Articles | Volume 15, issue 12
https://doi.org/10.5194/gmd-15-4831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4831-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variational inverse modeling within the Community Inversion Framework v1.1 to assimilate δ13C(CH4) and CH4: a case study with model LMDz-SACS
Joël Thanwerdas
CORRESPONDING AUTHOR
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France
Marielle Saunois
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France
Antoine Berchet
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France
Isabelle Pison
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France
Bruce H. Vaughn
INSTAAR, University of Colorado, Boulder, Boulder, CO, USA
Sylvia Englund Michel
INSTAAR, University of Colorado, Boulder, Boulder, CO, USA
Philippe Bousquet
Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, IPSL, Gif-sur-Yvette, France
Related authors
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, and Philippe Bousquet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1326, https://doi.org/10.5194/egusphere-2023-1326, 2023
Short summary
Short summary
We investigate the causes of the renewed growth of atmospheric methane (CH4) after 2007 using inverse modelling. We use the additional information provided by observations of CH4 isotopic compositions to better differentiate between the emission categories. Accounting for the large uncertainties in source signatures, our results suggest that the post-2007 increase in atmospheric CH4 was caused by similar increases in emissions from 1) fossil fuels and 2) agriculture and waste.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, Joël Thanwerdas, Adrien Martinez, Jean-Daniel Paris, Toshinobu Machida, Motoki Sasakawa, Douglas E. J. Worthy, Xin Lan, Rona L. Thompson, Espen Sollum, and Mikhail Arshinov
Atmos. Chem. Phys., 23, 6457–6485, https://doi.org/10.5194/acp-23-6457-2023, https://doi.org/10.5194/acp-23-6457-2023, 2023
Short summary
Short summary
Here, an inverse modelling approach is applied to estimate CH4 sources and sinks in the Arctic from 2008 to 2019. We study the magnitude, seasonal patterns and trends from different sources during recent years. We also assess how the current observation network helps to constrain fluxes. We find that constraints are only significant for North America and, to a lesser extent, West Siberia, where the observation network is relatively dense. We find no clear trend over the period of inversion.
Joël Thanwerdas, Marielle Saunois, Isabelle Pison, Didier Hauglustaine, Antoine Berchet, Bianca Baier, Colm Sweeney, and Philippe Bousquet
Atmos. Chem. Phys., 22, 15489–15508, https://doi.org/10.5194/acp-22-15489-2022, https://doi.org/10.5194/acp-22-15489-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) concentrations have been rising since 2007, resulting from an imbalance between CH4 sources and sinks. The CH4 budget is generally estimated through top-down approaches using CH4 and δ13C(CH4) observations as constraints. The oxidation by chlorine (Cl) contributes little to the total oxidation of CH4 but strongly influences δ13C(CH4). Here, we compare multiple recent Cl fields and quantify the influence of Cl concentrations on CH4, δ13C(CH4), and CH4 budget estimates.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Antoine Berchet, Isabelle Pison, Patrick M. Crill, Brett Thornton, Philippe Bousquet, Thibaud Thonat, Thomas Hocking, Joël Thanwerdas, Jean-Daniel Paris, and Marielle Saunois
Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, https://doi.org/10.5194/acp-20-3987-2020, 2020
Short summary
Short summary
Methane isotopes in the atmosphere can help us differentiate between emission processes. A large variety of natural and anthropogenic emission types are active in the Arctic and are unsatisfactorily understood and documented up to now. A ship-based campaign was carried out in summer 2014, providing a unique dataset of isotopic measurements in the Arctic Ocean. Using a chemistry-transport model, we link these measurements to circumpolar emissions and retrieve information about their signature.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, Didier Hauglustaine, Michel Ramonet, Cyril Crevoisier, Bianca Baier, Colm Sweeney, and Philippe Bousquet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-925, https://doi.org/10.5194/acp-2019-925, 2019
Revised manuscript not accepted
Short summary
Short summary
Oxidation by the hydroxyl radical (OH) is the dominant atmospheric sink for methane, contributing to approximately 90 % of the total methane loss. Chemical losses by reaction with atomic oxygen (O1D) and chlorine radicals (Cl) in the stratosphere are other sinks, contributing about 3 % to the total methane destruction. We assess here the impact of atomic Cl on atmospheric methane mixing ratios, methane atmospheric loss and atmospheric isotopic δ13C-CH4 values.
Sara M. Defratyka, James L. France, Rebecca E. Fisher, Dave Lowry, Julianne M. Fernandez, Semra Bakkaloglu, Camille Yver-Kwok, Jean-Daniel Paris, Philippe Bousquet, Tim Arnold, Chris Rennick, Jon Helmore, Nigel Yarrow, and Euan G. Nisbet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1490, https://doi.org/10.5194/egusphere-2023-1490, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We are focused on verification of δ13CH4 measurements in near-source conditions and we have provided an insight into the impact of chosen calculation methods for determined isotopic signatures. Our study offers a step forward for establishing an unified, robust, and reliable analytical technique to determine δ13CH4 of methane sources. Our recommended analytical approach reduces biases and uncertainties coming from measurement conditions, data clustering and various available fitting methods.
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, and Philippe Bousquet
EGUsphere, https://doi.org/10.5194/egusphere-2023-1326, https://doi.org/10.5194/egusphere-2023-1326, 2023
Short summary
Short summary
We investigate the causes of the renewed growth of atmospheric methane (CH4) after 2007 using inverse modelling. We use the additional information provided by observations of CH4 isotopic compositions to better differentiate between the emission categories. Accounting for the large uncertainties in source signatures, our results suggest that the post-2007 increase in atmospheric CH4 was caused by similar increases in emissions from 1) fossil fuels and 2) agriculture and waste.
Alice Drinkwater, Paul I. Palmer, Liang Feng, Tim Arnold, Xin Lan, Sylvia E. Michel, Robert Parker, and Hartmut Boesch
Atmos. Chem. Phys., 23, 8429–8452, https://doi.org/10.5194/acp-23-8429-2023, https://doi.org/10.5194/acp-23-8429-2023, 2023
Short summary
Short summary
Changes in atmospheric methane over the last few decades are largely unexplained. Previous studies have proposed different hypotheses to explain short-term changes in atmospheric methane. We interpret observed changes in atmospheric methane and stable isotope source signatures (2004–2020). We argue that changes over this period are part of a large-scale shift from high-northern-latitude thermogenic energy emissions to tropical biogenic emissions, particularly from North Africa and South America.
Yunsong Liu, Jean-Daniel Paris, Gregoire Broquet, Violeta Bescós Roy, Tania Meixus Fernandez, Rasmus Andersen, Andrés Russu Berlanga, Emil Christensen, Yann Courtois, Sebastian Dominok, Corentin Dussenne, Travis Eckert, Andrew Finlayson, Aurora Fernández de la Fuente, Catlin Gunn, Ram Hashmonay, Juliano Grigoleto Hayashi, Jonathan Helmore, Soeren Honsel, Fabrizio Innocenti, Matti Irjala, Torgrim Log, Cristina Lopez, Francisco Cortés Martínez, Jonathan Martinez, Adrien Massardier, Helle Gottschalk Nygaard, Paula Agregan Reboredo, Elodie Rousset, Axel Scherello, Matthias Ulbricht, Damien Weidmann, Oliver Williams, Nigel Yarrow, Murès Zarea, Robert Ziegler, Jean Sciare, Mihalis Vrekoussis, and Philippe Bousquet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-97, https://doi.org/10.5194/amt-2023-97, 2023
Preprint under review for AMT
Short summary
Short summary
We investigated the performance of ten methane emissions quantification techniques with a blind-controlled release experiment at an inerted natural gas compressor station. We reported their respective strengths, weaknesses, and potential complementarity depending on the emission rates and atmospheric conditions. Additionally, we also assess the dependence of the emission quantification performance against key parameters such as wind speed, deployment constraints and measurement duration.
Sophie Wittig, Antoine Berchet, Isabelle Pison, Marielle Saunois, Joël Thanwerdas, Adrien Martinez, Jean-Daniel Paris, Toshinobu Machida, Motoki Sasakawa, Douglas E. J. Worthy, Xin Lan, Rona L. Thompson, Espen Sollum, and Mikhail Arshinov
Atmos. Chem. Phys., 23, 6457–6485, https://doi.org/10.5194/acp-23-6457-2023, https://doi.org/10.5194/acp-23-6457-2023, 2023
Short summary
Short summary
Here, an inverse modelling approach is applied to estimate CH4 sources and sinks in the Arctic from 2008 to 2019. We study the magnitude, seasonal patterns and trends from different sources during recent years. We also assess how the current observation network helps to constrain fluxes. We find that constraints are only significant for North America and, to a lesser extent, West Siberia, where the observation network is relatively dense. We find no clear trend over the period of inversion.
Jinsol Kim, John B. Miller, Charles E. Miller, Scott J. Lehman, Sylvia E. Michel, Vineet Yadav, Nick E. Rollins, and William M. Berelson
EGUsphere, https://doi.org/10.5194/egusphere-2023-957, https://doi.org/10.5194/egusphere-2023-957, 2023
Short summary
Short summary
In this study, we present the partitioning of CO2 signals from biogenic, petroleum and natural gas sources by combining CO, δ13CO2, and Δ14CO2 measurements. Using measurements from flask air samples at three sites in the greater Los Angels region, we find larger and positive contributions of biogenic signals in winter and smaller and negative contributions in summer. Largest contribution of natural gas combustion generally occurs in summer.
Douglas E. J. Worthy, Michele K. Rauh, Lin Huang, Felix R. Vogel, Alina Chivulescu, Kenneth A. Masarie, Ray L. Langenfelds, Paul B. Krummel, Colin E. Allison, Andrew M. Crotwell, Monica Madronich, Gabrielle Pétron, Ingeborg Levin, Samuel Hammer, Sylvia Michel, Michel Ramonet, Martina Schmidt, Armin Jordan, Heiko Moossen, Michael Rothe, Ralph Keeling, and Eric J. Morgan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-99, https://doi.org/10.5194/amt-2023-99, 2023
Revised manuscript under review for AMT
Short summary
Short summary
Network compatibility is important for inferring greenhouse gas fluxes at global or regional scales. This study is the first assessment of the measurement agreement among seven individual programs within the World Meteorological Organization community. It compares co-located flask air measurements at the Alert observatory in Canada over a 17-year period. The results provide stronger confidence in the uncertainty estimation while using those datasets in various data interpretation applications.
Ana Maria Roxana Petrescu, Chunjing Qiu, Matthew J. McGrath, Philippe Peylin, Glen P. Peters, Philippe Ciais, Rona L. Thompson, Aki Tsuruta, Dominik Brunner, Matthias Kuhnert, Bradley Matthews, Paul I. Palmer, Oksana Tarasova, Pierre Regnier, Ronny Lauerwald, David Bastviken, Lena Höglund-Isaksson, Wilfried Winiwarter, Giuseppe Etiope, Tuula Aalto, Gianpaolo Balsamo, Vladislav Bastrikov, Antoine Berchet, Patrick Brockmann, Giancarlo Ciotoli, Giulia Conchedda, Monica Crippa, Frank Dentener, Christine D. Groot Zwaaftink, Diego Guizzardi, Dirk Günther, Jean-Matthieu Haussaire, Sander Houweling, Greet Janssens-Maenhout, Massaer Kouyate, Adrian Leip, Antti Leppänen, Emanuele Lugato, Manon Maisonnier, Alistair J. Manning, Tiina Markkanen, Joe McNorton, Marilena Muntean, Gabriel D. Oreggioni, Prabir K. Patra, Lucia Perugini, Isabelle Pison, Maarit T. Raivonen, Marielle Saunois, Arjo J. Segers, Pete Smith, Efisio Solazzo, Hanqin Tian, Francesco N. Tubiello, Timo Vesala, Guido R. van der Werf, Chris Wilson, and Sönke Zaehle
Earth Syst. Sci. Data, 15, 1197–1268, https://doi.org/10.5194/essd-15-1197-2023, https://doi.org/10.5194/essd-15-1197-2023, 2023
Short summary
Short summary
This study updates the state-of-the-art scientific overview of CH4 and N2O emissions in the EU27 and UK in Petrescu et al. (2021a). Yearly updates are needed to improve the different respective approaches and to inform on the development of formal verification systems. It integrates the most recent emission inventories, process-based model and regional/global inversions, comparing them with UNFCCC national GHG inventories, in support to policy to facilitate real-time verification procedures.
Clément Narbaud, Jean-Daniel Paris, Sophie Wittig, Antoine Berchet, Marielle Saunois, Philippe Nédélec, Boris D. Belan, Mikhail Y. Arshinov, Sergei B. Belan, Denis Davydov, Alexander Fofonov, and Artem Kozlov
Atmos. Chem. Phys., 23, 2293–2314, https://doi.org/10.5194/acp-23-2293-2023, https://doi.org/10.5194/acp-23-2293-2023, 2023
Short summary
Short summary
We measured CH4 and CO2 from aircraft over the Russian Arctic. Analyzing our data with the Lagrangian model FLEXPART, we find a sharp east–west gradient in atmospheric composition. Western Siberia is influenced by strong wetland CH4 emissions, deep CO2 gradient from biospheric uptake, and long-range transport from Europe and North America. Eastern flights document less variability. Over the Arctic Ocean, we find a small influence from marine CH4 emissions compatible with reasonable inventories.
Matthew Joseph McGrath, Ana Maria Roxana Petrescu, Philippe Peylin, Robbie M. Andrew, Bradley Matthews, Frank Dentener, Juraj Balkovič, Vladislav Bastrikov, Meike Becker, Gregoire Broquet, Philippe Ciais, Audrey Fortems, Raphael Ganzenmüller, Giacomo Grassi, Ian Harris, Matthew Jones, Juergen Knauer, Matthias Kuhnert, Guillaume Monteil, Saqr Munassar, Paul I. Palmer, Glen P. Peters, Chunjing Qiu, Mart-Jan Schelhaas, Oksana Tarasova, Matteo Vizzarri, Karina Winkler, Gianpaolo Balsamo, Antoine Berchet, Peter Briggs, Patrick Brockmann, Frédéric Chevallier, Giulia Conchedda, Monica Crippa, Stijn Dellaert, Hugo A. C. Denier van der Gon, Sara Filipek, Pierre Friedlingstein, Richard Fuchs, Michael Gauss, Christoph Gerbig, Diego Guizzardi, Dirk Günther, Richard A. Houghton, Greet Janssens-Maenhout, Ronny Lauerwald, Bas Lerink, Ingrid T. Luijkx, Géraud Moulas, Marilena Muntean, Gert-Jan Nabuurs, Aurélie Paquirissamy, Lucia Perugini, Wouter Peters, Roberto Pilli, Julia Pongratz, Pierre Regnier, Marko Scholze, Yusuf Serengil, Pete Smith, Efisio Solazzo, Rona L. Thompson, Francesco N. Tubiello, Timo Vesala, and Sophia Walther
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-412, https://doi.org/10.5194/essd-2022-412, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Accurate estimation of fluxes of carbon dioxide from the land surface is essential to understanding future impacts of greenhouse gas emissions on the climate system. A wide variety of methods currently exist to estimate these sources and sinks. We are continuing work to develop annual comparisons of these diverse methods in order to clarify what they all actually calculate and resolve apparent disagreement, in addition to highlighting opportunities for increased understanding.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, and Bo Zheng
Atmos. Chem. Phys., 23, 789–807, https://doi.org/10.5194/acp-23-789-2023, https://doi.org/10.5194/acp-23-789-2023, 2023
Short summary
Short summary
The large uncertainties in OH simulated by atmospheric chemistry models hinder accurate estimates of CH4 chemical loss through the bottom-up method. This study presents a new approach based on OH precursor observations and a chemical box model to improve the tropospheric OH distributions simulated by atmospheric chemistry models. Through this approach, both the global OH burden and the corresponding methane chemical loss reach consistency with the top-down method based on MCF inversions.
Joël Thanwerdas, Marielle Saunois, Isabelle Pison, Didier Hauglustaine, Antoine Berchet, Bianca Baier, Colm Sweeney, and Philippe Bousquet
Atmos. Chem. Phys., 22, 15489–15508, https://doi.org/10.5194/acp-22-15489-2022, https://doi.org/10.5194/acp-22-15489-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) concentrations have been rising since 2007, resulting from an imbalance between CH4 sources and sinks. The CH4 budget is generally estimated through top-down approaches using CH4 and δ13C(CH4) observations as constraints. The oxidation by chlorine (Cl) contributes little to the total oxidation of CH4 but strongly influences δ13C(CH4). Here, we compare multiple recent Cl fields and quantify the influence of Cl concentrations on CH4, δ13C(CH4), and CH4 budget estimates.
