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Abstract. Atmospheric CH4 mole fractions resumed their
increase in 2007 after a plateau during the 1999–2006 pe-
riod, indicating relative changes in the sources and sinks.
Estimating sources by exploiting observations within an in-
verse modeling framework (top-down approaches) is a pow-
erful approach. It is, nevertheless, challenging to efficiently
differentiate co-located emission categories and sinks by
using CH4 observations alone. As a result, top-down ap-
proaches are limited when it comes to fully understanding
CH4 burden changes and attributing these changes to spe-
cific source variations. δ13C(CH4)source isotopic signatures
of CH4 sources differ between emission categories (biogenic,
thermogenic, and pyrogenic) and can therefore be used to
address this limitation. Here, a new 3-D variational inverse
modeling framework designed to assimilate δ13C(CH4) ob-
servations together with CH4 observations is presented. This
system is capable of optimizing both the emissions and the
associated source signatures of multiple emission categories
at the pixel scale. To our knowledge, this represents the
first attempt to carry out variational inversion assimilating
δ13C(CH4) with a 3-D chemistry transport model (CTM)
and to independently optimize isotopic source signatures of
multiple emission categories. We present the technical im-
plementation of joint CH4 and δ13C(CH4) constraints in a
variational system and analyze how sensitive the system is
to the setup controlling the optimization using the LMDz-
SACS 3-D CTM. We find that assimilating δ13C(CH4) ob-
servations and allowing the system to adjust isotopic source
signatures provide relatively large differences in global flux
estimates for wetlands (−5.7 TgCH4 yr−1), agriculture and

waste (−6.4 TgCH4 yr−1), fossil fuels (+8.6 TgCH4 yr−1)
and biofuels–biomass burning (+3.2 TgCH4 yr−1) cate-
gories compared to the results inferred without assimilating
δ13C(CH4) observations. More importantly, when assimilat-
ing both CH4 and δ13C(CH4) observations, but assuming that
the source signatures are perfectly known, these differences
increase by a factor of 3–4, strengthening the importance
of having as accurate signature estimates as possible. Initial
conditions, uncertainties in δ13C(CH4) observations, or the
number of optimized categories have a much smaller impact
(less than 2 TgCH4 yr−1).

1 Introduction

Methane (CH4) is a powerful greenhouse gas and is re-
sponsible for 23 % (Etminan et al., 2016) of the radiative
forcing induced by the well-mixed greenhouse gases (CO2,
CH4, N2O). Atmospheric CH4 mole fractions have increased
quasi-continuously since the preindustrial era and by about
9 ppbyr−1 (parts per billion per year) from 1984 to 1998
(Dlugokencky, 2021). After a plateau between 1999 and
2006 that still generates attention and controversy (e.g., Fu-
jita et al., 2020; Thompson et al., 2018; McNorton et al.,
2018; Turner et al., 2017; Schaefer et al., 2016; Schwiet-
zke et al., 2016; Rice et al., 2016), the mole fractions re-
sumed their increase at a large rate, exceeding 10 ppbyr−1

in 2014 and 2015. Trends in atmospheric CH4 are caused by
a small imbalance between large sources and sinks. Assess-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4832 J. Thanwerdas et al.: Variational inverse modeling to assimilate δ13C(CH4) and CH4

ing their spatiotemporal characteristics is particularly chal-
lenging, considering the variety of CH4 emissions. Yet, iden-
tifying and quantifying the processes contributing to these
changes is mandatory to formulate relevant CH4 mitigation
policies that would contribute to meeting the target of the
2015 UN Paris Agreement on Climate Change and to limit
climate warming to 2 ◦C.

Thanks to continuous efforts of surface monitoring net-
works, the spatial coverage and the accuracy of the atmo-
spheric CH4 measurements provided to the scientific com-
munity have increased over the last decades. Consequently,
top-down estimates using inversion methods emerged and
became relevant, along with bottom-up estimates, for ex-
plaining and quantifying the recent sources and sinks vari-
ations. The first inverse modeling techniques were designed
in the late 1980s and early 1990s for inferring greenhouse
gas sources and sinks from atmospheric CO2 measurements
(Enting and Newsam, 1990; Newsam and Enting, 1988).
Without a regularization of the problem, e.g., providing prior
information, the inverse problem is ill-conditioned (or ill-
posed). It means that there is no unique solution to the prob-
lem but also that a small error in the assimilated data (here
atmospheric observations) can result in large errors in the de-
rived solution. Several inversion methods have been designed
over the years, among which there are analytical (e.g., Bous-
quet et al., 2006; Gurney et al., 2002), ensemble (e.g., Zu-
panski et al., 2007; Peters et al., 2005), and variational meth-
ods (e.g., Chevallier et al., 2005). The variational formulation
uses the adjoint equations of a specific model to compute the
gradient of a cost function and then minimize it, for exam-
ple, using a gradient descent method. Computational times
and memory costs do not scale with the number of measure-
ments and the number of variables to control, contrary to the
analytical and ensemble methods, which can hardly accom-
modate very large observational datasets and control vectors
at the same time. Thus, the variational formulation is pre-
ferred to the others when optimizing emissions and sinks at
the pixel scale using large volumes of observational data, al-
though its main limitation is the numerical cost for accessing
posterior uncertainties when there is nonlinearity in the in-
version problem (Berchet et al., 2021).

Inversion systems generally assimilate measurements
from ground-based stations and/or satellites to constrain the
global sources and sinks of CH4, starting from a prior knowl-
edge of these. These systems are very effective for providing
total emission estimates (e.g., Saunois et al., 2020; Berga-
maschi et al., 2018, 2013; Saunois et al., 2017; Houweling
et al., 2017, and references therein). However, differentiat-
ing the contributions of multiple co-located CH4 source cat-
egories is challenging as it only relies on different season-
ality cycles and on applied spatial distributions and error
correlations (e.g., Bergamaschi et al., 2013, 2010). The at-
mospheric isotopic signal contains additional information on
CH4 emissions that can help to separate emission categories
based on their source origin. The atmospheric isotopic signal

δ13C(CH4) is defined as follows:

δ13C(CH4)=
R

Rstd
− 1, (1)

where R and Rstd denote the sample and standard 13CH4 :
12CH4 ratios. We use the Vienna Pee Dee Belemnite (V-
PDB) scale with Rstd= 0.00112372 (Craig, 1957) through-
out this paper. The isotopic source signatures of CH4,
here denoted by δ13C(CH4)source, notably differ between
emission categories ranging from 13C-depleted biogenic
sources (−61.7± 6.2 ‰; 1 standard deviation) and ther-
mogenic sources (−44.8± 10.7 ‰) to 13C-enriched ther-
mogenic sources (−26.2± 4.8 ‰) (Sherwood et al., 2017;
Schwietzke et al., 2016), although the distributions are very
large and overlaps exist between the extreme values. Con-
sequently, δ13C(CH4) depends on both CH4 emissions and
their isotopic signatures. Saunois et al. (2017) pointed out
that many emission scenarios inferred from atmospheric in-
versions are not consistent with δ13C(CH4) observations and
that this constraint must be integrated into the inversion sys-
tems to avoid such inconsistencies. In addition, they high-
lighted the sensitivity of the atmospheric isotopic signal to
the source partitioning and prescribed isotopic ratios. Since
the 1990s, δ13C(CH4) has been monitored at multiple sites,
providing opportunities to use this constraint within an inver-
sion framework. In addition, these values have been shifting
towards more negative values since 2006 (Nisbet et al., 2019)
when CH4 trends resumed their increase, suggesting that this
isotopic data can help to understand the processes that con-
tributed to the renewed growth. However, implementing the
assimilation of such measurements into an inversion system
is not straightforward and introduces additional complexity.

