MSE as a loss function. The train-
ing procedure for an NN consists of processing a fragment of
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Table 2. Means and standard deviations of total moment tendencies
(target values) for each statistical moment used. The data are cal-
culated from Eq. (13) with the distribution parameters (N1, µ1, σ1,
N2, µ2 and σ2) as input values.

Total moment Mean Standard
order deviation

M0 −0.0021 0.0014
M1 −0.0015 0.0011
M2 −0.0009 0.0006
M4 0.0011 0.0007
M5 0.0024 0.0016

the total training data through the network learning architec-
ture, then determining the prognostic error and the gradient
of the loss function (MSE) back through the network in or-
der to update the weight values. This algorithm is repeated
via an iterative process over all training data until the perfor-
mance index (MSE) is small enough or a predefined number
of passes through all data are completed. One pass through
all training data is known as an epoch. In this case, a maxi-
mum number of 1000 epochs is established, and a minimum
value of 10−7 is considered for the gradient function.

Five DNNs are trained, one for each total moment ten-
dency involved in the formulation of the parameterization
(moment orders ranged from 0 to 5, except the third mo-
ment). A variant of the training process, known as cascade-
forward neural network training, is employed. This enables
the network to establish more precise nonlinear connections
between the data provided but results in a more computa-
tionally expensive training process (Karaca, 2016; Warsito
et al., 2018). The main difference with the standard train-
ing procedure (feed-forward) is that it includes a connection
from the input and every previous layer to following layers
(see Fig. 2). As with feed-forward networks, a two-layer or
more cascade network can learn any finite input–target rela-
tionship arbitrarily well given enough hidden neurons. The
total moment tendencies for the statistical moment of order 3
are not calculated because the collision–coalescence process
does not affect total mass.

Performance (MSE) training records for the total moment
tendencies calculated from Eq. (13) are depicted in Fig. 5.
The speed of convergence is similar in all cases, and all net-
works converged at epoch 1000. This occurs because the gra-
dient value was never below the minimum, so the training
process kept refining the results until it reached the maxi-
mum number of epochs previously defined. Despite that, a
good performance is achieved, with the MSE of the order of
10−4 for all orders of the total moment tendencies in Table 3,
where the best (final) MSE values for each trained DNN are
shown in detail. Since the values of the total moments are
normalized in the DNN model (scale of 100), these values of
MSE are considered to be the indications of high accuracies
for the scale of the problem. Thus, the NN model developed

Figure 5. Performance training records of total moment tendencies
for the moments from order 0 to 5 (the third order is excluded).
The shown data correspond to the total moment tendencies obtained
from the trained neural networks, with input values and reference
targets taken from the validation data set. The performance measure
is the mean square error (MSE).

Table 3. Best performance in the training process of the DNNs. The
performance measures are the mean squared error (MSE) and the
Pearson correlation index. The shown data correspond to the total
moment tendencies obtained from the trained neural networks, with
input values and reference targets taken from the validation data set.

Total moment Best performance Correlation
order (MSE) index

M0 2.59× 10−4 0.9998
M1 3.49× 10−4 0.9998
M2 2.68× 10−4 0.9999
M4 1.80× 10−4 0.9999
M5 2.05× 10−4 0.9998

reproduces the rates of the moments very well following the
formulation of Clark (1976), which is a main objective in this
research.

Regression plots for the trained networks are depicted in
Fig. 6. It is a comparison between the outputs obtained from
evaluating the trained NNs using the test inputs and the tar-
gets from the test data set corresponding to each of the to-
tal moment tendencies obtained from Eq. (13). Minor dif-
ferences can be seen in the graphics, with the trained DNN
models overestimating or underestimating the actual values.
However, good agreement was reached for all trained DNNs,
with the predicted values from the DNN matching the ac-
tual output from the solution of Eq. (13) with a coefficient
of correlation between 0.9998 and 0.9999 in all cases (as
shown in Table 3). The axis ranges of the graphics vary be-
cause the plotted data are non-normalized; thus, there are dif-
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Figure 6. Regression plots for the five DNN trained. It is a compari-
son between the outputs obtained from evaluating the trained neural
networks using the test inputs and the targets from the validation
data set corresponding to each of the total moment tendencies ob-
tained from Eq. (13). The y axis varies for each panel because the
plotted data are non-normalized.

ferent ranges for each of the calculated total moment ten-
dencies. This result means that the rates of the total mo-
ments obtained from Clark’s parameterization of collision–
coalescence (Clark, 1976) are accurately reproduced by the
NN model developed.