Sourish Basu, Xin Lan, Edward Dlugokencky, Sylvia Michel, Stefan Schwietzke, John B. Miller, Lori Bruhwiler, Youmi Oh, Pieter P. Tans, Francesco Apadula, Luciana V. Gatti, Armin Jordan, Jaroslaw Necki, Motoki Sasakawa, Shinji Morimoto, Tatiana Di Iorio, Haeyoung Lee, Jgor Arduini, and Giovanni Manca
Atmos. Chem. Phys., 22, 15351–15377, https://doi.org/10.5194/acp-22-15351-2022, https://doi.org/10.5194/acp-22-15351-2022, 2022
Short summary
Short summary
Atmospheric methane (CH4) has been growing steadily since 2007 for reasons that are not well understood. Here we determine sources of methane using a technique informed by atmospheric measurements of CH4 and its isotopologue 13CH4. Measurements of 13CH4 provide for better separation of microbial, fossil, and fire sources of methane than CH4 measurements alone. Compared to previous assessments such as the Global Carbon Project, we find a larger microbial contribution to the post-2007 increase.
Elise Potier, Grégoire Broquet, Yilong Wang, Diego Santaren, Antoine Berchet, Isabelle Pison, Julia Marshall, Philippe Ciais, François-Marie Bréon, and Frédéric Chevallier
Atmos. Meas. Tech., 15, 5261–5288, https://doi.org/10.5194/amt-15-5261-2022, https://doi.org/10.5194/amt-15-5261-2022, 2022
Short summary
Short summary
Atmospheric inversion at local–regional scales over Europe and pseudo-data assimilation are used to evaluate how CO2 and 14CO2 ground-based measurement networks could complement satellite CO2 imagers to monitor fossil fuel (FF) CO2 emissions. This combination significantly improves precision in the FF emission estimates in areas with a dense network but does not strongly support the separation of the FF from the biogenic signals or the spatio-temporal extrapolation of the satellite information.
Yunsong Liu, Jean-Daniel Paris, Mihalis Vrekoussis, Panayiota Antoniou, Christos Constantinides, Maximilien Desservettaz, Christos Keleshis, Olivier Laurent, Andreas Leonidou, Carole Philippon, Panagiotis Vouterakos, Pierre-Yves Quéhé, Philippe Bousquet, and Jean Sciare
Atmos. Meas. Tech., 15, 4431–4442, https://doi.org/10.5194/amt-15-4431-2022, https://doi.org/10.5194/amt-15-4431-2022, 2022
Short summary
Short summary
This paper details laboratory-based and field developments of a cost-effective and compacted UAV CO2 sensor system to address the challenge of measuring CO2 with sufficient precision and acquisition frequency. We assess its performance extensively through laboratory and field tests and provide a case study in an urban area (Nicosia, Cyprus). We therefore expect that this portable system will be widely used for measuring CO2 emission and distribution in natural or urban environments.
Zhu Deng, Philippe Ciais, Zitely A. Tzompa-Sosa, Marielle Saunois, Chunjing Qiu, Chang Tan, Taochun Sun, Piyu Ke, Yanan Cui, Katsumasa Tanaka, Xin Lin, Rona L. Thompson, Hanqin Tian, Yuanzhi Yao, Yuanyuan Huang, Ronny Lauerwald, Atul K. Jain, Xiaoming Xu, Ana Bastos, Stephen Sitch, Paul I. Palmer, Thomas Lauvaux, Alexandre d'Aspremont, Clément Giron, Antoine Benoit, Benjamin Poulter, Jinfeng Chang, Ana Maria Roxana Petrescu, Steven J. Davis, Zhu Liu, Giacomo Grassi, Clément Albergel, Francesco N. Tubiello, Lucia Perugini, Wouter Peters, and Frédéric Chevallier
Earth Syst. Sci. Data, 14, 1639–1675, https://doi.org/10.5194/essd-14-1639-2022, https://doi.org/10.5194/essd-14-1639-2022, 2022
Short summary
Short summary
In support of the global stocktake of the Paris Agreement on climate change, we proposed a method for reconciling the results of global atmospheric inversions with data from UNFCCC national greenhouse gas inventories (NGHGIs). Here, based on a new global harmonized database that we compiled from the UNFCCC NGHGIs and a comprehensive framework presented in this study to process the results of inversions, we compared their results of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O).
Eric Saboya, Giulia Zazzeri, Heather Graven, Alistair J. Manning, and Sylvia Englund Michel
Atmos. Chem. Phys., 22, 3595–3613, https://doi.org/10.5194/acp-22-3595-2022, https://doi.org/10.5194/acp-22-3595-2022, 2022
Short summary
Short summary
Continuous measurements of atmospheric methane concentrations and its carbon-13 isotope have been made in central London since early 2018. These measurements were used to evaluate methane emissions reported in global and UK-specific emission inventories for the London area. Compared to atmospheric methane measurements from March 2018 to October 2020, both inventories are under-reporting natural gas leakage for the London area.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Kevin S. Rozmiarek, Bruce H. Vaughn, Tyler R. Jones, Valerie Morris, William B. Skorski, Abigail G. Hughes, Jack Elston, Sonja Wahl, Anne-Katrine Faber, and Hans Christian Steen-Larsen
Atmos. Meas. Tech., 14, 7045–7067, https://doi.org/10.5194/amt-14-7045-2021, https://doi.org/10.5194/amt-14-7045-2021, 2021
Short summary
Short summary
We have designed an unmanned aerial vehicle (UAV) sampling platform for operation in extreme polar environments that is capable of sampling atmospheric water vapor for subsequent measurement of water isotopes. During flight, we measure location, temperature, humidity, and pressure to determine the height of the planetary boundary layer (PBL) using algorithms, allowing for strategic decision-making by the pilot to collect samples in glass flasks contained in the nose cone of the UAV.
Jan C. Minx, William F. Lamb, Robbie M. Andrew, Josep G. Canadell, Monica Crippa, Niklas Döbbeling, Piers M. Forster, Diego Guizzardi, Jos Olivier, Glen P. Peters, Julia Pongratz, Andy Reisinger, Matthew Rigby, Marielle Saunois, Steven J. Smith, Efisio Solazzo, and Hanqin Tian
Earth Syst. Sci. Data, 13, 5213–5252, https://doi.org/10.5194/essd-13-5213-2021, https://doi.org/10.5194/essd-13-5213-2021, 2021
Short summary
Short summary
We provide a synthetic dataset on anthropogenic greenhouse gas (GHG) emissions for 1970–2018 with a fast-track extension to 2019. We show that GHG emissions continued to rise across all gases and sectors. Annual average GHG emissions growth slowed, but absolute decadal increases have never been higher in human history. We identify a number of data gaps and data quality issues in global inventories and highlight their importance for monitoring progress towards international climate goals.
Malika Menoud, Carina van der Veen, Jaroslaw Necki, Jakub Bartyzel, Barbara Szénási, Mila Stanisavljević, Isabelle Pison, Philippe Bousquet, and Thomas Röckmann
Atmos. Chem. Phys., 21, 13167–13185, https://doi.org/10.5194/acp-21-13167-2021, https://doi.org/10.5194/acp-21-13167-2021, 2021
Short summary
Short summary
Using measurements of methane isotopes in ambient air and a 3D atmospheric transport model, in Krakow, Poland, we mainly detected fossil-fuel-related sources, coming from coal mining in Silesia and from the use of natural gas in the city. Emission inventories report large emissions from coal mine activity in Silesia, which is in agreement with our measurements. However, methane sources in the urban area of Krakow related to the use of fossil fuels might be underestimated in the inventories.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Adrien Berchet, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine D. Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, https://doi.org/10.5194/gmd-14-5331-2021, 2021
Short summary
Short summary
We present here the Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source Python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Yi Yin, Frederic Chevallier, Philippe Ciais, Philippe Bousquet, Marielle Saunois, Bo Zheng, John Worden, A. Anthony Bloom, Robert J. Parker, Daniel J. Jacob, Edward J. Dlugokencky, and Christian Frankenberg
Atmos. Chem. Phys., 21, 12631–12647, https://doi.org/10.5194/acp-21-12631-2021, https://doi.org/10.5194/acp-21-12631-2021, 2021
Short summary
Short summary
The growth of methane, the second-most important anthropogenic greenhouse gas after carbon dioxide, has been accelerating in recent years. Using an ensemble of multi-tracer atmospheric inversions constrained by surface or satellite observations, we show that global methane emissions increased by nearly 1 % per year from 2010–2017, with leading contributions from the tropics and East Asia.
Jean-Daniel Paris, Aurélie Riandet, Efstratios Bourtsoukidis, Marc Delmotte, Antoine Berchet, Jonathan Williams, Lisa Ernle, Ivan Tadic, Hartwig Harder, and Jos Lelieveld
Atmos. Chem. Phys., 21, 12443–12462, https://doi.org/10.5194/acp-21-12443-2021, https://doi.org/10.5194/acp-21-12443-2021, 2021
Short summary
Short summary
We measured atmospheric methane and CO2 by ship in the Middle East. We probe the origin of methane with a combination of light alkane measurements and modeling. We find strong influence from nearby oil and gas production over the Arabian Gulf. Comparing our data to inventories indicates that inventories overestimate sources from the upstream gas industry but underestimate emissions from oil extraction and processing. The Red Sea was under a complex mixture of sources due to human activity.
Sara M. Defratyka, Jean-Daniel Paris, Camille Yver-Kwok, Daniel Loeb, James France, Jon Helmore, Nigel Yarrow, Valérie Gros, and Philippe Bousquet
Atmos. Meas. Tech., 14, 5049–5069, https://doi.org/10.5194/amt-14-5049-2021, https://doi.org/10.5194/amt-14-5049-2021, 2021
Short summary
Short summary
We consider the possibility of using the CRDS Picarro G2201-i instrument, originally designed for isotopic CH4 and CO2, for measurements of ethane : methane in near-source conditions. The work involved laboratory tests, a controlled release experiment and mobile measurements. We show the potential of determining ethane : methane with 50 ppb ethane uncertainty. The instrument can correctly estimate the ratio in CH4 enhancements of 1 ppm and more, as can be found at strongly emitting sites.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Hanqin Tian, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Albertus Johannes Dolman
Earth Syst. Sci. Data, 13, 2307–2362, https://doi.org/10.5194/essd-13-2307-2021, https://doi.org/10.5194/essd-13-2307-2021, 2021
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrate recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Audrey Fortems-Cheiney, Isabelle Pison, Grégoire Broquet, Gaëlle Dufour, Antoine Berchet, Elise Potier, Adriana Coman, Guillaume Siour, and Lorenzo Costantino
Geosci. Model Dev., 14, 2939–2957, https://doi.org/10.5194/gmd-14-2939-2021, https://doi.org/10.5194/gmd-14-2939-2021, 2021
Short summary
Short summary
Up-to-date and accurate emission inventories for air pollutants are essential for understanding their role in the formation of tropospheric ozone and particulate matter, for anticipating pollution peaks and for identifying the key drivers that could help mitigate their emissions. Complementarily with bottom-up inventories, the system described here aims at updating and improving the knowledge on the high spatiotemporal variability of emissions of air pollutants.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Makoto Deushi, Patrick Jöckel, Douglas Kinnison, Ole Kirner, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-2020, https://doi.org/10.5194/acp-20-13011-2020, 2020
Short summary
Short summary
Decadal trends and variations in OH are critical for understanding atmospheric CH4 evolution. We quantify the impacts of OH trends and variations on the CH4 budget by conducting CH4 inversions on a decadal scale with an ensemble of OH fields. We find the negative OH anomalies due to enhanced fires can reduce the optimized CH4 emissions by up to 10 Tg yr−1 during El Niño years and the positive OH trend from 1986 to 2010 results in a ∼ 23 Tg yr−1 additional increase in optimized CH4 emissions.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Edward J. Dlugokencky, Ray L. Langenfelds, Michel Ramonet, Doug Worthy, and Bo Zheng
Atmos. Chem. Phys., 20, 9525–9546, https://doi.org/10.5194/acp-20-9525-2020, https://doi.org/10.5194/acp-20-9525-2020, 2020
Short summary
Short summary
The hydroxyl radical (OH), which is the dominant sink of methane (CH4), plays a key role in closing the global methane budget. This study quantifies how uncertainties in the hydroxyl radical can influence top-down estimates of CH4 emissions based on 4D Bayesian inversions with different OH fields and the same surface observations. We show that uncertainties in CH4 emissions driven by different OH fields are comparable to the uncertainties given by current bottom-up and top-down estimations.
Abigail G. Hughes, Tyler R. Jones, Bo M. Vinther, Vasileios Gkinis, C. Max Stevens, Valerie Morris, Bruce H. Vaughn, Christian Holme, Bradley R. Markle, and James W. C. White
Clim. Past, 16, 1369–1386, https://doi.org/10.5194/cp-16-1369-2020, https://doi.org/10.5194/cp-16-1369-2020, 2020
Short summary
Short summary
An ice core drilled on the Renland ice cap (RECAP) in east-central Greenland contains a continuous climate record dating through the last glacial period. Here we present the water isotope record for the Holocene, in which high-resolution climate information is retained for the last 8 kyr. We find that the RECAP water isotope record exhibits seasonal and decadal variability which may reflect sea surface conditions and regional climate variability.
Dipayan Paul, Hubertus A. Scheeren, Henk G. Jansen, Bert A. M. Kers, John B. Miller, Andrew M. Crotwell, Sylvia E. Michel, Luciana V. Gatti, Lucas G. Domingues, Caio S. C. Correia, Raiane A. L. Neves, Harro A. J. Meijer, and Wouter Peters
Atmos. Meas. Tech., 13, 4051–4064, https://doi.org/10.5194/amt-13-4051-2020, https://doi.org/10.5194/amt-13-4051-2020, 2020
Short summary
Short summary
For reliable measurements of CO2 mole fractions and its stable isotope composition in air samples, one needs to carefully dry them during collection. Here we describe evaluation of a portable, consumable-free and power-free Nafion-based drying system that is currently being used for sample collection over the Amazon. Laboratory tests indicate that this Nafion-based system does not influence the mole fraction measurements of CH4, CO, N2O, SF6, and CO2 and the stable isotope composition of CO2.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Sarah A. Strode, James S. Wang, Michael Manyin, Bryan Duncan, Ryan Hossaini, Christoph A. Keller, Sylvia E. Michel, and James W. C. White
Atmos. Chem. Phys., 20, 8405–8419, https://doi.org/10.5194/acp-20-8405-2020, https://doi.org/10.5194/acp-20-8405-2020, 2020
Short summary
Short summary
The 13C : 12C isotopic ratio in methane (CH4) provides information about CH4 sources, but loss of CH4 by reaction with OH and chlorine (Cl) also affects this ratio. Tropospheric Cl provides a small and uncertain sink for CH4 but has a large effect on its isotopic ratio. We use the GEOS model with several different Cl fields to test the sensitivity of methane's isotopic composition to tropospheric Cl. Cl affects the global mean, hemispheric gradient, and seasonal cycle of the isotopic ratio.
Marielle Saunois, Ann R. Stavert, Ben Poulter, Philippe Bousquet, Josep G. Canadell, Robert B. Jackson, Peter A. Raymond, Edward J. Dlugokencky, Sander Houweling, Prabir K. Patra, Philippe Ciais, Vivek K. Arora, David Bastviken, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Kimberly M. Carlson, Mark Carrol, Simona Castaldi, Naveen Chandra, Cyril Crevoisier, Patrick M. Crill, Kristofer Covey, Charles L. Curry, Giuseppe Etiope, Christian Frankenberg, Nicola Gedney, Michaela I. Hegglin, Lena Höglund-Isaksson, Gustaf Hugelius, Misa Ishizawa, Akihiko Ito, Greet Janssens-Maenhout, Katherine M. Jensen, Fortunat Joos, Thomas Kleinen, Paul B. Krummel, Ray L. Langenfelds, Goulven G. Laruelle, Licheng Liu, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Joe McNorton, Paul A. Miller, Joe R. Melton, Isamu Morino, Jurek Müller, Fabiola Murguia-Flores, Vaishali Naik, Yosuke Niwa, Sergio Noce, Simon O'Doherty, Robert J. Parker, Changhui Peng, Shushi Peng, Glen P. Peters, Catherine Prigent, Ronald Prinn, Michel Ramonet, Pierre Regnier, William J. Riley, Judith A. Rosentreter, Arjo Segers, Isobel J. Simpson, Hao Shi, Steven J. Smith, L. Paul Steele, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Francesco N. Tubiello, Aki Tsuruta, Nicolas Viovy, Apostolos Voulgarakis, Thomas S. Weber, Michiel van Weele, Guido R. van der Werf, Ray F. Weiss, Doug Worthy, Debra Wunch, Yi Yin, Yukio Yoshida, Wenxin Zhang, Zhen Zhang, Yuanhong Zhao, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, https://doi.org/10.5194/essd-12-1561-2020, 2020
Short summary
Short summary
Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. We have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. This is the second version of the review dedicated to the decadal methane budget, integrating results of top-down and bottom-up estimates.