Hereinafter, the assimilation of δ13C(CH4) observations
to constrain the estimates of an inversion is referred to as the
isotopic constraint. The implementation of such a constraint
in an inversion system has already been attempted in previ-
ous studies focusing on CH4 (e.g., Thompson et al., 2018;
McNorton et al., 2018; Rigby et al., 2017; Rice et al., 2016;
Schaefer et al., 2016; Schwietzke et al., 2016; Rigby et al.,
2012; Neef et al., 2010; Bousquet et al., 2006; Fletcher et al.,
2004) but, to our knowledge, never in a variational system as-
sociated to a 3-D chemistry transport model (CTM). Adding
this isotopic constraint to a variational inversion system is
challenging as, in contrast to an analytic inversion in which
the response functions of the model are precomputed, the
isotopic constraints have to be considered both in the for-
ward (simulated isotopic values) and the adjoint (sensitivity
of isotopic observations to optimized variables) versions of
the model.

This new system was implemented in the Community In-
version Framework (CIF), supported by the European Union
H2020 project VERIFY (http://community-inversion.eu, last
access: 3 June 2022) and required to implement new for-
ward, tangent linear and adjoint operations. The forward op-
erations were previously used to estimate the impact of the
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Cl sink on the modeling of CH4 and δ13C(CH4) in LMDz-
SACS (Thanwerdas et al., 2019). The purpose of this study is
to present the technical implementation of the isotopic con-
straint in a variational inversion system and to investigate the
sensitivity of this new configuration to different parameters.
Our aim is not to estimate trends in sectoral emissions over
the last 2 decades: future studies will address the estimation
of CH4 emissions over longer periods of time using this new
system. The technical implementation and the various tested
configurations are presented in Sect. 2. We analyze the re-
sults in Sect. 3. Section 4 presents our conclusions and rec-
ommendations on using such a multi-constraint variational
system.

2 Methods

2.1 Theory of variational inversion

The notations introduced here follow the convention defined
by Ide et al. (1997) and Rayner et al. (2019). The observa-
tion vector is called yo. It includes all available observations
here, namely CH4 and δ13C(CH4) measurements retrieved
by surface stations, over the full simulation time window (see
Sect. 2.4.2). The associated errors are assumed to be unbi-
ased and Gaussian and are described within the error covari-
ance matrix R. This matrix accounts for all errors contribut-
ing to mismatches between simulated and observed values.
x is the control vector and includes all the variables (here
CH4 surface fluxes, initial CH4 mole fractions, source sig-
natures δ13C(CH4)source, and initial δ13C(CH4) values) op-
timized by the inversion system. Hereinafter, these variables
will be referred to as the control variables. Prior information
about the control variables are provided by the vector xb. Its
associated errors are also assumed to be unbiased and Gaus-
sian and are described within the error covariance matrix B.
H is the observation operator that projects the control vec-
tor x into the observation space. This operator mainly con-
sists of the 3-D CTM (here LMDz-SACS, as introduced in
Sect. 2.2). Nevertheless, the CTM is followed by spatial and
time operators, which interpolate the simulated fields to pro-
duce simulated equivalents of the assimilated observations
at specific locations and times, making the simulations and
observations comparable. An additional transformation op-
erator, implemented in the new system, enables comparison
between distinct simulated tracers, e.g., 12CH4 and 13CH4,
and observations, e.g., δ13C(CH4) (see Sect. 2.3).

In a variational formulation of the inference problem that
allows for H nonlinearity, the cost function J is defined as
follows:

J (x)=
1
2
(x− xb)TB−1(x− xb)+

1
2
(H(x)− yo)T

×R−1(H(x)− yo) (2)
= Jb(x)+ Jo(x). (3)

The cost function is therefore a sum of the following two
parts:

1. The first part is induced by the differences between the
posterior and prior variables (Jb).

2. The second is induced by the differences between sim-
ulations and observations (Jo).

The minimum of J can be reached iteratively with a de-
scent algorithm that requires several computations of the gra-
dient of J with respect to the control vector x, as follows:

∇Jx = B−1(x− xb)+H∗(R−1(H(x)− yo)). (4)

H∗ denotes the adjoint operator of H. As in analytical and
ensemble methods, the variational formulation necessitates
the inversion of both error matrices R and B. In most applica-
tions, R is considered diagonal as point observations are dis-
tant in time and space (i.e., uncorrelated observation errors),
allowing for the inverse to be calculated easily, although that
assumption should be revised with the increasing availability
of satellite sources (Liu et al., 2020). B is rarely diagonal due
to spatial and temporal correlations of errors in the fluxes.
However, B is often decomposed as combinations of smaller
matrices, e.g., using Kronecker products of sub-correlation
matrices, which allows us to compute its inverse by blocks.

2.2 The chemistry transport model

The LMDz general circulation model (GCM) is the atmo-
spheric component of the Institut Pierre-Simon Laplace Cou-
pled Model (IPSL-CM) developed at the Laboratoire de
Météorologie Dynamique (LMD) (Hourdin et al., 2006). The
version of LMDz we use is an offline version dedicated to the
inversion framework created by Chevallier et al. (2005). The
precomputed air mass fluxes provided by the online version
of LMDz are given as inputs to the transport model, signif-
icantly reducing the computational time. The model is set
up at a horizontal resolution of 3.8◦× 1.9◦ (96 grid cells in
longitude and latitude) with 39 hybrid sigma pressure lev-
els reaching an altitude up to about 75 km. About 20 levels
are dedicated to the stratosphere and the mesosphere. The
model time step is 30 min, and the output mole fractions
are 3 h snapshots. The horizontal winds are nudged towards
ECMWF meteorological analyses (ERA-Interim) in the on-
line version of the model and then fed to the offline version.
Vertical diffusion is parameterized by a local approach from
Louis (1979), and deep convection processes are parameter-
ized by the Tiedtke (1989) scheme.

The offline model LMDz is coupled with the Simplified
Atmospheric Chemistry System (SACS; Pison et al., 2009).
This chemistry system was previously used to simulate the
oxidation chain of hydrocarbons, including CH4, formalde-
hyde (CH2O), carbon monoxide (CO), and molecular hydro-
gen (H2). For the purpose of this study, this system was con-
verted into a chemistry parsing system. It follows the same
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principle as the one used by the regional model CHIMERE
(Menut et al., 2013) and therefore allows for user-specific
chemistry reactions. As a result, it generalizes the previous
SACS module to any possible set of reactions. The adjoint
code has also been implemented to allow variational inverse
modeling. The different species are either prescribed (here
OH, O(1D), and Cl) or simulated (here 12CH4 and 13CH4).
The prescribed species are neither transported in LMDz, nor
are their mole fractions updated through chemical produc-
tion or destruction. Such species are only used to calculate
reaction rates to update the simulated species at each model
time step. In this study, the isotopologues 12CH4 and 13CH4
are simulated as separate tracers, and CH4 is defined as the
sum of both isotopologues. Cl+CH4 oxidation was imple-
mented to complete the chemical removal of CH4, which pre-
viously only accounted for OH+CH4 and O(1D)+CH4 in
the SACS scheme.