Experiments with non-normalized training data were per-
formed, yielding results with MSE at least an order of magni-
tude higher. Those results are not shown in the present article
due to the lower accuracy of the regression outputs.

Neural networks give us a better way to estimate the val-
ues of the integral (13). The neural networks of course do
not replace the computation of integrals, but since they have
the ability to learn and model complex nonlinear functions,
they allow (once trained) the estimation of them efficiently
for values of the parameters (N1, µ1, σ1, N2, µ2 and σ2) for
which it has not been previously calculated.

Before the widespread adoption of machine learning, the
alternative previously used by other authors (Clark, 1976;
Clark and Hall, 1983; Feingold et al., 1998) was the lookup
tables, which are tables that store a list of predefined values
(the moment tendencies in this case). Then, in the context of
our work, the lookup table is a mapping function that relates
the parameters of the basis functions (N1, µ1, σ1,N2, µ2 and
σ2) with the total moment tendencies

(
dNRp

dt

)
.

However, usually, functions computed from lookup tables
have a limited domain. Preferably, we need functions whose
domain is a set with contiguous values. Furthermore, every
time we need to calculate the integral (13), a search algorithm
must be executed in order to retrieve the moment tendency
for a given set of parameters, and some kind of interpolation

Table 4. Initial parameters for the distribution functions of P-DNN.
Each distribution is characterized by a concentration parameter (N ),
expected value (µ) and standard deviation (σ ). The initial param-
eters are shown for the two lognormal distribution functions em-
ployed in the formulation of P-DNN.

Parameter f1 f2

N 190 cm−3 10 cm−3

µ −7.1505 lncm −6.5219 lncm
σ 0.1980 0.1980

will be needed to compute moment tendencies for values of
the parameters for which it has not been calculated.

The advantage of the neural networks is that all the com-
putational effort is dedicated to the training phase. Once we
train the networks, they replace the lookup tables and are able
to map the parameters of the basis functions with total mo-
ment tendencies.

4 WDM6 parameterization and experiment design

An experiment is performed with the objective of illustrating
the behavior of the ML-based parameterized model (P-DNN)
and how it compares with the results of a traditional bulk pa-
rameterization and the reference model (KCE). This experi-
ment should not be interpreted as an evaluation of the overall
behavior of P-DNN but as an example of how it predicts the
DSD and bulk variables. A detailed evaluation of the novel
components of the P-DNN scheme was already carried out
in the previous chapter.

4.1 Initial conditions and experiment design

A simulation covering t = 900 s (15 min) of system evolution
is considered for all models, with a time step of 1t = 0.1 s.
The initial parameters for the distribution functions of the
parameterized model are as shown in Table 4.

The values from Table 4 are well within the parameters es-
tablished in Table 1 and were set following Clark (1976). The
initial spectrum for the KCE was calculated from these pa-
rameters to ensure the same initial conditions for both mod-
els. A 300-point logarithmic equidistant grid was generated
for the integration of the KCE, with radii values in the range
of 0.25 µm≤ r ≤ 2.6×104 µm. Equations (16) and (17) were
used to transform the output of both models to make them
comparable, while the bulk quantities from the KCE were
integrated from the calculated spectra.

4.2 WDM6 parameterization

To better establish the accuracy of the P-DNN, an extra pa-
rameterization was included in the comparison with the ref-
erence solution. The selected parameterization is the WRF
double-moment six-class bulk mode (WDM6) (Lim and
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Hong, 2010), which was chosen to be implemented in a well-
known three-dimensional atmospheric model (WRF). The
collision–coalescence section of that parameterization is ex-
plained in detail in Cohard and Pinty (2000) and treats the
main warm microphysical processes in the context of a bulk
two-moment framework. A scheme of such a type is believed
to be a pragmatic compromise between bulk parameteriza-
tions of precipitation as proposed by Kessler (1969) and very
detailed bin models. Inclusion of a prognostic equation for
the number concentration of raindrops provides better insight
into the growth of large drops, which in turn can only im-
prove the time evolution of the mixing ratios.