Antoine Berchet, Isabelle Pison, Patrick M. Crill, Brett Thornton, Philippe Bousquet, Thibaud Thonat, Thomas Hocking, Joël Thanwerdas, Jean-Daniel Paris, and Marielle Saunois
Atmos. Chem. Phys., 20, 3987–3998, https://doi.org/10.5194/acp-20-3987-2020, https://doi.org/10.5194/acp-20-3987-2020, 2020
Short summary
Short summary
Methane isotopes in the atmosphere can help us differentiate between emission processes. A large variety of natural and anthropogenic emission types are active in the Arctic and are unsatisfactorily understood and documented up to now. A ship-based campaign was carried out in summer 2014, providing a unique dataset of isotopic measurements in the Arctic Ocean. Using a chemistry-transport model, we link these measurements to circumpolar emissions and retrieve information about their signature.
Yuanhong Zhao, Marielle Saunois, Philippe Bousquet, Xin Lin, Antoine Berchet, Michaela I. Hegglin, Josep G. Canadell, Robert B. Jackson, Didier A. Hauglustaine, Sophie Szopa, Ann R. Stavert, Nathan Luke Abraham, Alex T. Archibald, Slimane Bekki, Makoto Deushi, Patrick Jöckel, Béatrice Josse, Douglas Kinnison, Ole Kirner, Virginie Marécal, Fiona M. O'Connor, David A. Plummer, Laura E. Revell, Eugene Rozanov, Andrea Stenke, Sarah Strode, Simone Tilmes, Edward J. Dlugokencky, and Bo Zheng
Atmos. Chem. Phys., 19, 13701–13723, https://doi.org/10.5194/acp-19-13701-2019, https://doi.org/10.5194/acp-19-13701-2019, 2019
Short summary
Short summary
The role of hydroxyl radical changes in methane trends is debated, hindering our understanding of the methane cycle. This study quantifies how uncertainties in the hydroxyl radical may influence methane abundance in the atmosphere based on the inter-model comparison of hydroxyl radical fields and model simulations of CH4 abundance with different hydroxyl radical scenarios during 2000–2016. We show that hydroxyl radical changes could contribute up to 54 % of model-simulated methane biases.
Joël Thanwerdas, Marielle Saunois, Antoine Berchet, Isabelle Pison, Didier Hauglustaine, Michel Ramonet, Cyril Crevoisier, Bianca Baier, Colm Sweeney, and Philippe Bousquet
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-925, https://doi.org/10.5194/acp-2019-925, 2019
Revised manuscript not accepted
Short summary
Short summary
Oxidation by the hydroxyl radical (OH) is the dominant atmospheric sink for methane, contributing to approximately 90 % of the total methane loss. Chemical losses by reaction with atomic oxygen (O1D) and chlorine radicals (Cl) in the stratosphere are other sinks, contributing about 3 % to the total methane destruction. We assess here the impact of atomic Cl on atmospheric methane mixing ratios, methane atmospheric loss and atmospheric isotopic δ13C-CH4 values.
Thibaud Thonat, Marielle Saunois, Isabelle Pison, Antoine Berchet, Thomas Hocking, Brett F. Thornton, Patrick M. Crill, and Philippe Bousquet
Atmos. Chem. Phys., 19, 12141–12161, https://doi.org/10.5194/acp-19-12141-2019, https://doi.org/10.5194/acp-19-12141-2019, 2019
Short summary
Short summary
This paper discusses the methane isotopic signals that could be detected at instrumental surface sites in the northern high latitudes using a 3–D chemistry transport model. Isotopic signals may be used in atmospheric inverse systems to better characterize methane emissions and changes. We show that depending on the source magnitude and the location of the site, detecting isotopic signals of specific individual sources may be challenging for the new generation of methane isotope instruments.
Isaac J. Vimont, Jocelyn C. Turnbull, Vasilii V. Petrenko, Philip F. Place, Colm Sweeney, Natasha Miles, Scott Richardson, Bruce H. Vaughn, and James W. C. White
Atmos. Chem. Phys., 19, 8547–8562, https://doi.org/10.5194/acp-19-8547-2019, https://doi.org/10.5194/acp-19-8547-2019, 2019
Short summary
Short summary
Stable isotopes of Carbon Monoxide (CO) and radiocarbon carbon dioxide were measured over three summers at Indianapolis, Indiana, US, and for 1 year at a site thought to be strongly influenced by CO from oxidized volatile organic compounds (VOCs) in South Carolina, US. The Indianapolis results were used to provide an estimate of the carbon and oxygen isotopic signatures of CO produced from oxidized VOCs. This updated estimate agrees well with the data from South Carolina during the summer.
Christian Holme, Vasileios Gkinis, Mika Lanzky, Valerie Morris, Martin Olesen, Abigail Thayer, Bruce H. Vaughn, and Bo M. Vinther
Clim. Past, 15, 893–912, https://doi.org/10.5194/cp-15-893-2019, https://doi.org/10.5194/cp-15-893-2019, 2019
Short summary
Short summary
This study investigates the linear relationship between the water isotopes of three East Greenland ice cores and regional temperatures. By comparing the water isotopes with nearby instrumental temperature records and reanalysis data, this study demonstrates that it can be problematic to reconstruct temperatures through regression of water isotope data from coastal ice cores. We further show that the varying linear relationship could be connected with changes in sea ice near the drill site.
Marine Remaud, Frédéric Chevallier, Anne Cozic, Xin Lin, and Philippe Bousquet
Geosci. Model Dev., 11, 4489–4513, https://doi.org/10.5194/gmd-11-4489-2018, https://doi.org/10.5194/gmd-11-4489-2018, 2018
Short summary
Short summary
We compare several versions of a global atmospheric transport model for the simulation of CO2. The representation of subgrid-scale processes modulates the interhemispheric gradient and the amplitude of the seasonal cycle in the Northern Hemisphere. It has the largest impact over Brazil. Refining the horizontal resolution improves the simulation near emission hotspots or along the coastlines. The sensitivities to the land surface model and to the increase in vertical resolution are marginal.
Hinrich Schaefer, Dan Smale, Sylvia E. Nichol, Tony M. Bromley, Gordon W. Brailsford, Ross J. Martin, Rowena Moss, Sylvia Englund Michel, and James W. C. White
Biogeosciences, 15, 6371–6386, https://doi.org/10.5194/bg-15-6371-2018, https://doi.org/10.5194/bg-15-6371-2018, 2018
Short summary
Short summary
To quantify the impact of El Nino–Southern Oscillation (ENSO) climate events on the methane budget, we studied the correlation between CH4 time series and ENSO indices. We find that ENSO explains less than one-third of the variability in CH4 levels and their stable carbon isotopes, which constrain the source processes of emissions. ENSO forcing of the CH4 cycle is too small, episodic, and regional to force atmospheric trends, which are more likely caused by agricultural or industrial emissions.
Maarten Krol, Marco de Bruine, Lars Killaars, Huug Ouwersloot, Andrea Pozzer, Yi Yin, Frederic Chevallier, Philippe Bousquet, Prabir Patra, Dmitry Belikov, Shamil Maksyutov, Sandip Dhomse, Wuhu Feng, and Martyn P. Chipperfield
Geosci. Model Dev., 11, 3109–3130, https://doi.org/10.5194/gmd-11-3109-2018, https://doi.org/10.5194/gmd-11-3109-2018, 2018
Short summary
Short summary
The TransCom inter-comparison project regularly carries out studies to quantify errors in simulated atmospheric transport. This paper presents the first results of an age of air (AoA) inter-comparison of six global transport models. Following a protocol, six models simulated five tracers from which atmospheric transport times can easily be deduced. Results highlight that inter-model differences associated with atmospheric transport are still large and require further analysis.
Xin Lin, Philippe Ciais, Philippe Bousquet, Michel Ramonet, Yi Yin, Yves Balkanski, Anne Cozic, Marc Delmotte, Nikolaos Evangeliou, Nuggehalli K. Indira, Robin Locatelli, Shushi Peng, Shilong Piao, Marielle Saunois, Panangady S. Swathi, Rong Wang, Camille Yver-Kwok, Yogesh K. Tiwari, and Lingxi Zhou
Atmos. Chem. Phys., 18, 9475–9497, https://doi.org/10.5194/acp-18-9475-2018, https://doi.org/10.5194/acp-18-9475-2018, 2018
Short summary
Short summary
We simulate CH4 and CO2 using a zoomed global transport model with a horizontal resolution of ~50 km over South and East Asia, as well as a standard model version for comparison. Model performance is evaluated for both gases and versions at multiple timescales against a new collection of surface stations over this key GHG-emitting region. The evaluation at different timescales and comparisons between gases and model versions have implications for possible model improvements and inversions.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Isabelle Pison, Antoine Berchet, Marielle Saunois, Philippe Bousquet, Grégoire Broquet, Sébastien Conil, Marc Delmotte, Anita Ganesan, Olivier Laurent, Damien Martin, Simon O'Doherty, Michel Ramonet, T. Gerard Spain, Alex Vermeulen, and Camille Yver Kwok
Atmos. Chem. Phys., 18, 3779–3798, https://doi.org/10.5194/acp-18-3779-2018, https://doi.org/10.5194/acp-18-3779-2018, 2018
Short summary
Short summary
Methane emissions on the national scale in France in 2012 are inferred by assimilating continuous atmospheric mixing ratio measurements from nine stations of the European network ICOS. Two complementary inversion set-ups are computed and analysed: (i) a regional run correcting for the spatial distribution of fluxes in France and (ii) a sectorial run correcting fluxes for activity sectors on the national scale. The results are compared with existing inventories and other regional inversions.
Magnus Gålfalk, Martin Karlson, Patrick Crill, Philippe Bousquet, and David Bastviken
Biogeosciences, 15, 1549–1557, https://doi.org/10.5194/bg-15-1549-2018, https://doi.org/10.5194/bg-15-1549-2018, 2018
Short summary
Short summary
We describe a quick in situ method for mapping ground surface cover, calculating areas of each surface type in a 10 x 10 m plot for each measurement. The method is robust, weather-independent, easily carried out, and uses wide-field imaging with a standard remote-controlled camera mounted on a very long extendible monopod from a height of 3–4.5 m. The method enables collection of detailed field reference data, critical in many remote sensing applications, such as wetland mapping.
Taku Umezawa, Carl A. M. Brenninkmeijer, Thomas Röckmann, Carina van der Veen, Stanley C. Tyler, Ryo Fujita, Shinji Morimoto, Shuji Aoki, Todd Sowers, Jochen Schmitt, Michael Bock, Jonas Beck, Hubertus Fischer, Sylvia E. Michel, Bruce H. Vaughn, John B. Miller, James W. C. White, Gordon Brailsford, Hinrich Schaefer, Peter Sperlich, Willi A. Brand, Michael Rothe, Thomas Blunier, David Lowry, Rebecca E. Fisher, Euan G. Nisbet, Andrew L. Rice, Peter Bergamaschi, Cordelia Veidt, and Ingeborg Levin
Atmos. Meas. Tech., 11, 1207–1231, https://doi.org/10.5194/amt-11-1207-2018, https://doi.org/10.5194/amt-11-1207-2018, 2018
Short summary
Short summary
Isotope measurements are useful for separating different methane sources. However, the lack of widely accepted standards and calibration methods for stable carbon and hydrogen isotopic ratios of methane in air has caused significant measurement offsets among laboratories. We conducted worldwide interlaboratory comparisons, surveyed the literature and assessed them systematically. This study may be of help in future attempts to harmonize data sets of isotopic composition of atmospheric methane.
Peter Bergamaschi, Ute Karstens, Alistair J. Manning, Marielle Saunois, Aki Tsuruta, Antoine Berchet, Alexander T. Vermeulen, Tim Arnold, Greet Janssens-Maenhout, Samuel Hammer, Ingeborg Levin, Martina Schmidt, Michel Ramonet, Morgan Lopez, Jost Lavric, Tuula Aalto, Huilin Chen, Dietrich G. Feist, Christoph Gerbig, László Haszpra, Ove Hermansen, Giovanni Manca, John Moncrieff, Frank Meinhardt, Jaroslaw Necki, Michal Galkowski, Simon O'Doherty, Nina Paramonova, Hubertus A. Scheeren, Martin Steinbacher, and Ed Dlugokencky
Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, https://doi.org/10.5194/acp-18-901-2018, 2018
Short summary
Short summary
European methane (CH4) emissions are estimated for 2006–2012 using atmospheric in situ measurements from 18 European monitoring stations and 7 different inverse models. Our analysis highlights the potential significant contribution of natural emissions from wetlands (including peatlands and wet soils) to the total European emissions. The top-down estimates of total EU-28 CH4 emissions are broadly consistent with the sum of reported anthropogenic CH4 emissions and the estimated natural emissions.
Ivar R. van der Velde, John B. Miller, Michiel K. van der Molen, Pieter P. Tans, Bruce H. Vaughn, James W. C. White, Kevin Schaefer, and Wouter Peters
Geosci. Model Dev., 11, 283–304, https://doi.org/10.5194/gmd-11-283-2018, https://doi.org/10.5194/gmd-11-283-2018, 2018
Short summary
Short summary
We explored an inverse modeling technique to interpret global atmospheric measurements of CO2 and the ratio of its stable carbon isotopes (δ13C). We detected the possible underestimation of drought stress in biosphere models after applying combined atmospheric CO2 and δ13C constraints. This study highlights the importance of improving the representation of the biosphere in carbon–climate models, in particular in a world where droughts become more extreme and more frequent.
Sébastien Ars, Grégoire Broquet, Camille Yver Kwok, Yelva Roustan, Lin Wu, Emmanuel Arzoumanian, and Philippe Bousquet
Atmos. Meas. Tech., 10, 5017–5037, https://doi.org/10.5194/amt-10-5017-2017, https://doi.org/10.5194/amt-10-5017-2017, 2017
Short summary
Short summary
This study presents a new concept for estimating the pollutant emission rates of a site combining the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The potential of this new concept is evaluated with a practical implementation based on a series of inversions of controlled methane and tracer point sources in different spatial configurations to assess the efficiency of the method in comparison with the classic tracer method.
Heather Graven, Colin E. Allison, David M. Etheridge, Samuel Hammer, Ralph F. Keeling, Ingeborg Levin, Harro A. J. Meijer, Mauro Rubino, Pieter P. Tans, Cathy M. Trudinger, Bruce H. Vaughn, and James W. C. White
Geosci. Model Dev., 10, 4405–4417, https://doi.org/10.5194/gmd-10-4405-2017, https://doi.org/10.5194/gmd-10-4405-2017, 2017
Short summary
Short summary
Modelling of carbon isotopes 13C and 14C in land and ocean components of Earth system models provides opportunities for new insights and improved understanding of global carbon cycling, and for model evaluation. We compiled existing historical datasets to define the annual mean carbon isotopic composition of atmospheric CO2 for 1850–2015 that can be used in CMIP6 and other modelling activities.