In the atmosphere, radicals (OH, O(1D), or Cl) react faster
with 12CH4 than with 13CH4. This effect is called the kinetic
isotope effect (KIE) or the fractionation effect. Fractionation
values are prescribed to the different sinks in SACS. Here,
this value is defined by KIE= k12/k13, where k12 is the rate
constant of a reaction between a radical and 12CH4. k13 is
the rate constant of the reaction between the same radical
and 13CH4. Additional information and prescribed KIE val-
ues are provided in Sect. S2 in the Supplement.

The chemistry transport LMDz-SACS is used to test the
new variational inverse modeling system that is described in
the next section.

2.3 Technical implementation of the isotopic constraint

The isotopic multi-constraint system was implemented in the
CIF. The CIF has been designed to allow comparison of dif-
ferent approaches, models, and inversion systems used in the
inversion community (Berchet et al., 2021). Different atmo-
spheric transport models, regional and global and Eulerian
and Lagrangian, are implemented within the CIF. The sys-
tem presented in this paper was originally designed to run
and be tested with LMDz-SACS but can theoretically be cou-
pled with all models implemented in the CIF framework. The
system is able to do the following:

– assimilate δ13C(CH4) and CH4 observations together,

– independently optimize fluxes and isotopic signatures
for multiple emission categories, and

– optimize δ13C(CH4) and CH4 initial conditions.

Figure 1 shows the different steps of a minimization it-
eration of the cost function. Each iteration performed with
the descent algorithm can be decomposed into the four main
steps presented below. For clarity, here we only present the
optimization of CH4 fluxes and associated source signatures,
but CH4 and δ13C(CH4) initial conditions can also be opti-
mized by the system following the same process.

1. The process starts with a forward run. The different flux
variables are extracted and converted into 12CH4 and
13CH4 mass fluxes for each category following Eqs. (5)
and (6) below.

F i12 =
M12

MT
·

1
1+Ai

·F iT (5)

F i13 =
M13

MT
·
Ai

1+Ai
·F iT, (6)

with

Ai = (1+ δ13C(CH4)
i
source) ·Rstd. (7)

F iT, F i12 and F i13 are the CH4, 12CH4, and 13CH4 mass
fluxes of a specific category i, respectively. MT, M12,
andM13 are the CH4, 12CH4, and 13CH4 molar masses,
respectively. δ13C(CH4)

i
source is the isotopic signature

of the category i. MT should preferably depend on M12
and M13 when converting the mass fluxes, as follows:

MT =
M12+A

i
·M13

1+Ai
. (8)

However, the complexity of the forward, tangent lin-
ear, and adjoint codes would be largely enhanced by
such a relationship. The code structure would also be
less generic, i.e., it could not be used for a joint assim-
ilation of multiple isotopologues of CH4, such as both
δ13C(CH4) and δD(CH4). We choose to implementMT
as a constant that can be prescribed freely by the user,
therefore without considering any influence of the M12
and M13 values, which are also prescribed by the user.
As the observed isotopic source signatures roughly vary
between −70 ‰ and −10 ‰, a maximum variation of
0.004 % inMT could be expected. It will very likely not
affect the results of our study or that of any other inver-
sion performed with our system.

The 12CH4 and 13CH4 total fluxes are then calculated
by summing all categories and are used by the model
LMDz-SACS to simulate the 12CH4 and 13CH4 atmo-
spheric mole fractions over the time window consid-
ered. After the simulation, the simulated values are con-
verted to the CH4- and δ13C(CH4)-simulated equivalent
of the assimilated observations using Eqs. (9) and (10)
below, as follows:

[CH4] = [
12CH4] + [

13CH4] (9)

δ13C(CH4)=
[
13CH4]

[12CH4]
·

1
Rstd
− 1. (10)

[CH4], [12CH4], and [13CH4] are CH4, 12CH4, and
13CH4 atmospheric mole fractions simulated by the
model in moles per mole (hereafter molmol−1), respec-
tively.
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Figure 1. The minimization iteration process in the newly designed system. The black circles with a gold border indicate the reading direction
to follow. Step 1 (blue rectangle) refers to a forward run. Step 2 (orange rectangle) refers to the forward and adjoint operations required to
compare observations and simulated values. Step 3 (green rectangle) refers to an adjoint run (this step must be read from the right to the
left). Step 4 (red ellipse) refers to the minimization of the cost function operated by the dedicated minimization algorithm. Note that results
of Step 2 are used in both the minimization process (red ellipse) and as inputs for Step 3. The minimization iteration process followed by the
previous system is also illustrated in Fig. S1 in the Supplement.

2. These simulated values are then compared to the avail-
able observations in order to compute H(x)−yo, which
is further used to infer the cost function and gener-
ate CH4 and δ13C(CH4) adjoint forcings (indicated by
the superscripted asterisk) that compose the vector δy∗

as follows:

δy∗ = R−1(H(x)− yo). (11)

Although this vector is normally used directly as in-
put to the adjoint model (see Eq. 4), the CH4 and
δ13C(CH4) adjoint forcings must first be converted into
the 12CH4 and 13CH4 adjoint forcings in the new sys-
tem.

3. The newly designed adjoint code that converts CH4 and
δ13C(CH4) adjoint forcings into 12CH4 and 13CH4 ad-
joint forcings is based on Eqs. (12)–(14), depending on

the type of the initial observation.

[
12CH4]

∗

CH4
= [

13CH4]
∗

CH4
= [CH4]

∗ (12)

[
12CH4]

∗

δ13C =−
[
13CH4]

[12CH4]2
·

1
Rstd
· δ13C(CH4)

∗ (13)

[
13CH4]

∗

δ13C =
1

[12CH4]
·

1
Rstd
· δ13C(CH4)

∗. (14)

[
12CH4]

∗

CH4
and [13CH4]

∗

CH4
are adjoint forcings as-

sociated with CH4 observations. [12CH4]
∗

δ13C and
[
13CH4]

∗

δ13C are adjoint forcings associated with
δ13C(CH4) observations. The adjoint code of the CTM
is then run with these adjoint forcings as inputs.

Outputs of the adjoint run provide the sensitivities of the
adjoint forcings to the 12CH4 and 13CH4 mass fluxes of
a specific category i, denoted by F ∗,i12 and F ∗,i13 . Equa-
tions (15) and (16) convert them back to sensitivities
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to the initial control variables, denoted by F
∗,i
T and

δ13C(CH4)
∗,i
source.

F
∗,i
T =

1
1+A

·

[
M12

MT
·F
∗,i
12 +

M13

MT
·A ·F

∗,i
13

]
(15)

δ13C(CH4)
∗,i
source = Rstd ·

FT

(1+A)2
·

[
M13

MT
·F
∗,i
13

−
M12

MT
·F
∗,i
12

]
. (16)

4. The minimization algorithm utilizes these sensitivities
to compute the gradient of the cost function. It then
finds an optimized control vector which reduces the cost
function and is used for the next iteration.

In order to confirm that the several adjoint operations have
been correctly implemented, we also provide the results of
multiple adjoint tests in Sect. S4 in the Supplement.

2.4 Setup of the reference simulation

The reference configuration (REF) is a variational inver-
sion that optimizes the CH4 emission fluxes and δ13C(CH4)

isotopic source signatures of the following five different
categories: biofuels–biomass burning (BB), agriculture and
waste (AGW), fossil fuels (FFs), wetlands (WET), and other
natural sources (NAT). CH4 and δ13C(CH4) initial condi-
tions are also optimized. The assimilation time-window is
the 2012–2017 period. The five categories originate from an
aggregation of 10 subcategories (see Table 1) and are cho-
sen to be as isotopically consistent as possible. Sinks are not
optimized here.