The scheme makes use of analytical solutions of the KCE
for accretion and self-collection processes, while autoconver-
sion follows the formulation of Berry and Reinhardt (1974).
This has been done by using the generalized gamma distri-
bution, which enables fine tuning of the DSD shape through
the adjustment of two dispersion parameters. All the tenden-
cies, except the autoconversion of the cloud droplets, are pa-
rameterized based on continuous integrals that encompass
the whole range of drop diameters within each water sub-
stance category (cloud droplets and raindrops). The thresh-
old for considering a change of category is r = 41 µm. Thus,
the gamma distributions employed are truncated in this ra-
dius value. With this method, the treatment of autoconversion
is the weakest link in the scheme because this process acts
in the diameter range in which the fuzzy transition between
cloud droplets and raindrops is hardly compliant with a bi-
modal and spectrally wide (from zero to infinity) representa-
tion of the drops. As neither the KCE model (Bott, 1998a),
the Clark’s parameterization (Clark, 1976) nor the developed
ML model take into account drop breakup, the formulation
of this process included in Cohard and Pinty (2000) has been
left out of the current implementation. This model is referred
to as P-CP2000 in the following sections. For comparison
purposes, all simulations share the same initial conditions.
It should be noted that WDM6, being a conventional two-
moment scheme, is focused on the evolution of the moments
of order 0 and 3 of a truncated gamma distribution function.

5 Discussion of results

The results shown in this section were obtained using the
parameterized model COLNETv1.0.0 (Rodríguez Genó and
Alfonso, 2021a, c, b).

5.1 Spectra comparison

The outputs of this parameterized deep neural network model
(P-DNN) are the updated distribution parameters at every
time step (N1, µ1, σ1, N2, µ2 and σ2). The physical vari-
ables related to the moments of the distributions, such as
mean radius and liquid water content (LWC), are diagnosed
from those parameters. Also, we can calculate the shape and

Figure 7. Mass density functions from P-DNN, P-CP2000 and
KCE. The represented times are 300, 600 and 900 s from top to
bottom. Equation (16) was used to transform the drop number con-
centration spectra from P-DNN to the mass density spectra.

scale of the drop spectrum at any given time by integrating
the distribution functions defined by its parameters.

Figure 7 shows a comparison between the mass density
spectra derived from P-DNN and KCE models for three cho-
sen times (300, 600 and 900 s).

At 300 s (first row of Fig. 7), there is a slow development
of the total spectrum, with a clear mass transfer between
the two modes of the presented models. The parameter-
generated spectrum from P-DNN fits the reference solution
well, with a slight overestimation of the maximum mass in
the second mode. The mean radius of the distributions is well
represented by P-DNN. At 600 and 900 s (second and third
row of Fig. 7), there is a development of a third mode in the
evolution of KCE that is not reproduced by P-DNN, produc-
ing instead a wider second mode representing the mean ra-
dius and mass distribution well. The first mode is accurately
represented at those times. An increase in mean radius can be
observed due to the effect of the collision–coalescence pro-
cess.

The simulation results with P-CP2000 are clearly different
from the others. The first noticeable difference is the exis-
tence of droplets that are smaller than the initial distribution.
This is caused by the fixed distribution parameters employed
in its formulation. The slope parameter is determined by an
analytical expression and evolves with time within certain
limits, but the parameters related to the spectral breadth are
held fixed. For more information please refer to Cohard and
Pinty (2000). Besides that, P-CP2000 performs poorly at all
the represented simulation times when compared with KCE.
It presents a pronounced tendency to go ahead of the KCE,
leading to a faster-than-normal development of larger drops.
Particularly, the mass transfer is very noticeable at the end
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Figure 8. Drop number concentration spectra for P-DNN, P-
CP2000 and KCE. The selected times are 300, 600 and 900 s from
top to bottom. Equation (17) was used to transform the mass density
spectra from KCE to the drop number concentration spectra.

of the simulation. However, the first mode of P-CP2000 does
not decrease proportionally.

Figure 8 shows a comparison between the drop number
concentration spectra derived from P-DNN, P-CP2000 and
KCE for three chosen times (300, 600 and 900 s). Gener-
ally good agreement is seen at all times for P-DNN, with
its concentration values slightly underestimating the results
from KCE. As the collision–coalescence process decreases
the drop number concentration, there is no noticeable in-
crease in the number of drops in the second mode of the
distributions. However, an increase in the mean radius is ob-
served that is consistent with the behavior described in Fig. 7,
where a related mass transfer between the two distribution
functions is seen.

Regarding P-CP2000, its spectra underestimate the KCE,
and the lack of a second mode reaffirms the behavior shown
in Fig. 7. However, being a bulk parameterization, its strong
points are not related to the description of the drop spectra
but to the representation of bulk quantities such as the total
number concentration and mass content of the clouds.