Zhiting Wang, Thorsten Warneke, Nicholas M. Deutscher, Justus Notholt, Ute Karstens, Marielle Saunois, Matthias Schneider, Ralf Sussmann, Harjinder Sembhi, David W. T. Griffith, Dave F. Pollard, Rigel Kivi, Christof Petri, Voltaire A. Velazco, Michel Ramonet, and Huilin Chen
Atmos. Chem. Phys., 17, 13283–13295, https://doi.org/10.5194/acp-17-13283-2017, https://doi.org/10.5194/acp-17-13283-2017, 2017
Short summary
Short summary
In this paper we separate the biases of atmospheric methane models into stratospheric and tropospheric parts. It is observed in other studies that simulated total columns of atmospheric methane present a latitudinal bias compared to measurements. The latitudinal gradients are considered to be from the stratosphere. However, our results show that the latitudinal biases could come from the troposphere in two of three models evaluated in this study.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Ray Weiss, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, https://doi.org/10.5194/acp-17-11135-2017, 2017
Short summary
Short summary
Following the Global Methane Budget 2000–2012 published in Saunois et al. (2016), we use the same dataset of bottom-up and top-down approaches to discuss the variations in methane emissions over the period 2000–2012. The changes in emissions are discussed both in terms of trends and quasi-decadal changes. The ensemble gathered here allows us to synthesise the robust changes in terms of regional and sectorial contributions to the increasing methane emissions.
Antoine Berchet, Katrin Zink, Dietmar Oettl, Jürg Brunner, Lukas Emmenegger, and Dominik Brunner
Geosci. Model Dev., 10, 3441–3459, https://doi.org/10.5194/gmd-10-3441-2017, https://doi.org/10.5194/gmd-10-3441-2017, 2017
Short summary
Short summary
We evaluate a new cost-effective method to simulate pollutant dispersion at high resolution on a city-wide domain. The method is based on a catalogue of reference simulations matched to weather observations to produce a sequence of hourly pollution maps. A total of 2 years of simulations are compared with continuous measurements and passive NO2 samplers in the city of Zurich. Spatial and temporal variability proved to be very well reproduced by the method.
Thibaud Thonat, Marielle Saunois, Philippe Bousquet, Isabelle Pison, Zeli Tan, Qianlai Zhuang, Patrick M. Crill, Brett F. Thornton, David Bastviken, Ed J. Dlugokencky, Nikita Zimov, Tuomas Laurila, Juha Hatakka, Ove Hermansen, and Doug E. J. Worthy
Atmos. Chem. Phys., 17, 8371–8394, https://doi.org/10.5194/acp-17-8371-2017, https://doi.org/10.5194/acp-17-8371-2017, 2017
Short summary
Short summary
Atmospheric methane simulations in the Arctic have been made for 2012 and compared to continuous observations at six measurement sites. All methane sources significantly affect the measurements at all stations, at least at the synoptic scale, except for biomass burning. An appropriate modelling framework combined with continuous observations of atmospheric methane enables us to gain knowledge on regional methane sources, including those which are usually poorly represented, such as freshwater.
Zhiting Wang, Thorsten Warneke, Bart Dils, Justus Notholt, and Marielle Saunois
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-435, https://doi.org/10.5194/acp-2017-435, 2017
Revised manuscript not accepted
Short summary
Short summary
It is important to know to what extent the chemistry transport model represents tracer transport in the atmosphere correctly. In this study we evaluate performances of three models in the stratosphere in describing mixing processes there. The results reveal that deficiencies exist in representing mixing processes in mid-latitudes of southern stratosphere. Another related problem of the models is in representing tracer gradients across transport barrier.
Tyler R. Jones, James W. C. White, Eric J. Steig, Bruce H. Vaughn, Valerie Morris, Vasileios Gkinis, Bradley R. Markle, and Spruce W. Schoenemann
Atmos. Meas. Tech., 10, 617–632, https://doi.org/10.5194/amt-10-617-2017, https://doi.org/10.5194/amt-10-617-2017, 2017
Short summary
Short summary
New measurement systems have been developed that continuously melt ice core samples, in contrast to other methods that analyze a single sample at a time. These newer systems are capable of reducing analysis time by many years and improving data set resolution. In this study, we introduce improved methodologies that optimize the speed, accuracy, and precision of a water isotope continuous-flow system. The presented system will be used for Antarctic and Greenland ice core projects.
Marielle Saunois, Philippe Bousquet, Ben Poulter, Anna Peregon, Philippe Ciais, Josep G. Canadell, Edward J. Dlugokencky, Giuseppe Etiope, David Bastviken, Sander Houweling, Greet Janssens-Maenhout, Francesco N. Tubiello, Simona Castaldi, Robert B. Jackson, Mihai Alexe, Vivek K. Arora, David J. Beerling, Peter Bergamaschi, Donald R. Blake, Gordon Brailsford, Victor Brovkin, Lori Bruhwiler, Cyril Crevoisier, Patrick Crill, Kristofer Covey, Charles Curry, Christian Frankenberg, Nicola Gedney, Lena Höglund-Isaksson, Misa Ishizawa, Akihiko Ito, Fortunat Joos, Heon-Sook Kim, Thomas Kleinen, Paul Krummel, Jean-François Lamarque, Ray Langenfelds, Robin Locatelli, Toshinobu Machida, Shamil Maksyutov, Kyle C. McDonald, Julia Marshall, Joe R. Melton, Isamu Morino, Vaishali Naik, Simon O'Doherty, Frans-Jan W. Parmentier, Prabir K. Patra, Changhui Peng, Shushi Peng, Glen P. Peters, Isabelle Pison, Catherine Prigent, Ronald Prinn, Michel Ramonet, William J. Riley, Makoto Saito, Monia Santini, Ronny Schroeder, Isobel J. Simpson, Renato Spahni, Paul Steele, Atsushi Takizawa, Brett F. Thornton, Hanqin Tian, Yasunori Tohjima, Nicolas Viovy, Apostolos Voulgarakis, Michiel van Weele, Guido R. van der Werf, Ray Weiss, Christine Wiedinmyer, David J. Wilton, Andy Wiltshire, Doug Worthy, Debra Wunch, Xiyan Xu, Yukio Yoshida, Bowen Zhang, Zhen Zhang, and Qiuan Zhu
Earth Syst. Sci. Data, 8, 697–751, https://doi.org/10.5194/essd-8-697-2016, https://doi.org/10.5194/essd-8-697-2016, 2016
Short summary
Short summary
An accurate assessment of the methane budget is important to understand the atmospheric methane concentrations and trends and to provide realistic pathways for climate change mitigation. The various and diffuse sources of methane as well and its oxidation by a very short lifetime radical challenge this assessment. We quantify the methane sources and sinks as well as their uncertainties based on both bottom-up and top-down approaches provided by a broad international scientific community.
Nicola J. Warwick, Michelle L. Cain, Rebecca Fisher, James L. France, David Lowry, Sylvia E. Michel, Euan G. Nisbet, Bruce H. Vaughn, James W. C. White, and John A. Pyle
Atmos. Chem. Phys., 16, 14891–14908, https://doi.org/10.5194/acp-16-14891-2016, https://doi.org/10.5194/acp-16-14891-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas. Methane emissions from Arctic wetlands are poorly quantified and may increase in a warming climate. Using a global atmospheric model and atmospheric observations of methane and its isotopologues, we find that isotopologue data are useful in constraining Arctic wetland emissions. Our results suggest that the seasonal cycle of these emissions may be incorrectly simulated in land process models, with implications for our understanding of future emissions.
Shushi Peng, Shilong Piao, Philippe Bousquet, Philippe Ciais, Bengang Li, Xin Lin, Shu Tao, Zhiping Wang, Yuan Zhang, and Feng Zhou
Atmos. Chem. Phys., 16, 14545–14562, https://doi.org/10.5194/acp-16-14545-2016, https://doi.org/10.5194/acp-16-14545-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas, which accounts for about 20 % of the warming induced by long-lived greenhouse gases since 1750. Anthropogenic methane emissions from China may have been growing rapidly in the past decades because of increased coal mining and fast growing livestock. A good long-term methane emissions dataset is still lacking. Here, we produced a detailed bottom-up inventory of anthropogenic methane emissions from the eight major source sectors in China during 1980–2010.
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016, https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary
Short summary
Our evaluation of column-averaged methane (XCH4) in models and TCCON reveals latitudinal biases between 0.4 % and 2.1 % originating from an inter-model spread in stratospheric CH4. Substituting model stratospheric CH4 fields by satellite data significantly reduces the large XCH4 bias observed for one model. For other models, showing only minor biases, the impact is ambiguous; i.e., the satellite uncertainty range hinders a more accurate model evaluation needed to improve inverse modeling.
Cindy Cressot, Isabelle Pison, Peter J. Rayner, Philippe Bousquet, Audrey Fortems-Cheiney, and Frédéric Chevallier
Atmos. Chem. Phys., 16, 9089–9108, https://doi.org/10.5194/acp-16-9089-2016, https://doi.org/10.5194/acp-16-9089-2016, 2016
Short summary
Short summary
Several hypothesis have been made to attribute current trends in atmospheric methane to particular regions. In this context, this work aims at evaluating how well anomalies in methane emissions can be detected at the regional scale with currently available observing systems: two space-borne instruments and a surface network. Our results show that inter-annual analyses of methane emissions inferred by atmospheric inversions should always include an uncertainty assessment.
Alex Boon, Grégoire Broquet, Deborah J. Clifford, Frédéric Chevallier, David M. Butterfield, Isabelle Pison, Michel Ramonet, Jean-Daniel Paris, and Philippe Ciais
Atmos. Chem. Phys., 16, 6735–6756, https://doi.org/10.5194/acp-16-6735-2016, https://doi.org/10.5194/acp-16-6735-2016, 2016
Short summary
Short summary
We measured carbon dioxide and methane concentrations at four near-ground sites located in London, 2012. We investigated the potential for using these measurements, alongside numerical modelling, to help us to understand urban greenhouse gas emissions. Low-level sites were highly sensitive to local emissions, which questions our ability to use measurements from near-ground sites in cities in some modelling applications. A gradient approach was found to be beneficial to reduce model–data errors.
Antoine Berchet, Philippe Bousquet, Isabelle Pison, Robin Locatelli, Frédéric Chevallier, Jean-Daniel Paris, Ed J. Dlugokencky, Tuomas Laurila, Juha Hatakka, Yrjo Viisanen, Doug E. J. Worthy, Euan Nisbet, Rebecca Fisher, James France, David Lowry, Viktor Ivakhov, and Ove Hermansen
Atmos. Chem. Phys., 16, 4147–4157, https://doi.org/10.5194/acp-16-4147-2016, https://doi.org/10.5194/acp-16-4147-2016, 2016
Short summary
Short summary
We propose insights based on atmospheric observations around the Arctic circle to evaluate estimates of methane emissions to the atmosphere from the East Siberian Arctic Shelf. Based on a comprehensive statistical analysis of the observations and of high-resolution transport simulations, annual methane emissions from ESAS are estimated to range from 0.0 to 4.5 TgCH4 yr−1, with a maximum in summer and very low emissions in winter.
Y. Yin, F. Chevallier, P. Ciais, G. Broquet, A. Fortems-Cheiney, I. Pison, and M. Saunois
Atmos. Chem. Phys., 15, 13433–13451, https://doi.org/10.5194/acp-15-13433-2015, https://doi.org/10.5194/acp-15-13433-2015, 2015
Short summary
Short summary
We studied the global CO concentration decline over the recent decade with a sophisticated atmospheric inversion system assimilating MOPITT CO retrievals, surface methane and surface methyl chloroform in situ measurements. The inversion interprets the CO concentration decline as a 23% decrease in the CO emissions from 2002 to 2011, twice the negative trend estimated by emission inventories. In contrast to bottom-up inventories, we find negative trends over China and South-east Asia.
A. Berchet, I. Pison, F. Chevallier, J.-D. Paris, P. Bousquet, J.-L. Bonne, M. Y. Arshinov, B. D. Belan, C. Cressot, D. K. Davydov, E. J. Dlugokencky, A. V. Fofonov, A. Galanin, J. Lavrič, T. Machida, R. Parker, M. Sasakawa, R. Spahni, B. D. Stocker, and J. Winderlich
Biogeosciences, 12, 5393–5414, https://doi.org/10.5194/bg-12-5393-2015, https://doi.org/10.5194/bg-12-5393-2015, 2015
R. Locatelli, P. Bousquet, M. Saunois, F. Chevallier, and C. Cressot
Atmos. Chem. Phys., 15, 9765–9780, https://doi.org/10.5194/acp-15-9765-2015, https://doi.org/10.5194/acp-15-9765-2015, 2015
A. Berchet, I. Pison, F. Chevallier, P. Bousquet, J.-L. Bonne, and J.-D. Paris
Geosci. Model Dev., 8, 1525–1546, https://doi.org/10.5194/gmd-8-1525-2015, https://doi.org/10.5194/gmd-8-1525-2015, 2015
A. Ghosh, P. K. Patra, K. Ishijima, T. Umezawa, A. Ito, D. M. Etheridge, S. Sugawara, K. Kawamura, J. B. Miller, E. J. Dlugokencky, P. B. Krummel, P. J. Fraser, L. P. Steele, R. L. Langenfelds, C. M. Trudinger, J. W. C. White, B. Vaughn, T. Saeki, S. Aoki, and T. Nakazawa
Atmos. Chem. Phys., 15, 2595–2612, https://doi.org/10.5194/acp-15-2595-2015, https://doi.org/10.5194/acp-15-2595-2015, 2015
Short summary
Short summary
Atmospheric CH4 increased from 900ppb to 1800ppb during the period 1900–2010 at a rate unprecedented in any observational records. We use bottom-up emissions and a chemistry-transport model to simulate CH4. The optimized global total CH4 emission, estimated from the model–observation differences, increased at fastest rate during 1940–1990. Using δ13C of CH4 measurements we attribute this emission increase to biomass burning. Total CH4 lifetime is shortened by 4% over the simulation period.