2.4.1 Control vector x and B matrix

We adopt the CH4 emissions compiled for inversions per-
formed as part of the global methane budget (Saunois et al.,
2020). Anthropogenic (including biofuels) and biomass
burning emissions are based on the EDGARv4.3.2 database
(Janssens-Maenhout et al., 2017) and the GFED4s databases
(van der Werf et al., 2017), respectively. Statistics from
British Petroleum (BP) and the Food and Agriculture Organi-
zation of the United Nations (FAO) have been used to extend
the EDGARv4.3.2 database, which ended 2012, until 2017.
The natural source emissions are based on averaged literature
values; see Poulter et al. (2017) for wetlands, Kirschke et al.
(2013) for termites, Lambert and Schmidt (1993) for oceanic
sources, and Etiope (2015) for geological (onshore) sources.
Emissions from geological sources have been scaled down
to 15 TgCH4 yr−1 in the prior emissions adopted in Saunois
et al. (2020). All prior fluxes are prescribed at a monthly
resolution and at the spatial resolution of LMDz. Globally
averaged emissions over the 2012–2017 period are listed in
Table 1.

Prior estimates of isotopic source signatures are provided
either at the pixel scale (for wetlands), at the regional scale

based on Atmospheric Tracer Transport Model Intercompar-
ison Project (TransCom) regions (Patra et al., 2011) or at
the global scale. The wetlands signature map is taken from
Ganesan et al. (2018). Livestock isotopic source signatures
are taken from Chang et al. (2019) and aggregated into the
11-region map by selecting region-specific values. Livestock
source signatures have been likely decreasing over time since
the 1990s due to changes in the C3/C4 diet within the major
livestock-producing countries, and therefore, annual values
are prescribed. However, these estimates end in 2013, and
we set the years 2014 to 2017 equal to the year 2013. Conse-
quently, only the year 2012 has a different prescribed value
from the other years. Coal and oil, gas, and industry (OGI)
isotopic signature values are inferred from Sherwood et al.
(2017) and Zazzeri et al. (2016) and aggregated into the same
11-region map. The EDGARv4.3.2 categories PRO_OIL and
PRO_GAS (fugitive emissions during oil and gas exploita-
tion) largely contribute (∼ 90 %) to the total of the oil, gas,
and industry subcategory. Therefore, we chose to neglect the
influence of other sub-subcategories (such as industry) on
the isotopic signature of the category. As for the biofuels–
biomass burning category, we use region-specific signatures
over the 11 regions. A global signature value is prescribed
for each of the other categories. Except for the livestock cat-
egory, all prior signatures are set constant over time. To in-
fer the δ13C(CH4)source map of a category based on the sub-
categories, the 12CH4 and 13CH4 fluxes for each emission
subcategory within a category are derived based on Eqs. (5)
and (6) and added up. The resulting fluxes are then converted
back to a δ13C(CH4)source map representing the aggregated
isotopic signature of the category. Additional information re-
garding the chosen isotopic signatures and their references is
provided in Sect. S1 in the Supplement.

In total, three values per month (10 d, 10 d, and the rest) for
fluxes and their associated isotopic signatures are included in
the control variables. Although the time variations in isotopic
signatures are poorly constrained in the literature, we choose
to include the same number of variables for fluxes and iso-
topic signatures in order to illustrate the full capabilities of
the system and have it ready when more isotopic constraints
will appear.

The portion of the diagonal of B associated to prior CH4
emission fluxes is filled in with the variances set to 100 % of
the square of the maximum of emissions over the cell and
its eight neighbors during each month. Off-diagonal terms
of B (covariances) are based on correlation e-folding lengths
(500 km over land and 1000 km over sea). The same method
is applied for isotopic source signatures, although a specific
percentage of uncertainties deduced from the global values
of Sherwood et al. (2017) is used to infer each category’s di-
agonal term (see Table 1). No temporal correlations are con-
sidered here. Finally, prior uncertainties in initial conditions
are set to 10 % for CH4 (∼ 180 ppb) and 3 % for δ13C(CH4)

(∼ 1.4 ‰).
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Table 1. Emissions and flux-weighted isotopic signatures of the CH4 sources averaged over 2012–2017 for different categories and their
subcategories. Prior uncertainties in fluxes are set to 100 % for all categories and subcategories. Note: Unc. is the prior uncertainty in
the isotopic signature prescribed to the category or the subcategory as a percentage of the signature. CH19 is Chang et al. (2019), GA18
is Ganesan et al. (2018), SH17 is Sherwood et al. (2017), WA16 is Warwick et al. (2016), ZA16 is Zazzeri et al. (2016), TO12 is Townsend-
Small et al. (2012), KL10 is Klevenhusen et al. (2010), BO06 is Bousquet et al. (2006), BR01 is Bréas et al. (2001), SA01 is Sansone et al.
(2001), CH00 is Chanton et al. (2000), HO00 is Holmes et al. (2000), CH99 is Chanton et al. (1999), BE98 is Bergamaschi et al. (1998), and
LE93 is Levin et al. (1993).

Categories Emissions Signature Unc. Subcategories Emissions Signature Unc. Signature references
(Tg yr−1) (‰) (%) (Tgyr−1) (‰) (%)

WET 180.3 −60.8 20 Wetlands 180.3 −60.8 20 GA18

AGW 226.4 −59.1 20 Rice cultivation 38.0 −63 20 SH17; BO06; BR01
Livestock 117.8 −63.6 20 CH19
Waste 70.6 −49.5 20 KL10; TO12; CH99;

BE98; LE93

FFs 116.3 −43.4 25 Coal 38.4 −40.4 25 SH17; ZA16
Oil, gas, industry 77.9 −44.9 25 SH17

BB 28.4 −22.5 40 Biofuels–biomass burning 28.4 −22.5 40 BO06; CH00

NAT 38.1 −49.9 15 Oceanic sources 14.4 −42.0 20 BR01; HO00; SA01
Termites 8.7 −63.0 20 TH18; SH17; WA16
Geological (onshore) 15.0 −50.0 20 BO06

Total 589.5 −54.1 Total 589.5 −54.1

Figure 2. Locations of CH4 and δ13C(CH4) surface stations. Affiliated networks are not displayed. More information can be found in
Tables S3 and S4 in the Supplement.
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2.4.2 Observation vector y and R matrix

CH4 observations are taken from the data archived at the
World Data Centre for Greenhouse Gases (WDCGG) of
the World Meteorological Organization Global Atmospheric
Watch (WMO-GAW) program. We selected 66 stations from
13 surface monitoring networks providing in situ measure-
ments of CH4 mole fractions. The stations are displayed in
Fig. 2.
δ13C(CH4) observations are taken from 18 surface sta-

tions from the Global Greenhouse Gas Reference Network
(GGGRN), part of the NOAA Earth System Research Lab-
oratory’s (ESRL) Global Monitoring Laboratory (NOAA
GML). Air samples were collected on an approximately
weekly basis during the 2012–2017 period and analyzed by
the Institute of Arctic and Alpine Research (INSTAAR) to
provide δ13C(CH4) isotope ratio measurements. The analyt-
ical uncertainty of the isotopic measurements, based on a
surveillance cylinder, is 0.06 ‰. In this study, we focused on
estimating monthly and annual flux variations rather than in-
vestigating daily or weekly variations. Prescribing error cor-
relations in the R matrix (introduced in Sect. 2.1) can be
used to ensure that the inversion preferentially constrains
the components we are interested in (i.e., long-term trend
and seasonal cycle). In order to keep the R matrix diagonal
and to focus on monthly and annual variations of the sig-
nal, we chose to use δ13C(CH4) observational data based on
a curve fitting the original δ13C(CH4) observations. The fit-
ting curve is a function including three polynomial parame-
ters (quadratic) and eight harmonic parameters, as in Masarie
and Tans (1995). After the fitting, the pseudo-observations
were sampled at the same time as the original observations.
We also hypothesized that the convergence would be slightly
faster if a smooth curve fitting the real observations was used
instead of the real observations, which appeared to be false
(see Sect. 3.1). One sensitivity inversion aims at estimating
the error introduced by this simplification (simulation S2 in
Table 2).