5.2 Bulk quantity comparison

Figure 9 shows a comparison of two main bulk quantities
(total number concentration and mean radius) obtained from
P-DNN, P-CP2000 and KCE. The concentration and mean
radius of KCE were obtained by integrating the drop number
concentration spectra for the corresponding moment order (0
and 1, respectively). As expected, number concentration de-
creases with time due to the coalescence of drops, ranging
from an initial value of 200 to around 160 cm−3 in KCE.
The predicted concentration from P-DNN underestimates the

Figure 9. Drop number concentration (a) and mean radius (b) com-
parison with KCE. The concentration and mean radius of KCE were
obtained by integrating the drop number concentration spectra for
the corresponding moment order (0 and 1, respectively). The data
points are plotted every 60 s.

KCE values throughout most of the simulation time, with the
differences reaching 10 cm−3 at 900 s. The P-CP2000 model
achieves a relatively better representation of drop number
concentration, although it reaches the same differences as P-
DNN by the end of the simulation.

A similar behavior is observed in the mean radius results,
with growth in the drop size consistent with the decreasing
values of the drop number concentration for P-DNN. How-
ever, both P-DNN and P-CP2000 predict the mean radius
rather well (considering that their values are diagnosed in
both models), with differences reaching only 5 µm. This re-
sult is very important for P-DNN, since radius is the indepen-
dent variable in the lognormal distributions that act as basis
functions for this parameterization. In this regard, P-CP2000
performs somehow worse than P-DNN for the mean radius,
with the mean difference almost reaching 1 µm, although it
shows a monotony similar to both the KCE and P-DNN mod-
els.

There is a correlation between these results and those de-
picted in Fig. 8, where concentration decreases with time,
and mean radius changes little throughout the simulation
when considering the total moment of order 1. The differ-
ences reached in this figure are related to the base model from
which the NN model was created. Since the NN model only
reproduces (very accurately) the rates of the moments as in
Clark (1976), an accuracy improvement of the overall param-
eterization should not be expected. Despite that, the P-DNN
model achieves physical consistency and behaves following
the rules of the simulated process, as evidenced in the in-
crease in the mean radius (drop growth) and decrease in the
number concentration (drop coalescence).
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Figure 10. Evolution of drop number concentrationN (a) and liquid
water content (LWC) (b) of the individual distributions that form P-
DNN. The liquid water content of each of the distribution functions
(f1 and f2) was obtained from the corresponding moment (order 3)
calculated from Eq. (4). The combined (total) values of the variables
are also shown and were calculated from Eq. (5).

Figure 10 depicts the evolution of two main bulk quantities
(drop number concentration and liquid water content) for the
individual distributions that form P-DNN (f1 and f2), as well
as the combined (total) values of the variables (calculated as
f1+ f2). Regarding concentration, a decrease in f1 values
is observed due to the coalescence process, while a consis-
tent increase in f2 is also seen. However, the increase in drop
number concentration in f2 is not proportional because there
are fewer bigger drops in the distribution, which are also col-
liding within the same distribution function (the equivalent
of self-collection in bulk parameterizations). This is consis-
tent with Fig. 8, in which the second mode in the concentra-
tion DSD is barely developed after 900 s of simulation time.
However, a general decrease in the total concentration value
represents the theory and observations of the parameterized
process well. Barros et al. (2008) found this same behavior
while revisiting the validity of the experimental results ob-
tained by Low and List (1982), excluding drop breakup.

The liquid water content (LWC) values (diagnosed) are de-
picted only to verify that mass is conserved under the for-
mulation of P-DNN. The LWC of each of the distribution
functions (f1 and f2) was obtained from the corresponding
moment (order 3) calculated from Eq. (4). Effectively, to-
tal mass remains constant during the entire simulation, with
a proportional mass transfer between f1 and f2. These re-
sults demonstrate that the P-DNN parameterization behav-
ior is physically sound, with remarkable consistency between
the different variables calculated, both bulk (N , r and LWC)
and DSD related (concentration and mass density spectra).

Table 5. Total moment mean errors. The percent error is taken rel-
ative to the moments of KCE. The shown data were obtained by
calculating the mean of the percent errors of the entire simulation.