R. Locatelli, P. Bousquet, F. Hourdin, M. Saunois, A. Cozic, F. Couvreux, J.-Y. Grandpeix, M.-P. Lefebvre, C. Rio, P. Bergamaschi, S. D. Chambers, U. Karstens, V. Kazan, S. van der Laan, H. A. J. Meijer, J. Moncrieff, M. Ramonet, H. A. Scheeren, C. Schlosser, M. Schmidt, A. Vermeulen, and A. G. Williams
Geosci. Model Dev., 8, 129–150, https://doi.org/10.5194/gmd-8-129-2015, https://doi.org/10.5194/gmd-8-129-2015, 2015
P. Bergamaschi, M. Corazza, U. Karstens, M. Athanassiadou, R. L. Thompson, I. Pison, A. J. Manning, P. Bousquet, A. Segers, A. T. Vermeulen, G. Janssens-Maenhout, M. Schmidt, M. Ramonet, F. Meinhardt, T. Aalto, L. Haszpra, J. Moncrieff, M. E. Popa, D. Lowry, M. Steinbacher, A. Jordan, S. O'Doherty, S. Piacentino, and E. Dlugokencky
Atmos. Chem. Phys., 15, 715–736, https://doi.org/10.5194/acp-15-715-2015, https://doi.org/10.5194/acp-15-715-2015, 2015
R. L. Thompson, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, P. K. Patra, P. Bergamaschi, F. Chevallier, E. Dlugokencky, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, A. Vermeulen, Y. Tohjima, A. Jordan, L. Haszpra, M. Steinbacher, S. Van der Laan, T. Aalto, F. Meinhardt, M. E. Popa, J. Moncrieff, and P. Bousquet
Atmos. Chem. Phys., 14, 6177–6194, https://doi.org/10.5194/acp-14-6177-2014, https://doi.org/10.5194/acp-14-6177-2014, 2014
R. L. Thompson, P. K. Patra, K. Ishijima, E. Saikawa, M. Corazza, U. Karstens, C. Wilson, P. Bergamaschi, E. Dlugokencky, C. Sweeney, R. G. Prinn, R. F. Weiss, S. O'Doherty, P. J. Fraser, L. P. Steele, P. B. Krummel, M. Saunois, M. Chipperfield, and P. Bousquet
Atmos. Chem. Phys., 14, 4349–4368, https://doi.org/10.5194/acp-14-4349-2014, https://doi.org/10.5194/acp-14-4349-2014, 2014
C. Cressot, F. Chevallier, P. Bousquet, C. Crevoisier, E. J. Dlugokencky, A. Fortems-Cheiney, C. Frankenberg, R. Parker, I. Pison, R. A. Scheepmaker, S. A. Montzka, P. B. Krummel, L. P. Steele, and R. L. Langenfelds
Atmos. Chem. Phys., 14, 577–592, https://doi.org/10.5194/acp-14-577-2014, https://doi.org/10.5194/acp-14-577-2014, 2014
I. Pison, B. Ringeval, P. Bousquet, C. Prigent, and F. Papa
Atmos. Chem. Phys., 13, 11609–11623, https://doi.org/10.5194/acp-13-11609-2013, https://doi.org/10.5194/acp-13-11609-2013, 2013
R. Locatelli, P. Bousquet, F. Chevallier, A. Fortems-Cheney, S. Szopa, M. Saunois, A. Agusti-Panareda, D. Bergmann, H. Bian, P. Cameron-Smith, M. P. Chipperfield, E. Gloor, S. Houweling, S. R. Kawa, M. Krol, P. K. Patra, R. G. Prinn, M. Rigby, R. Saito, and C. Wilson
Atmos. Chem. Phys., 13, 9917–9937, https://doi.org/10.5194/acp-13-9917-2013, https://doi.org/10.5194/acp-13-9917-2013, 2013
M. Lopez, M. Schmidt, M. Delmotte, A. Colomb, V. Gros, C. Janssen, S. J. Lehman, D. Mondelain, O. Perrussel, M. Ramonet, I. Xueref-Remy, and P. Bousquet
Atmos. Chem. Phys., 13, 7343–7358, https://doi.org/10.5194/acp-13-7343-2013, https://doi.org/10.5194/acp-13-7343-2013, 2013
A. Berchet, I. Pison, F. Chevallier, P. Bousquet, S. Conil, M. Geever, T. Laurila, J. Lavrič, M. Lopez, J. Moncrieff, J. Necki, M. Ramonet, M. Schmidt, M. Steinbacher, and J. Tarniewicz
Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, https://doi.org/10.5194/acp-13-7115-2013, 2013
L. Menut, B. Bessagnet, D. Khvorostyanov, M. Beekmann, N. Blond, A. Colette, I. Coll, G. Curci, G. Foret, A. Hodzic, S. Mailler, F. Meleux, J.-L. Monge, I. Pison, G. Siour, S. Turquety, M. Valari, R. Vautard, and M. G. Vivanco
Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, https://doi.org/10.5194/gmd-6-981-2013, 2013
Related subject area
Atmospheric sciences
An optimisation method to improve modelling of wet deposition in atmospheric transport models: applied to FLEXPART v10.4
Modelling concentration heterogeneities in streets using the street-network model MUNICH
Simulation model of Reactive Nitrogen Species in an Urban Atmosphere using a Deep Neural Network: RNDv1.0
J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models
Metrics for evaluating the quality in linear atmospheric inverse problems: a case study of a trace gas inversion
Improved representation of volcanic sulfur dioxide depletion in Lagrangian transport simulations: a case study with MPTRAC v2.4
Use of threshold parameter variation for tropical cyclone tracking
Passive-tracer modelling at super-resolution with Weather Research and Forecasting – Advanced Research WRF (WRF-ARW) to assess mass-balance schemes
The High-resolution Intermediate Complexity Atmospheric Research (HICAR v1.1) model enables fast dynamic downscaling to the hectometer scale
A gridded air quality forecast through fusing site-available machine learning predictions from RFSML v1.0 and chemical transport model results from GEOS-Chem v13.1.0 using the ensemble Kalman filter
Plume detection and emission estimate for biomass burning plumes from TROPOMI carbon monoxide observations using APE v1.1
CHEEREIO 1.0: a versatile and user-friendly ensemble-based chemical data assimilation and emissions inversion platform for the GEOS-Chem chemical transport model
A method to derive Fourier–wavelet spectra for the characterization of global-scale waves in the mesosphere and lower thermosphere and its MATLAB and Python software (fourierwavelet v1.1)
Dynamic Meteorology-induced Emissions Coupler (MetEmis) development in the Community Multiscale Air Quality (CMAQ): CMAQ-MetEmis
Visual analysis of model parameter sensitivities along warm conveyor belt trajectories using Met.3D (1.6.0-multivar1)
Simulating heat and CO2 fluxes in Beijing using SUEWS V2020b: sensitivity to vegetation phenology and maximum conductance
A Python library for computing individual and merged non-CO2 algorithmic climate change functions: CLIMaCCF V1.0
The three-dimensional structure of fronts in mid-latitude weather systems in numerical weather prediction models
The development and validation of the Inhomogeneous Wind Scheme for Urban Street (IWSUS-v1)
GPU-HADVPPM V1.0: a high-efficiency parallel GPU design of the piecewise parabolic method (PPM) for horizontal advection in an air quality model (CAMx V6.10)
Variability and combination as an ensemble of mineral dust forecasts during the 2021 CADDIWA experiment using the WRF 3.7.1 and CHIMERE v2020r3 models
Breakups are complicated: an efficient representation of collisional breakup in the superdroplet method
An optimized semi-empirical physical approach for satellite-based PM2.5 retrieval: embedding machine learning to simulate complex physical parameters
Sensitivity of tropospheric ozone to halogen chemistry in the chemistry–climate model LMDZ-INCA vNMHC
Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants
Evaluating precipitation distributions at regional scales: a benchmarking framework and application to CMIP5 and 6 models
The Fire Inventory from NCAR version 2.5: an updated global fire emissions model for climate and chemistry applications
An approach to refining the ground meteorological observation stations for improving PM2.5 forecasts in the Beijing–Tianjin–Hebei region
Assessment of WRF (v 4.2.1) dynamically downscaled precipitation on subdaily and daily timescales over CONUS
Convective-gust nowcasting based on radar reflectivity and a deep learning algorithm
Self-nested large-eddy simulations in PALM model system v21.10 for offshore wind prediction under different atmospheric stability conditions
How does cloud-radiative heating over the North Atlantic change with grid spacing, convective parameterization, and microphysics scheme in ICON version 2.1.00?
Simulations of idealised 3D atmospheric flows on terrestrial planets using LFRic-Atmosphere
Updated isoprene and terpene emission factors for the Interactive BVOC (iBVOC) emission scheme in the United Kingdom Earth System Model (UKESM1.0)
Technical descriptions of the experimental dynamical downscaling simulations over North America by the CAM–MPAS variable-resolution model
Evaluating WRF-GC v2.0 predictions of boundary layer and vertical ozone profiles during the 2021 TRACER-AQ campaign in Houston, Texas
Intercomparison of the weather and climate physics suites of a unified forecast–climate model system (GRIST-A22.7.28) based on single-column modeling
A Mountain-Induced Moist Baroclinic Wave Test Case for the Dynamical Cores of Atmospheric General Circulation Models
A robust error correction method for numerical weather prediction wind speed based on Bayesian optimization, Variational Mode Decomposition, Principal Component Analysis, and Random Forest: VMD-PCA-RF (version 1.0.0)
Halogen chemistry in volcanic plumes: a 1D framework based on MOCAGE 1D (version R1.18.1) preparing 3D global chemistry modelling
PyFLEXTRKR: a flexible feature tracking Python software for convective cloud analysis
CLGAN: a generative adversarial network (GAN)-based video prediction model for precipitation nowcasting
Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalyses over Europe (2003–2020)
A simplified non-linear chemistry-transport model for analyzing NO2 column observations
Evaluating Three Decades of Precipitation in the Upper Colorado River Basin from a High-Resolution Regional Climate Model
Emulating aerosol optics with randomly generated neural networks
Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Application of the Multi-Scale Infrastructure for Chemistry and Aerosols version 0 (MUSICAv0) for air quality in Africa
Comparison of ozone formation attribution techniques in the northeastern United States
Description and performance of the CARMA sectional aerosol microphysical model in CESM2
Stijn Van Leuven, Pieter De Meutter, Johan Camps, Piet Termonia, and Andy Delcloo
Geosci. Model Dev., 16, 5323–5338, https://doi.org/10.5194/gmd-16-5323-2023, https://doi.org/10.5194/gmd-16-5323-2023, 2023
Short summary
Short summary
Precipitation collects airborne particles and deposits these on the ground. This process is called wet deposition and greatly determines how airborne radioactive particles (released routinely or accidentally) contaminate the surface. In this work we present a new method to improve the calculation of wet deposition in computer models. We apply this method to the existing model FLEXPART by simulating the Fukushima nuclear accident (2011) and show that it improves the simulation of wet deposition.
Thibaud Sarica, Alice Maison, Yelva Roustan, Matthias Ketzel, Steen Solvang Jensen, Youngseob Kim, Christophe Chaillou, and Karine Sartelet
Geosci. Model Dev., 16, 5281–5303, https://doi.org/10.5194/gmd-16-5281-2023, https://doi.org/10.5194/gmd-16-5281-2023, 2023
Short summary
Short summary
A new version of the Model of Urban Network of Intersecting Canyons and Highways (MUNICH) is developed to represent heterogeneities of concentrations in streets. The street volume is discretized vertically and horizontally to limit the artificial dilution of emissions and concentrations. This new version is applied to street networks in Copenhagen and Paris. The comparisons to observations are improved, with higher concentrations of pollutants emitted by traffic at the bottom of the street.
Junsu Gil, Meehye Lee, Jeonghwan Kim, Gangwoong Lee, Joonyoung Ahn, and Cheol-Hee Kim
Geosci. Model Dev., 16, 5251–5263, https://doi.org/10.5194/gmd-16-5251-2023, https://doi.org/10.5194/gmd-16-5251-2023, 2023
Short summary
Short summary
In this study, the framework for calculating reactive nitrogen species using a deep neural network (RND) was developed. It works through simple Python codes and provides high-accuracy reactive nitrogen oxide data. In the first version (RNDv1.0), the model calculates the nitrous acid (HONO) in urban areas, which has an important role in producing O3 and fine aerosol.
Daniel Yazgi and Tinja Olenius
Geosci. Model Dev., 16, 5237–5249, https://doi.org/10.5194/gmd-16-5237-2023, https://doi.org/10.5194/gmd-16-5237-2023, 2023
Short summary
Short summary
We present flexible tools to implement aerosol formation rate predictions in climate and chemical transport models. New-particle formation is a significant but uncertain factor affecting aerosol numbers and an active field within molecular modeling which provides data for assessing formation rates for different chemical species. We introduce tools to generate and interpolate formation rate lookup tables for user-defined data, thus enabling the easy inclusion and testing of formation schemes.
Vineet Yadav, Subhomoy Ghosh, and Charles E. Miller
Geosci. Model Dev., 16, 5219–5236, https://doi.org/10.5194/gmd-16-5219-2023, https://doi.org/10.5194/gmd-16-5219-2023, 2023
Short summary
Short summary
Measuring the performance of inversions in linear Bayesian problems is crucial in real-life applications. In this work, we provide analytical forms of the local and global sensitivities of the estimated fluxes with respect to various inputs. We provide methods to uniquely map the observational signal to spatiotemporal domains. Utilizing this, we also show techniques to assess correlations between the Jacobians that naturally translate to nonstationary covariance matrix components.
Mingzhao Liu, Lars Hoffmann, Sabine Griessbach, Zhongyin Cai, Yi Heng, and Xue Wu
Geosci. Model Dev., 16, 5197–5217, https://doi.org/10.5194/gmd-16-5197-2023, https://doi.org/10.5194/gmd-16-5197-2023, 2023
Short summary
Short summary
We introduce new and revised chemistry and physics modules in the Massive-Parallel Trajectory Calculations (MPTRAC) Lagrangian transport model aiming to improve the representation of volcanic SO2 transport and depletion. We test these modules in a case study of the Ambae eruption in July 2018 in which the SO2 plume underwent wet removal and convection. The lifetime of SO2 shows highly variable and complex dependencies on the atmospheric conditions at different release heights.
Bernhard M. Enz, Jan P. Engelmann, and Ulrike Lohmann
Geosci. Model Dev., 16, 5093–5112, https://doi.org/10.5194/gmd-16-5093-2023, https://doi.org/10.5194/gmd-16-5093-2023, 2023
Short summary
Short summary
An algorithm to track tropical cyclones in model simulation data has been developed. The algorithm uses many combinations of varying parameter thresholds to detect weaker phases of tropical cyclones while still being resilient to false positives. It is shown that the algorithm performs well and adequately represents the tropical cyclone activity of the underlying simulation data. The impact of false positives on overall tropical cyclone activity is shown to be insignificant.
Sepehr Fathi, Mark Gordon, and Yongsheng Chen
Geosci. Model Dev., 16, 5069–5091, https://doi.org/10.5194/gmd-16-5069-2023, https://doi.org/10.5194/gmd-16-5069-2023, 2023
Short summary
Short summary
We have combined various capabilities within a WRF model to generate simulations of atmospheric pollutant dispersion at 50 m resolution. The study objective was to resolve transport processes at the scale of measurements to assess and optimize aircraft-based emission rate retrievals. Model performance evaluation resulted in agreement within 5 % of observed meteorological and within 1–2 standard deviations of observed wind fields. Mass was conserved in the model within 5 % of input emissions.
Dylan Reynolds, Ethan Gutmann, Bert Kruyt, Michael Haugeneder, Tobias Jonas, Franziska Gerber, Michael Lehning, and Rebecca Mott
Geosci. Model Dev., 16, 5049–5068, https://doi.org/10.5194/gmd-16-5049-2023, https://doi.org/10.5194/gmd-16-5049-2023, 2023
Short summary
Short summary
The challenge of running geophysical models is often compounded by the question of where to obtain appropriate data to give as input to a model. Here we present the HICAR model, a simplified atmospheric model capable of running at spatial resolutions of hectometers for long time series or over large domains. This makes physically consistent atmospheric data available at the spatial and temporal scales needed for some terrestrial modeling applications, for example seasonal snow forecasting.
Li Fang, Jianbing Jin, Arjo Segers, Hong Liao, Ke Li, Bufan Xu, Wei Han, Mijie Pang, and Hai Xiang Lin
Geosci. Model Dev., 16, 4867–4882, https://doi.org/10.5194/gmd-16-4867-2023, https://doi.org/10.5194/gmd-16-4867-2023, 2023
Short summary
Short summary
Machine learning models have gained great popularity in air quality prediction. However, they are only available at air quality monitoring stations. In contrast, chemical transport models (CTM) provide predictions that are continuous in the 3D field. Owing to complex error sources, they are typically biased. In this study, we proposed a gridded prediction with high accuracy by fusing predictions from our regional feature selection machine learning prediction (RFSML v1.0) and a CTM prediction.
Manu Goudar, Juliëtte C. S. Anema, Rajesh Kumar, Tobias Borsdorff, and Jochen Landgraf
Geosci. Model Dev., 16, 4835–4852, https://doi.org/10.5194/gmd-16-4835-2023, https://doi.org/10.5194/gmd-16-4835-2023, 2023
Short summary
Short summary
A framework was developed to automatically detect plumes and compute emission estimates with cross-sectional flux method (CFM) for biomass burning events in TROPOMI CO datasets using Visible Infrared Imaging Radiometer Suite active fire data. The emissions were more reliable when changing plume height in downwind direction was used instead of constant injection height. The CFM had uncertainty even when the meteorological conditions were accurate; thus there is a need for better inversion models.
Drew C. Pendergrass, Daniel J. Jacob, Hannah Nesser, Daniel J. Varon, Melissa Sulprizio, Kazuyuki Miyazaki, and Kevin W. Bowman
Geosci. Model Dev., 16, 4793–4810, https://doi.org/10.5194/gmd-16-4793-2023, https://doi.org/10.5194/gmd-16-4793-2023, 2023
Short summary
Short summary
We have built a tool called CHEEREIO that allows scientists to use observations of pollutants or gases in the atmosphere, such as from satellites or surface stations, to update supercomputer models that simulate the Earth. CHEEREIO uses the difference between the model simulations of the atmosphere and real-world observations to come up with a good guess for the actual composition of our atmosphere, the true emissions of various pollutants, and whatever else they may want to study.
Yosuke Yamazaki
Geosci. Model Dev., 16, 4749–4766, https://doi.org/10.5194/gmd-16-4749-2023, https://doi.org/10.5194/gmd-16-4749-2023, 2023
Short summary
Short summary
The Earth's atmosphere can support various types of global-scale waves. Some waves propagate eastward and others westward, and they can have different zonal wavenumbers. The Fourier–wavelet analysis is a useful technique for identifying different components of global-scale waves and their temporal variability. This paper introduces an easy-to-implement method to derive Fourier–wavelet spectra from 2-D space–time data. Application examples are presented using atmospheric models.