The R matrix for both CH4 and δ13C(CH4) is defined as
diagonal, assuming that observation errors are not correlated,
neither in space nor in time. This diagonal matrix can be de-
composed into two parts, i.e., measurement and model error
variances. Measurement errors account for instrumental er-
rors, whereas model errors encompass transport and repre-
sentativity errors induced by the model as follows:

R= Rmeasurement+Rmodel. (17)

Here, we use the provided observation errors to fill the
Rmeasurement diagonal matrix. GlobalView Methane (CH4;
GLOBALVIEW-CH4, 2009) values are used to represent
model errors and prescribe variances at each station for CH4
mixing ratio measurements in order to fill the Rmodel diag-
onal matrix. This simple approach has been used previously
in atmospheric inversions (Locatelli et al., 2015, 2013; Yver
et al., 2011; Bousquet et al., 2006; Rodenbeck et al., 2003).

Errors in GlobalView CH4 are computed at each site as the
root mean square error (RMSE) of the measurements on a
smooth curve fitting them. As GlobalView CH4 does not
provide errors for GlobalView CH4 measurements, the same
method has been applied here. The RMSE of the measure-
ments on a smooth curve, fitting them over the 2012–2017
period, is prescribed as the standard deviation for each site
providing δ13C(CH4) measurements. These errors range be-
tween 3–19 ppb for CH4 observations and 0.11–0.20 ‰ for
δ13C(CH4) observations. Mean prescribed errors for each
station are provided in Tables S3 and S4 in the Supplement.

2.4.3 Spin-up

Before starting the inversion, the model has been spun-up
over 30 years, using constant emissions and recycling me-
teorology from the year 2012 in order to consider the long
timescales for isotopic changes (Tans, 1997). At the end of
the spin-up, δ13C(CH4) values have been offset (+1.4 ‰) to
fit the global mean δ13C(CH4) in January 2012, and CH4
mole fractions have been scaled to fit the global mean CH4
mole fraction in January 2012. Due to the nonlinearity of
transport and mixing, offsetting δ13C(CH4) initial values in
a forward run can generate errors. This impact is discussed
later, using a configuration where δ13C(CH4) initial condi-
tions have not been offset (S1).

2.4.4 Sensitivity tests

A set of nine different configurations, including REF,
has been designed to assess the impact of assimilating
δ13C(CH4) observations in addition to CH4 observations and
also to evaluate the sensitivity of the inversion results to the
system’s setup.

Multiple parameters have been tested throughout the fol-
lowing configurations:

1. NOISO has no isotopic constraint. Therefore, this con-
figuration only simulates CH4 and assimilates CH4 ob-
servations.

2. S1 uses δ13C(CH4) initial conditions that are not offset
and are therefore directly taken from the spin-up.

3. S2 assimilates the real δ13C(CH4) observations instead
of the fitting curve data.

4. In S3, the δ13C(CH4) model uncertainties are divided
by a factor 2.

5. T1 uses 10 subcategories instead of 5 aggregated cate-
gories, increasing the degrees of freedom.

6. In theory, the system is capable of optimally adjusting
two source signatures if the assimilated information is
sufficient. For instance, the system can choose to shift
one signature downward and another upward in a given
pixel in order to improve the fitting in this specific pixel.
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The configuration T2 has been specifically designed to
investigate whether the system would be able to retrieve
a realistic distribution (similar to REF) starting from
globally averaged signatures for each category.

7. In T3, the δ13C(CH4) source signature uncertainties are
set to a very low value (1 %) in order to prevent the sys-
tem from optimizing them. In other words, all changes
are put on CH4 emissions.

8. Finally, T4 applies both changes from T2 and T3.

Table 2 summarizes the different configurations and the
associated changes. The configurations have been grouped
into two sets to facilitate the analysis of results. On the
one hand, S-group configurations (REF+S1–S4) have setup
variations that are not expected to largely influence the re-
sults compared to REF. On the other hand, T-group config-
urations (T1–T4) alter parameters that are very likely to im-
pact the results.

3 Results

3.1 Minimization of the cost function

The minimization process is performed using the M1QN3
algorithm (Gilbert and Lemaréchal, 1989). One full simula-
tion (forward+ adjoint) with the isotopic constraint necessi-
tates about 170 central processing unit (CPU) hours to run
for 6 years, i.e., 2.4 CPU hours per month simulated. The
computational burden is increased by a factor of 2 in com-
parison to an inversion without the isotopic constraint due to
the doubling of simulated tracers (12CH4 and 13CH4). One
full simulation is generally enough to complete one iteration
of the minimization process, but two or three simulations are
sometimes required by M1QN3. Therefore, the number of
simulations is slightly larger than the number of iterations.
Figure 3 displays the minimization process of the cost func-
tion for all configurations.

Except for S1 and T1, the inversions were stopped when
the gradient norm reduction exceeded 96 % for the third con-
secutive iteration. The number of iterations are compared to
investigate the sensitivity of the computational cost to the
setup. In total, 32 iterations (37 simulations) for NOISO,
43 iterations (47 simulations) for REF, and about 50 itera-
tions for the others were necessary. Consequently, although
assimilating δ13C(CH4) observations requires at least 11 ad-
ditional iterations, the setup has little influence on the number
of iterations if the same convergence criteria is used. Also,
using curve-fitted data instead of real observations do not re-
duce the computational burden as we first speculated.

S1 and T1 inversions were extended until their cost func-
tion reached the same reduction as REF in order to estimate
the additional computational burden required to reach simi-
lar results when initial conditions are not offset (S1) and the
number of categories is increased (T1). There were 10 and

21 additional iterations necessary for T1 and S1, respectively.
For T1, it shows that increasing the degrees of freedom also
increases the computational burden. For S1, it highlights the
benefits of offsetting δ13C(CH4) initial conditions.

As we assume no correlation of errors in R, Jo (see Eq. 3)
can be divided into CH4 and δ13C(CH4) contributions. Fig-
ure 3 shows that all configurations lead to a fast reduction of
the δ13C(CH4) contribution. During the first 10 iterations, it
decreased from 50 %–90 % (depending on the configuration)
to 10 %–20 %. Conversely, the CH4 contribution increased
from 10 %–50 % to 80 %–90 %. By adjusting the isotopic
source signatures (all configurations besides T3–T4), the sys-
tem was able to efficiently and rapidly reduce the discrepan-
cies between simulated and observed δ13C(CH4). As a result,
the δ13C(CH4) RMSE decreased very rapidly during the first
10 iterations, while the CH4 RMSE decreased at a roughly
constant rate. Consequently, the system is preferentially ad-
justing δ13C(CH4) over CH4 values to reduce the cost func-
tion, presumably because the ratio of RMSE to the prescribed
observational error for δ13C(CH4) is, on average, about twice
as large as for CH4. In other terms, it is simpler for the system
to adjust δ13C(CH4) before attempting to modify CH4. The
ratio of the number of δ13C(CH4) observations to the num-
ber of CH4 observations is not expected to play a significant
role in the convergence process, although we did not study
this influence rigorously. This ratio is only expected to affect
the contribution of a component (δ13C(CH4) or CH4) to the
total cost function.