Total moment Mean percent Mean percent
order error P-DNN error P-CP2000

M0 −3.35 −1.27
M1 −2.64 27.05
M2 −1.50 27.04
M4 1.13 9.20
M5 0.72 −60.89

5.3 Total moment errors

An analysis of the predicted total moments was performed
with the objective to further test the precision of P-DNN due
to the importance of the statistical moments in calculating
physical variables such as mean radius and LWC. Table 5
shows the mean percent errors of the total moments predicted
by P-DNN and P-CP2000. The percent error is taken relative
to the moments of KCE. The data were obtained by calcu-
lating the mean of the percent errors of the entire simulation.
The moments for the solution of the KCE were computed
by integrating the reference drop number concentration spec-
tra using Eq. (3), while the total moments from P-DNN and
P-CP2000 were calculated using the predicted distribution
parameters and solving Eq. (5). The defined gamma distri-
bution equations for the moments are used in the case of P-
CP2000. A reasonable degree of accuracy was achieved by
P-DNN, with the mean error never surpassing 4 %. However,
the data show that the total moments of order 0 to 2 are usu-
ally underestimated, while those of order 4 and 5 are slightly
overestimated. This could result in calculations of drop num-
ber concentration values lower than the actual ones, as seen
in Fig. 9. As for P-CP2000, the model is not formulated to
predict individual moments other than the zeroth and third
moments. Thus, the other moments of the distributions are
not well represented, as observed in the mean percent error,
which reaches almost−61 % for the moment of order 5. That
value is a great difference from the zeroth moment, for exam-
ple, whose percent error is only−1.3 %. This result indicates
that P-DNN is adequate to represent the evolution of indi-
vidual moments within certain ranges when compared with
more conventional bulk schemes.

Figure 11 shows the time evolution of the percent error of
the total moments throughout the simulation for P-DNN. The
percent error is taken relative to the moments of KCE. The
moments of KCE were calculated by integrating the refer-
ence drop number concentration spectra using Eq. (3), while
the total moments from P-DNN were calculated using the
predicted distribution parameters to solve Eq. (5). The error
of total moment of order 3 is 0 during the entire simulation
because mass is not affected by the collision–coalescence
process. The total moments from order 0, 1 and 2 overes-
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Figure 11. Time evolution of the errors corresponding to the pre-
dicted moments from P-DNN. The percent error is taken relative
to the moments of KCE. The moments of KCE were calculated by
integrating the reference drop number concentration spectra using
Eq. (3), while the total moments from the P-DNN were calculated
using the predicted distribution parameters to solve Eq. (5).

timate the KCE in the first 300 s of simulation and underesti-
mate them for the rest of the P-DNN run, with the percent er-
ror reaching a minimum value of−8 %. The opposite behav-
ior is observed for the total moments of order 4 and 5; they
initially underestimate the KCE and overestimate it for the
rest of the simulation. However, for these orders the percent
error is usually lower, with a maximum of 4 %. Generally,
P-DNN performs well, with the percent error never reaching
the 10 % threshold. However, further analysis on this topic is
recommended, to improve the accuracy of the parameteriza-
tion.

6 Conclusions

The presented way to simulate the evolution of the droplet
spectra due to collision–coalescence falls within the frame-
work developed by Clark (1976) and Clark and Hall (1983).
Under this approach, a dynamic framework has been estab-
lished in Rodríguez Genó and Alfonso (2021e). A hybrid pa-
rameterization for the process of collision–coalescence based
on the methodology of basis functions employing a linear
combination of two lognormal distributions was formulated
and implemented. All the parameters of the distributions are
derived from the total moment tendencies, which in turn are
calculated by means of five trained deep neural networks. By
doing this, we obtained a parameterized model that deter-
mines the distribution parameters’ evolution and hence the
evolution of the DSD. The physical variables are diagnosed
from the distribution moments. Within the framework of this

parameterized model, there is no artificial classification of
the water substance (cloud droplets or raindrops). Instead,
we consider a full set of distribution parameters for each of
the distribution functions considered in the formulation of
the parameterization in order to describe the DSD in radius
space. This kind of microphysical parameterization allows
the use of an arbitrary number of probability density func-
tions in linear combination to reproduce the drop spectrum.

The novel components of the P-DNN model were intro-
duced and evaluated in Sect. 3. A total of five deep neu-
ral networks were trained to calculate the rates of the to-
tal moments following Clark (1976) using a novel training
approach called a cascade-forward neural network instead
of the traditional sequential networks. By doing this, the
trained NNs were able to accurately reproduce the total mo-
ment tendencies, showing a very high correlation and small
MSE when compared with those calculated with the origi-
nal formulation (Clark, 1976) (see Figs. 5–6 and Table 3).
Thus, the precision and ability of the ML-based method to
reproduce the rates of the total moments due to collision–
coalescence when trained with a sufficient number of data
samples (100 000 combinations) were demonstrated.