Bok H. Baek, Carlie Coats, Siqi Ma, Chi-Tsan Wang, Yunyao Li, Jia Xing, Daniel Tong, Soontae Kim, and Jung-Hun Woo
Geosci. Model Dev., 16, 4659–4676, https://doi.org/10.5194/gmd-16-4659-2023, https://doi.org/10.5194/gmd-16-4659-2023, 2023
Short summary
Short summary
To enable the direct feedback effects of aerosols and local meteorology in an air quality modeling system without any computational bottleneck, we have developed an inline meteorology-induced emissions coupler module within the U.S. Environmental Protection Agency’s Community Multiscale Air Quality modeling system to dynamically model the complex MOtor Vehicle Emission Simulator (MOVES) on-road mobile emissions inline without a separate dedicated emissions processing model like SMOKE.
Christoph Neuhauser, Maicon Hieronymus, Michael Kern, Marc Rautenhaus, Annika Oertel, and Rüdiger Westermann
Geosci. Model Dev., 16, 4617–4638, https://doi.org/10.5194/gmd-16-4617-2023, https://doi.org/10.5194/gmd-16-4617-2023, 2023
Short summary
Short summary
Numerical weather prediction models rely on parameterizations for sub-grid-scale processes, which are a source of uncertainty. We present novel visual analytics solutions to analyze interactively the sensitivities of a selected prognostic variable to multiple model parameters along trajectories regarding similarities in temporal development and spatiotemporal relationships. The proposed workflow is applied to cloud microphysical sensitivities along coherent strongly ascending trajectories.
Yingqi Zheng, Minttu Havu, Huizhi Liu, Xueling Cheng, Yifan Wen, Hei Shing Lee, Joyson Ahongshangbam, and Leena Järvi
Geosci. Model Dev., 16, 4551–4579, https://doi.org/10.5194/gmd-16-4551-2023, https://doi.org/10.5194/gmd-16-4551-2023, 2023
Short summary
Short summary
The performance of the Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated against the observed surface exchanges (fluxes) of heat and carbon dioxide in a densely built neighborhood in Beijing. The heat flux modeling is noticeably improved by using the observed maximum conductance and by optimizing the vegetation phenology modeling. SUEWS also performs well in simulating carbon dioxide flux.
Simone Dietmüller, Sigrun Matthes, Katrin Dahlmann, Hiroshi Yamashita, Abolfazl Simorgh, Manuel Soler, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Christian Weder, Volker Grewe, Feijia Yin, and Federica Castino
Geosci. Model Dev., 16, 4405–4425, https://doi.org/10.5194/gmd-16-4405-2023, https://doi.org/10.5194/gmd-16-4405-2023, 2023
Short summary
Short summary
Climate-optimized aircraft trajectories avoid atmospheric regions with a large climate impact due to aviation emissions. This requires spatially and temporally resolved information on aviation's climate impact. We propose using algorithmic climate change functions (aCCFs) for CO2 and non-CO2 effects (ozone, methane, water vapor, contrail cirrus). Merged aCCFs combine individual aCCFs by assuming aircraft-specific parameters and climate metrics. Technically this is done with a Python library.
Andreas A. Beckert, Lea Eisenstein, Annika Oertel, Tim Hewson, George C. Craig, and Marc Rautenhaus
Geosci. Model Dev., 16, 4427–4450, https://doi.org/10.5194/gmd-16-4427-2023, https://doi.org/10.5194/gmd-16-4427-2023, 2023
Short summary
Short summary
We investigate the benefit of objective 3-D front detection with modern interactive visual analysis techniques for case studies of extra-tropical cyclones and comparisons of frontal structures between different numerical weather prediction models. The 3-D frontal structures show agreement with 2-D fronts from surface analysis charts and augment them in the vertical dimension. We see great potential for more complex studies of atmospheric dynamics and for operational weather forecasting.
Zhenxin Liu, Yuanhao Chen, Yuhang Wang, Cheng Liu, Shuhua Liu, and Hong Liao
Geosci. Model Dev., 16, 4385–4403, https://doi.org/10.5194/gmd-16-4385-2023, https://doi.org/10.5194/gmd-16-4385-2023, 2023
Short summary
Short summary
The heterogeneous layout of urban buildings leads to the complex wind field in and over the urban canopy. Large discrepancies between the observations and the current simulations result from misunderstanding the character of the wind field. The Inhomogeneous Wind Scheme in Urban Street (IWSUS) was developed to simulate the heterogeneity of the wind speed in a typical street and then improve the simulated energy budget in the lower atmospheric layer over the urban canopy.
Kai Cao, Qizhong Wu, Lingling Wang, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongqing Li, and Lanning Wang
Geosci. Model Dev., 16, 4367–4383, https://doi.org/10.5194/gmd-16-4367-2023, https://doi.org/10.5194/gmd-16-4367-2023, 2023
Short summary
Short summary
Offline performance experiment results show that the GPU-HADVPPM on a V100 GPU can achieve up to 1113.6 × speedups to its original version on an E5-2682 v4 CPU. A series of optimization measures are taken, and the CAMx-CUDA model improves the computing efficiency by 128.4 × on a single V100 GPU card. A parallel architecture with an MPI plus CUDA hybrid paradigm is presented, and it can achieve up to 4.5 × speedup when launching eight CPU cores and eight GPU cards.
Laurent Menut
Geosci. Model Dev., 16, 4265–4281, https://doi.org/10.5194/gmd-16-4265-2023, https://doi.org/10.5194/gmd-16-4265-2023, 2023
Short summary
Short summary
This study analyzes forecasts that were made in 2021 to help trigger measurements during the CADDIWA experiment. The WRF and CHIMERE models were run each day, and the first goal is to quantify the variability of the forecast as a function of forecast leads and forecast location. The possibility of using the different leads as an ensemble is also tested. For some locations, the correlation scores are better with this approach. This could be tested on operational forecast chains in the future.
Emily de Jong, John Ben Mackay, Oleksii Bulenok, Anna Jaruga, and Sylwester Arabas
Geosci. Model Dev., 16, 4193–4211, https://doi.org/10.5194/gmd-16-4193-2023, https://doi.org/10.5194/gmd-16-4193-2023, 2023
Short summary
Short summary
In clouds, collisional breakup occurs when two colliding droplets splinter into new, smaller fragments. Particle-based modeling approaches often do not represent breakup because of the computational demands of creating new droplets. We present a particle-based breakup method that preserves the computational efficiency of these methods. In a series of simple demonstrations, we show that this representation alters cloud processes in reasonable and expected ways.
Caiyi Jin, Qiangqiang Yuan, Tongwen Li, Yuan Wang, and Liangpei Zhang
Geosci. Model Dev., 16, 4137–4154, https://doi.org/10.5194/gmd-16-4137-2023, https://doi.org/10.5194/gmd-16-4137-2023, 2023
Short summary
Short summary
The semi-empirical physical approach derives PM2.5 with strong physical significance. However, due to the complex optical characteristic, the physical parameters are difficult to express accurately. Thus, combining the atmospheric physical mechanism and machine learning, we propose an optimized model. It creatively embeds the random forest model into the physical PM2.5 remote sensing approach to simulate a physical parameter. Our method shows great optimized performance in the validations.
Cyril Caram, Sophie Szopa, Anne Cozic, Slimane Bekki, Carlos A. Cuevas, and Alfonso Saiz-Lopez
Geosci. Model Dev., 16, 4041–4062, https://doi.org/10.5194/gmd-16-4041-2023, https://doi.org/10.5194/gmd-16-4041-2023, 2023
Short summary
Short summary
We studied the role of halogenated compounds (containing chlorine, bromine and iodine), emitted by natural processes (mainly above the oceans), in the chemistry of the lower layers of the atmosphere. We introduced this relatively new chemistry in a three-dimensional climate–chemistry model and looked at how this chemistry will disrupt the ozone. We showed that the concentration of ozone decreases by 22 % worldwide and that of the atmospheric detergent, OH, by 8 %.
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Marc Bocquet, Jinghui Lian, Grégoire Broquet, Gerrit Kuhlmann, Alexandre Danjou, and Thomas Lauvaux
Geosci. Model Dev., 16, 3997–4016, https://doi.org/10.5194/gmd-16-3997-2023, https://doi.org/10.5194/gmd-16-3997-2023, 2023
Short summary
Short summary
Monitoring of CO2 emissions is key to the development of reduction policies. Local emissions, from cities or power plants, may be estimated from CO2 plumes detected in satellite images. CO2 plumes generally have a weak signal and are partially concealed by highly variable background concentrations and instrument errors, which hampers their detection. To address this problem, we propose and apply deep learning methods to detect the contour of a plume in simulated CO2 satellite images.
Min-Seop Ahn, Paul A. Ullrich, Peter J. Gleckler, Jiwoo Lee, Ana C. Ordonez, and Angeline G. Pendergrass
Geosci. Model Dev., 16, 3927–3951, https://doi.org/10.5194/gmd-16-3927-2023, https://doi.org/10.5194/gmd-16-3927-2023, 2023
Short summary
Short summary
We introduce a framework for regional-scale evaluation of simulated precipitation distributions with 62 climate reference regions and 10 metrics and apply it to evaluate CMIP5 and CMIP6 models against multiple satellite-based precipitation products. The common model biases identified in this study are mainly associated with the overestimated light precipitation and underestimated heavy precipitation. These biases persist from earlier-generation models and have been slightly improved in CMIP6.
Christine Wiedinmyer, Yosuke Kimura, Elena C. McDonald-Buller, Louisa K. Emmons, Rebecca R. Buchholz, Wenfu Tang, Keenan Seto, Maxwell B. Joseph, Kelley C. Barsanti, Annmarie G. Carlton, and Robert Yokelson
Geosci. Model Dev., 16, 3873–3891, https://doi.org/10.5194/gmd-16-3873-2023, https://doi.org/10.5194/gmd-16-3873-2023, 2023
Short summary
Short summary
The Fire INventory from NCAR (FINN) provides daily global estimates of emissions from open fires based on satellite detections of hot spots. This version has been updated to apply MODIS and VIIRS satellite fire detection and better represents both large and small fires. FINNv2.5 generates more emissions than FINNv1 and is in general agreement with other fire emissions inventories. The new estimates are consistent with satellite observations, but uncertainties remain regionally and by pollutant.
Lichao Yang, Wansuo Duan, and Zifa Wang
Geosci. Model Dev., 16, 3827–3848, https://doi.org/10.5194/gmd-16-3827-2023, https://doi.org/10.5194/gmd-16-3827-2023, 2023
Short summary
Short summary
An approach is proposed to refine a ground meteorological observation network to improve the PM2.5 forecasts in the Beijing–Tianjin–Hebei region. A cost-effective observation network is obtained and makes the relevant PM2.5 forecasts assimilate fewer observations but achieve the forecasting skill comparable to or higher than that obtained by assimilating all ground station observations, suggesting that many of the current ground stations can be greatly scattered to avoid much unnecessary work.
Abhishekh Kumar Srivastava, Paul Aaron Ullrich, Deeksha Rastogi, Pouya Vahmani, Andrew Jones, and Richard Grotjahn
Geosci. Model Dev., 16, 3699–3722, https://doi.org/10.5194/gmd-16-3699-2023, https://doi.org/10.5194/gmd-16-3699-2023, 2023
Short summary
Short summary
Stakeholders need high-resolution regional climate data for applications such as assessing water availability and mountain snowpack. This study examines 3 h and 24 h historical precipitation over the contiguous United States in the 12 km WRF version 4.2.1-based dynamical downscaling of the ERA5 reanalysis. WRF improves precipitation characteristics such as the annual cycle and distribution of the precipitation maxima, but it also displays regionally and seasonally varying precipitation biases.
Haixia Xiao, Yaqiang Wang, Yu Zheng, Yuanyuan Zheng, Xiaoran Zhuang, Hongyan Wang, and Mei Gao
Geosci. Model Dev., 16, 3611–3628, https://doi.org/10.5194/gmd-16-3611-2023, https://doi.org/10.5194/gmd-16-3611-2023, 2023
Short summary
Short summary
Due to the small-scale and nonstationary nature of convective wind gusts (CGs), reliable CG nowcasting has remained unattainable. Here, we developed a deep learning model — namely CGsNet — for 0—2 h of quantitative CG nowcasting, first achieving minute—kilometer-level forecasts. Based on the CGsNet model, the average surface wind speed (ASWS) and peak wind gust speed (PWGS) predictions are obtained. Experiments indicate that CGsNet exhibits higher accuracy than the traditional method.
Maria Krutova, Mostafa Bakhoday-Paskyabi, Joachim Reuder, and Finn Gunnar Nielsen
Geosci. Model Dev., 16, 3553–3564, https://doi.org/10.5194/gmd-16-3553-2023, https://doi.org/10.5194/gmd-16-3553-2023, 2023
Short summary
Short summary
Local refinement of the grid is a powerful method allowing us to reduce the computational time while preserving the accuracy in the area of interest. Depending on the implementation, the local refinement may introduce unwanted numerical effects into the results. We study the wind speed common to the wind turbine operational speeds and confirm strong alteration of the result when the heat fluxes are present, except for the specific refinement scheme used.
Sylvia Sullivan, Behrooz Keshtgar, Nicole Albern, Elzina Bala, Christoph Braun, Anubhav Choudhary, Johannes Hörner, Hilke Lentink, Georgios Papavasileiou, and Aiko Voigt
Geosci. Model Dev., 16, 3535–3551, https://doi.org/10.5194/gmd-16-3535-2023, https://doi.org/10.5194/gmd-16-3535-2023, 2023
Short summary
Short summary
Clouds absorb and re-emit infrared radiation from Earth's surface and absorb and reflect incoming solar radiation. As a result, they change atmospheric temperature gradients that drive large-scale circulation. To better simulate this circulation, we study how the radiative heating and cooling from clouds depends on model settings like grid spacing; whether we describe convection approximately or exactly; and the level of detail used to describe small-scale processes, or microphysics, in clouds.
Denis E. Sergeev, Nathan J. Mayne, Thomas Bendall, Ian A. Boutle, Alex Brown, Iva Kavcic, James Kent, Krisztian Kohary, James Manners, Thomas Melvin, Enrico Olivier, Lokesh K. Ragta, Ben J. Shipway, Jon Wakelin, Nigel Wood, and Mohamed Zerroukat
EGUsphere, https://doi.org/10.5194/egusphere-2023-647, https://doi.org/10.5194/egusphere-2023-647, 2023
Short summary
Short summary
3D climate models are one of the best tools we have to study planetary atmospheres. Here, we apply LFRic-Atmosphere, a new model developed by the Met Office, to seven different scenarios for terrestrial planetary climates, including four for the exoplanet TRAPPIST-1e, a primary target for future observations. LFRic-Atmosphere reproduces these scenarios within the spread of the existing models across a range of key climatic variables, justifying its use in future exoplanet studies.
James Weber, James A. King, Katerina Sindelarova, and Maria Val Martin
Geosci. Model Dev., 16, 3083–3101, https://doi.org/10.5194/gmd-16-3083-2023, https://doi.org/10.5194/gmd-16-3083-2023, 2023
Short summary
Short summary
The emissions of volatile organic compounds from vegetation (BVOCs) influence atmospheric composition and contribute to certain gases and aerosols (tiny airborne particles) which play a role in climate change. BVOC emissions are likely to change in the future due to changes in climate and land use. Therefore, accurate simulation of BVOC emission is important, and this study describes an update to the simulation of BVOC emissions in the United Kingdom Earth System Model (UKESM).
Koichi Sakaguchi, L. Ruby Leung, Colin M. Zarzycki, Jihyeon Jang, Seth McGinnis, Bryce E. Harrop, William C. Skamarock, Andrew Gettelman, Chun Zhao, William J. Gutowski, Stephen Leak, and Linda Mearns
Geosci. Model Dev., 16, 3029–3081, https://doi.org/10.5194/gmd-16-3029-2023, https://doi.org/10.5194/gmd-16-3029-2023, 2023
Short summary
Short summary
We document details of the regional climate downscaling dataset produced by a global variable-resolution model. The experiment is unique in that it follows a standard protocol designed for coordinated experiments of regional models. We found negligible influence of post-processing on statistical analysis, importance of simulation quality outside of the target region, and computational challenges that our model code faced due to rapidly changing super computer systems.
Xueying Liu, Yuxuan Wang, Shailaja Wasti, Wei Li, Ehsan Soleimanian, James Flynn, Travis Griggs, Sergio Alvarez, John T. Sullivan, Maurice Roots, Laurence Twigg, Guillaume Gronoff, Timothy Berkoff, Paul Walter, Mark Estes, Johnathan W. Hair, Taylor Shingler, Amy Jo Scarino, Marta Fenn, and Laura Judd
EGUsphere, https://doi.org/10.5194/egusphere-2023-892, https://doi.org/10.5194/egusphere-2023-892, 2023
Short summary
Short summary
With a comprehensive suite of ground-based and airborne remote sensing measurements during the 2021 Tracking Aerosol Convection Experiment Air Quality (TRACER-AQ) campaign in Houston, this study evaluates the simulation of the planetary boundary layer (PBL) height and the ozone vertical profile by a high-resolution (1.33 km) 3-D photochemical model Weather Research and Forecasting-driven GEOS-Chem (WRF-GC).