The decrease rate associated with δ13C(CH4) RMSE can
be increased by reducing the model uncertainties prescribed
to the δ13C(CH4) observations. S3 is an example of such an
adjustment, as the model uncertainties have been divided by
two. With this configuration, the system requires five fewer
iterations than REF to reach a similar δ13C(CH4) RMSE re-
duction but seven additional iterations to reach a similar CH4
RMSE reduction. T3 and T4 configurations constrain the iso-
topic signatures; thus, the reduction in the δ13C(CH4) con-
tribution necessitates 25 more iterations than REF to reach
similar RMSE reduction. To summarize, the decrease rate as-
sociated with δ13C(CH4) RMSE is highly dependent on the
prescribed uncertainties in δ13C(CH4) observations and the
ability of the system to adjust source signatures.

3.2 CH4 and δ13C(CH4) fitting

As expected, the assimilation process greatly improves the
agreement between simulated and observed values for both
CH4 and δ13C(CH4). Figure 4 shows the globally averaged
time series of CH4 and δ13C(CH4).

CH4 RMSE using prior estimates is 19.4 ppb and drops to
14.3± 0.2 ppb (1σ ) on average over all the configurations us-
ing posterior estimates. Prior estimates capture the observed
CH4 well, and the improvement is therefore relatively small.
In addition, all configuration results regarding CH4 are very
similar. In particular, NOISO is not performing much differ-
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Table 2. Nomenclature and characteristics of the configurations. Details are provided in Sect. 2.4.4.

Name δ13C(CH4)
initial cond.

δ13C(CH4)
observations

δ13C(CH4)
model errors

δ13C(CH4)source
regional variability

δ13C(CH4)source
uncertainties

Number of
categories

NOISO Without isotopic constraint 5

REF Offset Curve fitting RMSE obs fit Regional variability REF uncertainties 5
S1 No offset∗ Curve fitting RMSE obs fit Regional variability REF uncertainties 5
S2 Offset Real obs RMSE obs fit Regional variability REF uncertainties 5
S3 Offset Curve fitting RMSE obs fit/2 Regional variability REF uncertainties 5
T1 Offset Curve fitting RMSE obs fit Regional variability REF uncertainties 10
T2 Offset Curve fitting RMSE obs fit Global mean REF uncertainties 5
T3 Offset Curve fitting RMSE obs fit Regional variability 1 % for each cat. 5
T4 Offset Curve fitting RMSE obs fit Global mean 1 % for each cat. 5

∗ Prior uncertainties in initial δ13C(CH4) conditions have been set to 10 %.

Figure 3. Minimization of the cost function for all configurations. (a) Value of the cost function with respect to the number of iterations.
(b) CH4 contribution to Jo. (c) δ13C(CH4) contribution to Jo. (d) RMSE associated to observed–simulated CH4. (e) RMSE associated to
observed–simulated δ13C(CH4). For clarity reasons, S1 and S3 initial values are not displayed because they are much larger than those of
REF.

ently than the other configurations, indicating that the addi-
tional isotopic constraint does not affect the fitting to CH4
observations.

Prior δ13C(CH4) prescribed in REF are continuously de-
creasing from −47.2 ‰ to −48.2 ‰ and thus agrees very
poorly (RMSE is 0.47 ‰) with observed values. This can be
due to an underestimation (values that are too negative) of
some isotopic source signatures, an underestimation of the
KIE values associated with the various sinks, an underesti-
mation of the various sinks intensities (mostly Cl and OH),

and/or a poor prior estimation of the source partitioning, i.e.,
an underestimation of 13C-enriched sources (FFs or BB) or
an overestimation of 13C-depleted sources (WET or AGW).
The data assimilation process reconciles simulated and ob-
served δ13C(CH4) (RMSE is 0.086± 0.008 ‰) for all con-
figurations, albeit that small differences, depending on the
setup, emerge.

The S group provides a better match to δ13C(CH4)

observations than the T group (0.081± 0.003 ‰ versus
0.091± 0.007 ‰). The fit is very similar within the S group.
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Figure 4. Global monthly δ13C(CH4) and CH4 means between 2012 and 2017. The dashed black and solid blue lines in each panel denote the
observed and prior simulated values (REF), respectively. The red and green ranges show the maximum and minimum values of the T group
and S group, respectively. The thick and dashed purple line denotes the posterior REF values. Globally averaged values are computed
using a method similar to Masarie and Tans (1995), where a function including three polynomial parameters (quadratic) and eight harmonic
parameters is fitted to each time series at available sites. The final value is obtained by performing a latitude-band weighted average over the
marine boundary layer (MBL) sites. The latitude band width was set at 30◦. The posterior NOISO lines were not included because (1) the
posterior NOISO global source signature is −54.1 ‰, and the line would therefore reach lower values than the REF PRIOR, affecting the
visual clarity of the upper plot. (2) The posterior NOISO CH4 values are extremely close to the REF values, and including it would also
affect the clarity of the lower plot.

In contrast, the spread in the T group is larger, with
δ13C(CH4) RMSE being equal to 0.093 ‰, 0.091 ‰, and
0.099 ‰, respectively, for T2, T3, and T4. These results sug-
gest that giving more freedom to the system to adjust the
isotopic signatures and providing region-specific estimates
of prior source signatures instead of global values may be
key elements for reaching a better agreement. Best results
(i.e., smallest RMSE) are obtained with T1 (0.079 ‰). How-
ever, this configuration necessitates 10 additional iterations
to reach better results than REF. Without these additional it-
erations, REF would have the best results (0.081 ‰).

Figure 5 shows the RMSE distribution at all measurement
sites for each configuration. All sites exhibit a RMSE reduc-
tion (from prior to posterior) for both CH4 and δ13C(CH4),
except for Bukit Kototabang, Indonesia (BKT), with T3 and
T4 configurations. Furthermore, BKT, Moody, USA (WKT),
Ulaan Uul, Mongolia (UUM), Anmyeon-do, Republic of Ko-
rea (AMY), and Pondicherry, India (PON), exhibit a poste-
rior CH4 RMSE above 25 ppb, showing that CH4 measure-
ments retrieved at these stations are not properly reproduced
by the model, despite the optimization. Prescribed obser-
vation errors are likely not the main cause because mean
values for these stations are large (10–15 ppb) but not the
largest among all the assimilated stations. It can also be
due to transport error or misrepresentation of sources close

to the sites. Addressing this misfit is beyond the scope of
this study, although the configuration influences the results.
BKT and UUM fitting are notably deteriorated with T3 and
T4 configurations. For example, BKT appears to be influ-
enced by biomass burning sources in South East Asia, which
are strongly dependent on the configuration (see Sect. 3.3).
Moreover, T3 provides the poorest δ13C(CH4) fitting at
AMY (0.24 ‰). Therefore, using global values for source
signatures and preventing the system from optimizing them
lead to poorer fitting. On the contrary, T1 improves the
results, indicating that additional degrees of freedom can
help to reconcile simulations with observations, especially
in South East Asia and East Asia where these stations are
located.