One experiment was performed to illustrate the behavior
of the DNN-based parameterization at the initial stages of
precipitation formation. The simulation results from P-DNN
showed good agreement when compared to a reference solu-
tion (KCE) for both the predicted DSD and the bulk quanti-
ties considered. Moreover, the P-DNN model demonstrated
a physically sound behavior, adhering to the theory of the
collision–coalescence process, with overall consistency in
the values of both prognosed and diagnosed variables. With
the development of P-DNN, a parameterization for solving
the entire collision–coalescence process has been developed
(with the exception of drop breakup) using ML methodology.
To the best of the authors’ knowledge, previous attempts at
describing collision–coalescence using the same methodol-
ogy have been focused on super-parameterizations for sub-
grid processes (Brenowitz and Bretherton, 2018) or formula-
tions for specific sub-processes such as autoconversion (Al-
fonso and Zamora, 2021; Loft et al., 2018) and accretion
(Seifert and Rasp, 2020).

For comparison purposes, the bulk parameterization de-
veloped by Cohard and Pinty (2000) (P-CP2000) was also
implemented. According to the comparison with the bulk
model, the main strength of P-DNN is the superior ability
to represent the evolution of the total moments and the shape
of the DSD because of its formulation based on time-varying
distribution parameters. The predicted P-DNN concentration
and mass spectra closely match that of the reference bin
model (KCE), while showing good accuracy at forecasting
bulk variables such as drop number concentration and the
parameter-derived mean radius. Furthermore, total mass is
conserved throughout the entire simulation, which is remark-
able due to the inherent numerical diffusion of the first-order
finite-difference method applied to update the parameters at
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each time step. An analysis of the accuracy of the predicted
total moments of P-DNN was performed, with the percent er-
ror relative to the KCE never exceeding 8 %. However, there
is room for improvement in the calculations of the total mo-
ments. Thus, it is the recommendation of the authors to re-
train the DNNs with a finer resolution in the parameter values
and with a wider range of values in order to cover all possi-
ble combination of parameters. Another recommendation is
the inclusion of the drop breakup process in the formulation,
which is currently not included in the parameterization, de-
spite its influence on the behavior at the edge of raindrop dis-
tributions. In addition, the use of ML eliminated the require-
ment of numerically integrating the total moment tendencies
at each time step, and the use of lookup tables for each pre-
dicted moment is no longer needed under this formulation.

To obtain a full warm cloud model, an extension of this
neural network algorithm applied to condensation is pro-
posed, following the same methodology of series of basis
functions. A parameterization scheme such as this could be
included in regional weather and climate models, as its initial
conditions can be calculated from variables needed by more
traditional bulk models.

Code availability. The current version of COLNET (COL-
NETv1.0.0) used to produce the results presented in this paper is
archived on Zenodo (https://doi.org/10.5281/zenodo.4740061, Ro-
dríguez Genó and Alfonso, 2021a) under the GNU Affero Gen-
eral Public License v3 or later, along with all needed scripts to
run the model. The outputs of the model used to generate the fig-
ures included in the present paper are also included. The scripts
used in the generation of training data sets and for training the
neural networks used in COLNETv1.0.0 can be found on Zenodo
(https://doi.org/10.5281/zenodo.4740129, Rodríguez Genó and Al-
fonso, 2021c), while the codes for plotting the figures are stored at
https://doi.org/10.5281/zenodo.4740184 (Rodríguez Genó and Al-
fonso, 2021b). The original FORTRAN77 code of the explicit bin
model is archived at https://doi.org/10.5281/zenodo.5660185 (Bott,
1998b) and has been licensed (GNU Affero General Public License
v3 or later) and versioned (V1.0.0) with the permission of the au-
thor. The code used for the WDM6 parameterization simulation can
be found on Zenodo (https://doi.org/10.5281/zenodo.5196706, Ro-
dríguez Genó and Alfonso, 2021d). The models and related scripts
were written using MATLAB R2020a, with exception of the explicit
model.

Data availability. The data set was generated using a random num-
ber generator. The data were created following a uniform dis-
tribution, with means, standard deviations and ranges provided
in Table 1. The MATLAB code used for generating the training
data can be found at https://doi.org/10.5281/zenodo.4740129 (Ro-
dríguez Genó and Alfonso, 2021c).
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