Xiaohan Li, Yi Zhang, Xindong Peng, Baiquan Zhou, Jian Li, and Yiming Wang
Geosci. Model Dev., 16, 2975–2993, https://doi.org/10.5194/gmd-16-2975-2023, https://doi.org/10.5194/gmd-16-2975-2023, 2023
Short summary
Short summary
The weather and climate physics suites used in GRIST-A22.7.28 are compared using single-column modeling. The source of their discrepancies in terms of modeling cloud and precipitation is explored. Convective parameterization is found to be a key factor responsible for the differences. The two suites also have intrinsic differences in the interaction between microphysics and other processes, resulting in different cloud features and time step sensitivities.
Owen Kenneth Hughes and Christiane Jablonowski
EGUsphere, https://doi.org/10.5194/egusphere-2023-376, https://doi.org/10.5194/egusphere-2023-376, 2023
Short summary
Short summary
Atmospheric models benefit from idealized tests that assess their accuracy in a simpler simulation. A new test with artificial mountains is developed for models on a spherical earth. The mountains trigger the development of both planetary-scale and small-scale waves. These can be analyzed in dry or moist environments with a simple rainfall mechanism. Four atmospheric models are intercompared. This sheds light on the pros and cons of the model designs and the impact of mountains on the flow.
Shaohui Zhou, Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
EGUsphere, https://doi.org/10.5194/egusphere-2023-945, https://doi.org/10.5194/egusphere-2023-945, 2023
Short summary
Short summary
The proposed wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF evaluation indexes for 10 months remain relatively stable: accuracy rate FA is above 85 %. In future research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of the five southern provinces to generate a 3 km grid-corrected wind speed product.
Virginie Marécal, Ronan Voisin-Plessis, Tjarda Jane Roberts, Alessandro Aiuppa, Herizo Narivelo, Paul David Hamer, Béatrice Josse, Jonathan Guth, Luke Surl, and Lisa Grellier
Geosci. Model Dev., 16, 2873–2898, https://doi.org/10.5194/gmd-16-2873-2023, https://doi.org/10.5194/gmd-16-2873-2023, 2023
Short summary
Short summary
We implemented a halogen volcanic chemistry scheme in a one-dimensional modelling framework preparing for further use in a three-dimensional global chemistry-transport model. The results of the simulations for an eruption of Mt Etna in 2008, including various sensitivity tests, show a good consistency with previous modelling studies.
Zhe Feng, Joseph Hardin, Hannah C. Barnes, Jianfeng Li, L. Ruby Leung, Adam Varble, and Zhixiao Zhang
Geosci. Model Dev., 16, 2753–2776, https://doi.org/10.5194/gmd-16-2753-2023, https://doi.org/10.5194/gmd-16-2753-2023, 2023
Short summary
Short summary
PyFLEXTRKR is a flexible atmospheric feature tracking framework with specific capabilities to track convective clouds from a variety of observations and model simulations. The package has a collection of multi-object identification algorithms and has been optimized for large datasets. This paper describes the algorithms and demonstrates applications for tracking deep convective cells and mesoscale convective systems from observations and model simulations at a wide range of scales.
Yan Ji, Bing Gong, Michael Langguth, Amirpasha Mozaffari, and Xiefei Zhi
Geosci. Model Dev., 16, 2737–2752, https://doi.org/10.5194/gmd-16-2737-2023, https://doi.org/10.5194/gmd-16-2737-2023, 2023
Short summary
Short summary
Formulating short-term precipitation forecasting as a video prediction task, a novel deep learning architecture (convolutional long short-term memory generative adversarial network, CLGAN) is proposed. A benchmark dataset is built on minute-level precipitation measurements. Results show that with the GAN component the model generates predictions sharing statistical properties with observations, resulting in it outperforming the baseline in dichotomous and spatial scores for heavy precipitation.
Aleksander Lacima, Hervé Petetin, Albert Soret, Dene Bowdalo, Oriol Jorba, Zhaoyue Chen, Raúl F. Méndez Turrubiates, Hicham Achebak, Joan Ballester, and Carlos Pérez García-Pando
Geosci. Model Dev., 16, 2689–2718, https://doi.org/10.5194/gmd-16-2689-2023, https://doi.org/10.5194/gmd-16-2689-2023, 2023
Short summary
Short summary
Understanding how air pollution varies across space and time is of key importance for the safeguarding of human health. This work arose in the context of the project EARLY-ADAPT, for which the Barcelona Supercomputing Center developed an air pollution database covering all of Europe. Through different statistical methods, we compared two global pollution models against measurements from ground stations and found significant discrepancies between the observed and the modeled surface pollution.
Dien Wu, Joshua L. Laughner, Junjie Liu, Paul I. Palmer, John C. Lin, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-876, https://doi.org/10.5194/egusphere-2023-876, 2023
Short summary
Short summary
To balance computational expenses and chemical complexity in extracting emission signals from tropospheric NO2 columns, we propose a simplified non-linear Lagrangian chemistry transport model and evaluate modeled results against TROPOMI v2 over multiple power plants and cities. Using this model, we then discuss how NOx chemistry affects the relationship between NOx and CO2 emissions and how studying NO2 columns helps quantify modeled biases in wind direction and prior emissions.
William Rudisill, Alejandro Flores, and Rosemary Carroll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-69, https://doi.org/10.5194/gmd-2023-69, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
It's important to know how well atmospheric models do in the mountains, but there aren't very many weather stations. We evaluate rain and snow from a model from 1987–2020 in the Upper Colorado river basin against the data that's available. The model works pretty well but, there are still some uncertainties in remote locations. We then use snow maps collected by aircraft, streamflow measurements, and some advanced statistics to help identify how well the model works in ways we couldn't before.
Andrew Geiss, Po-Lun Ma, Balwinder Singh, and Joseph C. Hardin
Geosci. Model Dev., 16, 2355–2370, https://doi.org/10.5194/gmd-16-2355-2023, https://doi.org/10.5194/gmd-16-2355-2023, 2023
Short summary
Short summary
Atmospheric aerosols play a critical role in Earth's climate, but it is too computationally expensive to directly model their interaction with radiation in climate simulations. This work develops a new neural-network-based parameterization of aerosol optical properties for use in the Energy Exascale Earth System Model that is much more accurate than the current one; it also introduces a unique model optimization method that involves randomly generating neural network architectures.
Joey C. Y. Lam, Amos P. K. Tai, Jason A. Ducker, and Christopher D. Holmes
Geosci. Model Dev., 16, 2323–2342, https://doi.org/10.5194/gmd-16-2323-2023, https://doi.org/10.5194/gmd-16-2323-2023, 2023
Short summary
Short summary
We developed a new component within an atmospheric chemistry model to better simulate plant ecophysiological processes relevant for ozone air quality. We showed that it reduces simulated biases in plant uptake of ozone in prior models. The new model enables us to explore how future climatic changes affect air quality via affecting plants, examine ozone–vegetation interactions and feedbacks, and evaluate the impacts of changing atmospheric chemistry and climate on vegetation productivity.
Wenfu Tang, Louisa K. Emmons, Helen M. Worden, Rajesh Kumar, Cenlin He, Benjamin Gaubert, Zhonghua Zheng, Simone Tilmes, Rebecca R. Buchholz, Sara-Eva Martinez-Alonso, Claire Granier, Antonin Soulie, Kathryn McKain, Bruce Daube, Jeff Peischl, Chelsea Thompson, and Pieternel Levelt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-50, https://doi.org/10.5194/gmd-2023-50, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
The new MUSICAv0 model enables the study of atmospheric chemistry across all relevant scales. We develop a MUSICAv0 grid for Africa. We evaluate MUSICAv0 with observations, and compare it with a previously used model – WRF-Chem. Overall, the performance of MUSICAv0 is comparable to WRF-Chem. Based on model-satellite discrepancies, we find that future field campaigns in an East African region (30° E – 45° E, 5° S – 5° N) could substantially improve the predictive skill of air quality models.
Qian Shu, Sergey L. Napelenok, William T. Hutzell, Kirk R. Baker, Barron H. Henderson, Benjamin N. Murphy, and Christian Hogrefe
Geosci. Model Dev., 16, 2303–2322, https://doi.org/10.5194/gmd-16-2303-2023, https://doi.org/10.5194/gmd-16-2303-2023, 2023
Short summary
Short summary
Source attribution methods are generally used to determine culpability of precursor emission sources to ambient pollutant concentrations. However, source attribution of secondarily formed pollutants such as ozone and its precursors cannot be explicitly measured, making evaluation of source apportionment methods challenging. In this study, multiple apportionment approach comparisons show common features but still reveal wide variations in predicted sector contribution and species dependency.
Simone Tilmes, Michael J. Mills, Yunqian Zhu, Charles G. Bardeen, Francis Vitt, Pengfei Yu, David Fillmore, Xiaohong Liu, Brian Toon, and Terry Deshler
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-79, https://doi.org/10.5194/gmd-2023-79, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
We implemented an alternative aerosol scheme in the high and low-top model versions of the Community Earth System Model Version 2 (CESM2) with a more detailed description of tropospheric and stratospheric aerosol size distributions than the existing aerosol model. The development enables the comparison of different aerosol schemes with different complexity in the same model framework and identifies improvements in comparison to a range of observations in both the troposphere and stratosphere.
Cited articles
Berchet, A., Sollum, E., Thompson, R. L., Pison, I., Thanwerdas, J., Broquet, G., Chevallier, F., Aalto, T., Berchet, A., Bergamaschi, P., Brunner, D., Engelen, R., Fortems-Cheiney, A., Gerbig, C., Groot Zwaaftink, C. D., Haussaire, J.-M., Henne, S., Houweling, S., Karstens, U., Kutsch, W. L., Luijkx, I. T., Monteil, G., Palmer, P. I., van Peet, J. C. A., Peters, W., Peylin, P., Potier, E., Rödenbeck, C., Saunois, M., Scholze, M., Tsuruta, A., and Zhao, Y.:
The Community Inversion Framework v1.0: a unified system for atmospheric inversion studies, Geosci. Model Dev., 14, 5331–5354, https://doi.org/10.5194/gmd-14-5331-2021, 2021. a, b
Berchet, A., Sollum, E., Pison, I., Thompson, R. L., Thanwerdas, J., Fortems-Cheiney, A., van Peet, J. C. A., Potier, E., Chevallier, F., Broquet, G., and Berchet, A.: The Community Inversion Framework: codes and documentation (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.6304912, 2022. a
Bergamaschi, P., Lubina, C., Königstedt, R., Fischer, H., Veltkamp, A. C., and Zwaagstra, O.:
Stable isotopic signatures (δ13C, δD) of methane from European landfill sites, J. Geophys. Res.-Atmos., 103, 8251–8265, https://doi.org/10.1029/98JD00105, 1998. a
Bergamaschi, P., Krol, M., Meirink, J. F., Dentener, F., Segers, A., van Aardenne, J., Monni, S., Vermeulen, A. T., Schmidt, M., Ramonet, M., Yver, C., Meinhardt, F., Nisbet, E. G., Fisher, R. E., O'Doherty, S., and Dlugokencky, E. J.:
Inverse modeling of European CH4 emissions 2001–2006, J. Geophys. Res.-Atmos., 115, D22309, https://doi.org/10.1029/2010JD014180, 2010. a
Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, J. Geophys. Res.-Atmos., 118, 7350–7369, https://doi.org/10.1002/jgrd.50480, 2013. a, b
Bergamaschi, P., Karstens, U., Manning, A. J., Saunois, M., Tsuruta, A., Berchet, A., Vermeulen, A. T., Arnold, T., Janssens-Maenhout, G., Hammer, S., Levin, I., Schmidt, M., Ramonet, M., Lopez, M., Lavric, J., Aalto, T., Chen, H., Feist, D. G., Gerbig, C., Haszpra, L., Hermansen, O., Manca, G., Moncrieff, J., Meinhardt, F., Necki, J., Galkowski, M., O'Doherty, S., Paramonova, N., Scheeren, H. A., Steinbacher, M., and Dlugokencky, E.:
Inverse modelling of European CH4 emissions during 2006–2012 using different inverse models and reassessed atmospheric observations, Atmos. Chem. Phys., 18, 901–920, https://doi.org/10.5194/acp-18-901-2018, 2018. a
Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., Van der Werf, G. R., Peylin, P., Brunke, E.-G., Carouge, C., Langenfelds, R. L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L. P., Tyler, S. C., and White, J.:
Contribution of anthropogenic and natural sources to atmospheric methane variability, Nature, 443, 439–443, https://doi.org/10.1038/nature05132, 2006. a, b, c, d
Bréas, O., Guillou, C., Reniero, F., and Wada, E.:
The Global Methane Cycle: Isotopes and Mixing Ratios, Sources and Sinks, Isot. Environ. Healt. S., 37, 257–379, https://doi.org/10.1080/10256010108033302, 2001. a
Chang, J., Peng, S., Ciais, P., Saunois, M., Dangal, S. R. S., Herrero, M., Havlík, P., Tian, H., and Bousquet, P.:
Revisiting enteric methane emissions from domestic ruminants and their δ13CCH4 source signature, Nat. Commun., 10, 3420, https://doi.org/10.1038/s41467-019-11066-3, 2019. a, b
Chanton, J. P., Rutkowski, C. M., and Mosher, B.:
Quantifying Methane Oxidation from Landfills Using Stable Isotope Analysis of Downwind Plumes, Environ. Sci. Technol., 33, 3755–3760, https://doi.org/10.1021/es9904033, 1999. a
Chanton, J. P., Rutkowski, C. M., Schwartz, C. C., Ward, D. E., and Boring, L.:
Factors influencing the stable carbon isotopic signature of methane from combustion and biomass burning, J. Geophys. Res.-Atmos., 105, 1867–1877, https://doi.org/10.1029/1999JD900909, 2000. a
Chevallier, F.:
On the parallelization of atmospheric inversions of CO2 surface fluxes within a variational framework, Geosci. Model Dev., 6, 783–790, https://doi.org/10.5194/gmd-6-783-2013, 2013. a
Chevallier, F., Fisher, M., Peylin, P., Serrar, S., Bousquet, P., Bréon, F.-M., Chédin, A., and Ciais, P.:
Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data, J. Geophys. Res., 110, D24309, https://doi.org/10.1029/2005JD006390, 2005. a, b
Craig, H.:
Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide, Geochim. Cosmochim. Ac., 12, 133–149, https://doi.org/10.1016/0016-7037(57)90024-8, 1957. a
Dlugokencky, E.:
NOAA/GML, https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/ (last access: 23 February 2022), 2021. a
Dubos, T., Dubey, S., Tort, M., Mittal, R., Meurdesoif, Y., and Hourdin, F.:
DYNAMICO-1.0, an icosahedral hydrostatic dynamical core designed for consistency and versatility, Geosci. Model Dev., 8, 3131–3150, https://doi.org/10.5194/gmd-8-3131-2015, 2015. a
Enting, I. G. and Newsam, G. N.:
Atmospheric constituent inversion problems: Implications for baseline monitoring, J. Atmos. Chem., 11, 69–87, https://doi.org/10.1007/BF00053668, 1990. a
Etiope, G.:
Natural Gas Seepage: The Earth's Hydrocarbon Degassing, Springer International Publishing, Switzerland, https://www.springer.com/gp/book/9783319146003 (last access: 23 February 2022), 2015. a
Etminan, M., Myhre, G., Highwood, E. J., and Shine, K. P.:
Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, Geophys. Res. Lett., 43, 12,614–12,623, https://doi.org/10.1002/2016GL071930, 2016. a
Fisher, M.:
Minimization algorithms for variational data assimilation, http://www.ecmwf.int/en/elibrary/9400-minimization-algorithms-variational-data-assimilation (last access: 23 August 2021), 1998. a
Fletcher, S. E. M., Tans, P. P., Bruhwiler, L. M., Miller, J. B., and Heimann, M.:
CH4 sources estimated from atmospheric observations of CH4 and its isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions, Global Biogeochemical Cycles, 18, GB4005, https://doi.org/10.1029/2004GB002224, 2004. a
Fujita, R., Morimoto, S., Maksyutov, S., Kim, H.-S., Arshinov, M., Brailsford, G., Aoki, S., and Nakazawa, T.:
Global and Regional CH4 Emissions for 1995–2013 Derived From Atmospheric CH4, δ13C-CH4, and δD-CH4 Observations and a Chemical Transport Model, J. Geophys. Res.-Atmos., 125, e2020JD032903, https://doi.org/10.1029/2020JD032903, 2020. a
Ganesan, A. L., Stell, A. C., Gedney, N., Comyn-Platt, E., Hayman, G., Rigby, M., Poulter, B., and Hornibrook, E. R. C.:
Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions, Geophys. Res. Lett., 45, 3737–3745, https://doi.org/10.1002/2018GL077536, 2018. a, b
Gilbert, J. C. and Lemaréchal, C.:
Some numerical experiments with variable-storage quasi-Newton algorithms, Math. Program., 45, 407–435, https://doi.org/10.1007/BF01589113, 1989. a
GLOBALVIEW-CH4: Cooperative Atmospheric Data Integration Project – Methane, CD-ROM, also available on Internet via anonymous FTP to ftp://ftp.cmdl.noaa.gov (last access: 23 February 2022), Path: ccg/ch4/GLOBALVIEW, NOAA ESRL, Boulder, Colorado, 2009. a
Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I. Y., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Sarmiento, J., Taguchi, S., Takahashi, T., and Yuen, C.-W.:
Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models, Nature, 415, 626–630, https://doi.org/10.1038/415626a, 2002. a
Holmes, M. E., Sansone, F. J., Rust, T. M., and Popp, B. N.:
Methane production, consumption, and air–sea exchange in the open ocean: An Evaluation based on carbon isotopic ratios, Global Biogeochem. Cy., 14, 1–10, https://doi.org/10.1029/1999GB001209, 2000. a
Hourdin, F., Musat, I., Bony, S., Braconnot, P., Codron, F., Dufresne, J.-L., Fairhead, L., Filiberti, M.-A., Friedlingstein, P., Grandpeix, J.-Y., Krinner, G., LeVan, P., Li, Z.-X., and Lott, F.:
The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection, Clim. Dynam., 27, 787–813, https://doi.org/10.1007/s00382-006-0158-0, 2006. a
Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M., Kaminski, T., Krol, M., Michalak, A. M., and Patra, P.:
Global inverse modeling of CH4 sources and sinks: an overview of methods, Atmos. Chem. Phys., 17, 235–256, https://doi.org/10.5194/acp-17-235-2017, 2017. a
Ide, K., Courtier, P., Ghil, M., and Lorenc, A. C.:
Unified Notation for Data Assimilation: Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice), J. Meteorol. Soc. Jpn. Ser. II, 75, 181–189, https://doi.org/10.2151/jmsj1965.75.1B_181, 1997. a
Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J. G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doering, U., and Petrescu, A. M. R.:
EDGAR v4.3.2 Global Atlas of the three major Greenhouse Gas Emissions for the period 1970–2012, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2017-79, 2017. a
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Le Quéré, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B., Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss, R. F., Williams, J. E., and Zeng, G.:
Three decades of global methane sources and sinks, Nat. Geosci., 6, 813–823, https://doi.org/10.1038/ngeo1955, 2013. a
Klevenhusen, F., Bernasconi, S. M., Kreuzer, M., and Soliva, C. R.:
Experimental validation of the Intergovernmental Panel on Climate Change default values for ruminant-derived methane and its carbon-isotope signature, Anim. Prod. Sci., 50, 159, https://doi.org/10.1071/AN09112, 2010. a
Kort, E. A., Smith, M. L., Murray, L. T., Gvakharia, A., Brandt, A. R., Peischl, J., Ryerson, T. B., Sweeney, C., and Travis, K.:
Fugitive emissions from the Bakken shale illustrate role of shale production in global ethane shift, Geophys. Res. Lett., 43, 4617–4623, https://doi.org/10.1002/2016GL068703, 2016. a
Lambert, G. and Schmidt, S.:
Reevaluation of the oceanic flux of methane: Uncertainties and long term variations, Chemosphere, 26, 579–589, https://doi.org/10.1016/0045-6535(93)90443-9, 1993. a
Levin, I., Bergamaschi, P., Dörr, H., and Trapp, D.:
Stable isotopic signature of methane from major sources in Germany, Chemosphere, 26, 161–177, https://doi.org/10.1016/0045-6535(93)90419-6, 1993. a
Liu, X., Weinbren, A. L., Chang, H., Tadić, J. M., Mountain, M. E., Trudeau, M. E., Andrews, A. E., Chen, Z., and Miller, S. M.:
Data reduction for inverse modeling: an adaptive approach v1.0, Geosci. Model Dev., 14, 4683–4696, https://doi.org/10.5194/gmd-14-4683-2021, 2021. a
Locatelli, R., Bousquet, P., Chevallier, F., Fortems-Cheney, A., Szopa, S., Saunois, M., Agusti-Panareda, A., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Gloor, E., Houweling, S., Kawa, S. R., Krol, M., Patra, P. K., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.:
Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling, Atmos. Chem. Phys., 13, 9917–9937, https://doi.org/10.5194/acp-13-9917-2013, 2013. a
Locatelli, R., Bousquet, P., Saunois, M., Chevallier, F., and Cressot, C.:
Sensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations, Atmos. Chem. Phys., 15, 9765–9780, https://doi.org/10.5194/acp-15-9765-2015, 2015. a
Louis, J.-F.:
A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Lay. Meteorol., 17, 187–202, https://doi.org/10.1007/BF00117978, 1979. a
Masarie, K. A. and Tans, P. P.:
Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record, J. Geophys. Res.-Atmos., 100, 11593–11610, https://doi.org/10.1029/95JD00859, 1995. a, b
McNorton, J., Wilson, C., Gloor, M., Parker, R. J., Boesch, H., Feng, W., Hossaini, R., and Chipperfield, M. P.:
Attribution of recent increases in atmospheric methane through 3-D inverse modelling, Atmos. Chem. Phys., 18, 18149–18168, https://doi.org/10.5194/acp-18-18149-2018, 2018. a, b
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond, N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Siour, G., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G.:
CHIMERE 2013: a model for regional atmospheric composition modelling, Geosci. Model Dev., 6, 981–1028, https://doi.org/10.5194/gmd-6-981-2013, 2013. a
Neef, L., van Weele, M., and van Velthoven, P.: Optimal estimation of the present-day global methane budget, Global Biogeochem. Cy., 24, GB4024, https://doi.org/10.1029/2009GB003661, 2010. a
Newsam, G. N. and Enting, I. G.:
Inverse problems in atmospheric constituent studies. I. Determination of surface sources under a diffusive transport approximation, Inverse Probl., 4, 1037–1054, https://doi.org/10.1088/0266-5611/4/4/008, 1988. a
Nisbet, E. G., Manning, M. R., Dlugokencky, E. J., Fisher, R. E., Lowry, D., Michel, S. E., Myhre, C. L., Platt, S. M., Allen, G., Bousquet, P., Brownlow, R., Cain, M., France, J. L., Hermansen, O., Hossaini, R., Jones, A. E., Levin, I., Manning, A. C., Myhre, G., Pyle, J. A., Vaughn, B. H., Warwick, N. J., and White, J. W. C.:
Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement, Global Biogeochem. Cy., 33, 318–342, https://doi.org/10.1029/2018GB006009, 2019. a
Patra, P. K., Houweling, S., Krol, M., Bousquet, P., Belikov, D., Bergmann, D., Bian, H., Cameron-Smith, P., Chipperfield, M. P., Corbin, K., Fortems-Cheiney, A., Fraser, A., Gloor, E., Hess, P., Ito, A., Kawa, S. R., Law, R. M., Loh, Z., Maksyutov, S., Meng, L., Palmer, P. I., Prinn, R. G., Rigby, M., Saito, R., and Wilson, C.:
TransCom model simulations of CH4 and related species: linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere, Atmos. Chem. Phys., 11, 12813–12837, https://doi.org/10.5194/acp-11-12813-2011, 2011. a
Peters, W., Miller, J. B., Whitaker, J., Denning, A. S., Hirsch, A., Krol, M. C., Zupanski, D., Bruhwiler, L., and Tans, P. P.:
An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations, J. Geophys. Res.-Atmos., 110, https://doi.org/10.1029/2005JD006157, 2005. a
Pison, I., Bousquet, P., Chevallier, F., Szopa, S., and Hauglustaine, D.:
Multi-species inversion of CH4, CO and H2 emissions from surface measurements, Atmos. Chem. Phys., 9, 5281–5297, https://doi.org/10.5194/acp-9-5281-2009, 2009. a
Poulter, B., Bousquet, P., Canadell, J. G., Ciais, P., Peregon, A., Saunois, M., Arora, V. K., Beerling, D. J., Brovkin, V., Jones, C. D., Joos, F., Gedney, N., Ito, A., Kleinen, T., Koven, C. D., McDonald, K., Melton, J. R., Peng, C., Peng, S., Prigent, C., Schroeder, R., Riley, W. J., Saito, M., Spahni, R., Tian, H., Taylor, L., Viovy, N., Wilton, D., Wiltshire, A., Xu, X., Zhang, B., Zhang, Z., and Zhu, Q.:
Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics, Environ. Res. Lett., 12, 094013, https://doi.org/10.1088/1748-9326/aa8391, 2017. a
Rayner, P. J., Michalak, A. M., and Chevallier, F.:
Fundamentals of data assimilation applied to biogeochemistry, Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, 2019. a
Rice, A. L., Butenhoff, C. L., Teama, D. G., Röger, F. H., Khalil, M. A. K., and Rasmussen, R. A.:
Atmospheric methane isotopic record favors fossil sources flat in 1980s and 1990s with recent increase, P. Natl. Acad. Sci. USA, 113, 10791–10796, https://doi.org/10.1073/pnas.1522923113, 2016. a, b
Rigby, M., Manning, A. J., and Prinn, R. G.:
The value of high-frequency, high-precision methane isotopologue measurements for source and sink estimation, J. Geophys. Res.-Atmos., 117, D12312, https://doi.org/10.1029/2011JD017384, 2012. a, b
Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young, D., O'Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A. J., Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J., Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., McCulloch, A., and Park, S.:
Role of atmospheric oxidation in recent methane growth, P. Natl. Acad. Sci. USA, 114, 5373–5377, https://doi.org/10.1073/pnas.1616426114, 2017. a
Rödenbeck, C., Houweling, S., Gloor, M., and Heimann, M.:
CO2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport, Atmos. Chem. Phys., 3, 1919–1964, https://doi.org/10.5194/acp-3-1919-2003, 2003. a
Sansone, F. J., Popp, B. N., Gasc, A., Graham, A. W., and Rust, T. M.:
Highly elevated methane in the eastern tropical North Pacific and associated isotopically enriched fluxes to the atmosphere, Geophys. Res. Lett., 28, 4567–4570, https://doi.org/10.1029/2001GL013460, 2001. a
Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G., Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe, M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Crevoisier, C., Crill, P., Covey, K., Frankenberg, C., Gedney, N., Höglund-Isaksson, L., Ishizawa, M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli, R., Machida, T., Maksyutov, S., Melton, J. R., Morino, I., Naik, V., O'Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters, G. P., Pison, I., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., Weiss, R., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu, X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.:
Variability and quasi-decadal changes in the methane budget over the period 2000–2012, Atmos. Chem. Phys., 17, 11135–11161, https://doi.org/10.5194/acp-17-11135-2017, 2017. a, b
Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.:
The Global Methane Budget 2000–2017, Earth Syst. Sci. Data, 12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. a, b, c, d
Schaefer, H., Fletcher, S. E. M., Veidt, C., Lassey, K. R., Brailsford, G. W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.:
A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4, Science, 352, 80–84, https://doi.org/10.1126/science.aad2705, 2016. a, b
Schwietzke, S., Sherwood, O. A., Bruhwiler, L. M. P., Miller, J. B., Etiope, G., Dlugokencky, E. J., Michel, S. E., Arling, V. A., Vaughn, B. H., White, J. W. C., and Tans, P. P.:
Upward revision of global fossil fuel methane emissions based on isotope database, Nature, 538, 88–91, https://doi.org/10.1038/nature19797, 2016. a, b, c
Smith, M. L., Kort, E. A., Karion, A., Sweeney, C., Herndon, S. C., and Yacovitch, T. I.:
Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions, Environ. Sci. Technol., 49, 8158–8166, https://doi.org/10.1021/acs.est.5b00219, 2015. a
Tans, P. P.:
A note on isotopic ratios and the global atmospheric methane budget, Global Biogeochem. Cy., 11, 77–81, https://doi.org/10.1029/96GB03940, 1997. a, b
Thanwerdas, J., Saunois, M., Berchet, A., Pison, I., Hauglustaine, D., Ramonet, M., Crevoisier, C., Baier, B., Sweeney, C., and Bousquet, P.:
Impact of atomic chlorine on the modelling of total methane and its 13C:12C isotopic ratio at global scale, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2019-925, 2019. a
Thompson, R. L., Nisbet, E. G., Pisso, I., Stohl, A., Blake, D., Dlugokencky, E. J., Helmig, D., and White, J. W. C.:
Variability in Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three Decades, Geophys. Res. Lett., 45, 11,499–11,508, https://doi.org/10.1029/2018GL078127, 2018. a, b
Tiedtke, M.:
A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models, Mon. Weather Rev., 117, 1779–1800, https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2, 1989. a
Townsend-Small, A., Tyler, S. C., Pataki, D. E., Xu, X., and Christensen, L. E.:
Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions, J. Geophys. Res.-Atmos., 117, D07308, https://doi.org/10.1029/2011JD016826, 2012. a
Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.:
Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl, P. Natl. Acad. Sci. USA,
114,
5367–5372,
https://doi.org/10.1073/pnas.1616020114, 2017. a
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.:
Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017. a
Warwick, N. J., Cain, M. L., Fisher, R., France, J. L., Lowry, D., Michel, S. E., Nisbet, E. G., Vaughn, B. H., White, J. W. C., and Pyle, J. A.:
Using δ13C−CH4 and δD−CH4 to constrain Arctic methane emissions, Atmos. Chem. Phys., 16, 14891–14908, https://doi.org/10.5194/acp-16-14891-2016, 2016. a
Yver, C. E., Pison, I. C., Fortems-Cheiney, A., Schmidt, M., Chevallier, F., Ramonet, M., Jordan, A., Søvde, O. A., Engel, A., Fisher, R. E., Lowry, D., Nisbet, E. G., Levin, I., Hammer, S., Necki, J., Bartyzel, J., Reimann, S., Vollmer, M. K., Steinbacher, M., Aalto, T., Maione, M., Arduini, J., O'Doherty, S., Grant, A., Sturges, W. T., Forster, G. L., Lunder, C. R., Privalov, V., Paramonova, N., Werner, A., and Bousquet, P.:
A new estimation of the recent tropospheric molecular hydrogen budget using atmospheric observations and variational inversion, Atmos. Chem. Phys., 11, 3375–3392, https://doi.org/10.5194/acp-11-3375-2011, 2011.
a
Zazzeri, G., Lowry, D., Fisher, R. E., France, J. L., Lanoisellé, M., Kelly, B. F. J., Necki, J. M., Iverach, C. P., Ginty, E., Zimnoch, M., Jasek, A., and Nisbet, E. G.:
Carbon isotopic signature of coal-derived methane emissions to the atmosphere: from coalification to alteration, Atmos. Chem. Phys., 16, 13669–13680, https://doi.org/10.5194/acp-16-13669-2016, 2016. a, b
Zupanski, D., Hou, A. Y., Zhang, S. Q., Zupanski, M., Kummerow, C. D., and Cheung, S. H.:
Applications of information theory in ensemble data assimilation, Q. J. Roy. Meteorol. Soc., 133, 1533–1545, https://doi.org/10.1002/qj.123, 2007. a
Short summary
Estimating CH4 sources by exploiting observations within an inverse modeling framework is a powerful approach. Here, a new system designed to assimilate δ13C(CH4) observations together with CH4 observations is presented. By optimizing both the emissions and associated source signatures of multiple emission categories, this new system can efficiently differentiate the co-located emission categories and provide estimates of CH4 sources that are consistent with isotopic data.
Estimating CH4 sources by exploiting observations within an inverse modeling framework is a...