3.3 Global and regional emission increments

We are primarily interested in the additional information pro-
vided by the assimilation of δ13C(CH4) data. Rather than
discussing the regional and global CH4 emissions and com-
paring these results to previous estimates, we investigate the
differences between emissions inferred from configurations
with and without the additional isotopic constraint. Long-
term inversions will be run in the future with this system to
provide more robust estimates of CH4 emissions and com-
pare them to the existing literature.
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Figure 5. RMSE distribution over the surface stations. Panels (a, c) show the prior CH4 and δ13C(CH4) RMSE, and panels (b, d) show the
posterior RMSE. Panels (a, b) show δ13C(CH4) RMSE, and panels (c, d) show CH4 RMSE. For clarity reasons, S1 prior is not shown for
δ13C(CH4) because the associated prior misfit is much larger than that of the other configurations. The box-and-whisker plots are covering
the whole range of data. In panel (c), all station labels are identical; therefore, most of them are removed to improve the clarity.

The inversion time window is the 2012–2017 period. How-
ever, flux and source signature estimates in the 2012–2013
and 2016–2017 periods are not interpreted, as the system ap-
pears to require a 2-year spin-up (2012–2013) and a 2-year
spin-down (2016–2017), over which the inversion problem
is not sufficiently constrained, and isotopic signatures vary
widely over time. Therefore, only the 2014–2015 estimates
are analyzed in Sects. 3.3 and 3.4. Figure S2 in the Supple-
ment shows the time series of isotopic signatures and illus-
trates this choice. These long effects are certainly caused by
the relatively long relaxation timescales of isotopic ratios in
the atmosphere (Tans, 1997) compared to that of total CH4.
Fully understanding this would require a lot of time and run-
ning multiple inversions (or possibly only tangent linear sim-
ulations), starting from different initial conditions spanning
the prescribed uncertainty envelope, to infer until when the
initial atmospheric isotopic ratios and/or isotopic source sig-
natures can influence the time series of atmospheric isotopic
ratios. This was too much work for this study but will cer-
tainly be addressed in future studies.

Figure 6 shows global and regional increments from the
NOISO and REF inversions relative to prior estimates. Here-
inafter, these differences will be referred to as REF incre-
ment (REF – PRIOR) and NOISO increment (NOISO –

PRIOR). The difference between both increments will be
called an increment difference. Note that prior emissions are
identical for all configurations. Posterior total emissions is
594.6± 1.2 TgCH4 yr−1 over all configurations, indicating
that the isotopic constraint and setup configurations do not
significantly affect the posterior global emissions. A higher
discrepancy between the budgets would have indicated a
malfunction in the system, as the prescribed sinks are identi-
cal. The small associated standard deviation is likely caused
by a slight difference in the fitting to the observations and/or
by the spatial variability in the prescribed sink coupled with
a small relocation of emissions, depending on the config-
uration. For instance, OH concentrations are larger in the
tropics, and a relocation of emissions from the tropics to
higher latitudes would be compensated for by larger global
emissions. Between REF and NOISO, there is only a differ-
ence of 0.02 TgCH4 yr−1. We can therefore conclude that the
additional isotopic constraint either relocates the emissions
or reallocates them between categories, as intended. All but
one of the emission categories exhibit large changes between
NOISO and REF, namely WET, FFs, AGW, and BB cate-
gories.

Overall, increments are large in regions with high emis-
sions. Global increment differences (between REF and
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Figure 6. REF and NOISO emission increments for the 2014–2015 period. Prior estimates (PRIOR) are identical for both configurations.
The color-filled bars show the differences between REF posterior and prior estimates (REF increment). The hatched bars show the differences
between NOISO posterior and prior estimates (NOISO increment). The upper panel refers to the global emissions. The lower panels refer to
multiple regions of the globe. The regions are shown on the lower right panel. Red and blue error bars represent the minimum and maximum
of the T group and S group, respectively. Circles on the red error bar show the results from the T group.

NOISO) in AGW (−6.4 TgCH4 yr−1) and FF emissions
(+8.6 TgCH4 yr−1) are mainly due to regional increment dif-
ferences in China and temperate Asia. AGW regional incre-
ment differences are equal to −2.1 TgCH4 yr−1 in temper-
ate Asia and in China. Similarly, FF regional increment dif-
ferences are equal to +1.5 TgCH4 yr−1 in temperate Asia
and +5.0 TgCH4 yr−1 in China. The WET global incre-
ment difference (−5.7 TgCH4 yr−1) is mainly due to dif-
ferences in Canada (−2.0 TgCH4 yr−1) and South Amer-
ica (−2.3 TgCH4 yr−1), but other regions such as Russia,
temperate Asia, and South East Asia are involved. BB
emissions are also modified when implementing the iso-
topic constraint. Their global increment difference is equal
to +3.2 TgCH4 yr−1, principally owing to regional incre-
ment differences in South East Asia (+1.7 TgCH4 yr−1),
Canada (+0.4 TgCH4 yr−1), and Africa (+0.4 TgCH4 yr−1).
The NAT category exhibits very few changes (less than
1 TgCH4 yr−1), even in relative values.

S group configurations infer posterior results that are con-
sistent with REF, with only small variations, depending on
the category and the region (see Table S5 in the Supplement).
In particular, S1 provides roughly the same results as REF,
but with more iterations, highlighting again that offsetting the

initial conditions can help to reduce the computational bur-
den without affecting the results. On the contrary, T-group
configurations are affecting the increments, although T1 and
T2 configurations are generally much closer to REF than T3
and T4. T1 (yellow dot; Fig. 6) and T2 (blue dot; Fig. 6) ex-
hibit differences with the S group mainly in China, where
WET and FF increments are modified (∼−3 TgCH4 yr−1).
More importantly, almost freezing the isotopic signatures to
their prior values (T3 and T4) results in increment differ-
ences 3 to 4 times larger than with REF, i.e., more than
10 TgCH4 yr−1 at the global scale. It highlights the depen-
dence of the inferred CH4 emissions on the prior source
signatures estimates. In other words, the quality of isotopic
source signatures (values and uncertainties) appears to be
critical for the robustness of emissions estimates.

3.4 Global and regional source signature increments

Isotopic source signatures are also optimized by the system.
Figure 7 provides the differences of flux-weighted source
signatures between REF posterior and prior estimates for dif-
ferent regions and each emission category.

With configurations that allow the source signatures to be
optimized, all source signatures are shifted upwards by the
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Table 3. Global posterior CH4 emissions by source category and region (TgCH4 yr−1) for the REF configuration. Uncertainties are reported
as the min–max range of all configurations in square brackets.

BB AGW FF NAT WET Total

USA 1 [1–1] 22 [21–22] 14 [13–15] 2 [2–2] 17 [16–17] 56 [55–56]
Canada 2 [1–3] 2 [2–2] 2 [2–2] 1 [1–1] 21 [16–23] 29 [24–30]
South America 2 [2–3] 30 [29–31] 6 [6–6] 5 [5–5] 53 [50–55] 96 [93–99]
Africa 9 [8–10] 25 [25–26] 14 [13–15] 4 [4–4] 28 [26–28] 80 [80–80]
Europe 1 [1–1] 20 [19–20] 6 [6–7] 2 [2–2] 4 [4–4] 34 [33–34]
Russia 2 [2–2] 5 [5–5] 12 [12–13] 3 [3–3] 12 [11–13] 35 [34–36]
Temperate Asia 3 [3–3] 54 [51–56] 28 [27–31] 7 [7–7] 13 [11–13] 105 [104–106]
China 5 [5–5] 29 [26–32] 24 [19–33] 1 [1–1] 5 [5–5] 64 [61–70]
South East Asia 11 [9–18] 23 [22–23] 8 [7–8] 4 [3–4] 22 [21–23] 66 [66–72]
Oceania 1 [0–1] 4 [4–5] 2 [2–2] 1 [1–1] 3 [3–3] 11 [11–11]
Others 1 [1–1] 4 [4–4] 5 [5–5] 8 [8–8] 2 [2–2] 19 [19–19]
Global 37 [33–47] 220 [210–226] 119 [111–134] 38 [38– 39] 180 [167–185] 594 [594–597]

Figure 7. REF flux-weighted source signature increments for the 2014–2015 period. The color-filled bars show the differences between REF
posterior and prior estimates (REF increment). The upper panel refers to the global emissions. The lower panels refer to multiple regions of
the globe. The regions are shown on the lower right panel. Red and blue error bars represent the minimum and maximum of the T group and
S group, respectively. Circles on error bars show the results from the T group.

inversions in order to correct the excessively strong negative
trend in δ13C(CH4). At the global scale, the flux-weighted
source signatures of WET, FFs, AGW, BB, and NAT are in-
creased by 1.7, 0.5, 0.9, 0.5, and 0.1 ‰, respectively. The
global source signature is increased from −53.9 ‰ (prior) to
−52.6± 0.2 ‰ (posterior, with a standard deviation over the
configurations). More information is provided in Table S6 in
the Supplement. The posterior global signature is strongly

dependent on the KIE of atmospheric oxidation. This effect
tends to deplete air in 13CH4, shifting the δ13C(CH4) to more
positive values as the CH4 molecules emitted by the sources
are removed from the atmosphere. The mean KIE in our sim-
ulations depends on (1) the prescribed OH, O(1D), and Cl
concentrations and (2) the prescribed KIE values associated
to the individual sinks. As the mean KIE is the same for
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all configurations, the posterior global source signatures are
very close.

The WET global source signature, associated with REF
posterior estimates, exhibits the larger upward shift com-
pared to prior estimates, from a value of −60.8 ‰ to
−59.1 ‰. Large upward WET source signature shifts are lo-
cated in boreal regions (North America and Russia) but also
in South America and temperate Asia. The AGW source sig-
nature is increased by 0.9 ‰, mainly due to changes in Asia.
The FF source signature is increased by 0.5 ‰ due to a large
increment in China (+1.2 ‰). Finally, the BB source signa-
ture is modified in South East Asia (+1.4 ‰) and Canada
(+0.8 ‰).

These changes are consistent within the S group (see blue
error bars in Fig. 7), although small variations are visible
(e.g., ± 0.3 ‰ for WET in Canada). The source signature
is therefore modified nearly to the same extent in all re-
gions, no matter which configuration in the S group is an-
alyzed. T1 (see the yellow dot in Fig. 7), with more opti-
mized categories than the others, shows small differences at
the global scale (less than 0.3 ‰ for all categories), although
differences of more than 1 ‰ are found in China. Therefore,
increasing the number of degrees of freedom leads to simi-
lar flux estimates but can affect the signatures at a regional
scale. T2 estimates are shifted upward to reach a less negative
global isotopic source signature without coming closer to the
regional distribution of the S group. This is likely caused by
the scarcity of δ13C(CH4) stations, and correcting this behav-
ior seems challenging without additional observations. The
problem might be circumvented by using the regional scale
rather than the pixel scale to optimize isotopic signature val-
ues. Future inversions will test this assumption.

These results must be interpreted with caution because the
input data suffer from high uncertainties. The artificial in-
crease in the source signatures by our system can hardly
be related to the literature and former investigations. Con-
sequently, it is challenging to conclude whether an increase
in the source signatures would be more realistic (i.e., sup-
ported by observational data) than, for instance, only increas-
ing the emissions of 13C-enriched sources such as BB. This
system is only based on a mathematical and physical frame-
work connecting the several groups of uncertainties (obser-
vational, prior fluxes, prior source signatures, and prior sinks)
and finding the most likely solution. Better estimates of these
uncertainties must be prescribed before obtaining robust re-
sults. In particular, the uncertainties on KIE values and sink
intensities have not been tested here and could largely influ-
ence the results. Also, the uncertainties on source signatures
are relatively smooth in REF compared to recent country-
specific estimates (Sherwood et al., 2017). Assessing these
uncertainties should be a key aspect for future studies using
this new inversion system to quantify the global CH4 budget.

3.5 Posterior uncertainties

Formally, posterior uncertainties are given by the Hessian
of the cost function. This matrix can hardly be computed at
an achievable cost, considering the size of the inverse prob-
lem. Other means must be implemented to obtain the pos-
terior uncertainty, such as estimating a lower-rank approxi-
mation of the Hessian, using Monte Carlo ensembles of the
variational inversion to represent the prior uncertainties, or
computing multiple configurations covering a given range of
possibilities. Here, using multiple configurations provides in-
sight into the posterior uncertainty associated with the pos-
terior fluxes. We calculated the full uncertainty range using
the minimum and maximum values among all the configura-
tions, as in Saunois et al. (2020). WET, AGW, FF, and BB
flux estimates (Table 3) exhibit an uncertainty of 10 %, 7 %,
19 %, and 38 %, respectively. BB is the most uncertain esti-
mate relative to its intensity, although FF shows the largest
absolute uncertainty (23 TgCH4 yr−1). These uncertainties
are unlikely to be affected by the assimilation of additional
δ13C(CH4) data because we expect the uncertainties on the
isotopic source signatures to have a much larger influence.
However, this remains to be tested in future work if posterior
uncertainties can be calculated.

At present, M1QN3 is not the only optimization algorithm
that can be utilized to perform variational inversions in the
CIF. The CONGRAD algorithm (Fisher, 1998), which fol-
lows a conjugate gradient method combined with a Lanc-
zos algorithm, is also implemented. In particular, it facili-
tates the computation of posterior uncertainties considerably.
Any change in algorithm is very easy and accessible to any
CTM embedded in the CIF. However, CONGRAD has not
yet been tested with δ13C(CH4) data. As CONGRAD is only
designed for linear problems, using this algorithm could rad-
ically change the results of the inversions performed with
the isotopic constraints, and future work will focus on us-
ing CONGRAD to perform the inversions with isotopic con-
straints.

4 Conclusions and perspectives

We present here a new variational inversion system designed
to assimilate the observations of both a specific trace gas
and its isotopic data. This system allows us to optimize both
tracer emissions and associated isotopic signatures for mul-
tiple source categories. To test this system, we have assim-
ilated CH4 and δ13C(CH4) data retrieved at different mea-
surement sites over the globe.

Different configurations have been tested in order to as-
sess the sensitivity of the system to the setup. We have shown
that offsetting the δ13C(CH4) initial conditions before the in-
version (S1), using δ13C(CH4) curve fitting data instead of
the original observations (S2) and reducing the prescribed
uncertainties in the δ13C(CH4) observations (S3), has very
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little effect on the inferred fluxes (less than 2 TgCH4 yr−1

for each category at the global scale). However, offsetting
δ13C(CH4) initial conditions before the inversion results in a
reduced computational time (21 less iterations).

Other setup choices have more influence on the results.
Increasing the number of source categories (T1) requires
more computational time (10 more iterations) to reach a cost
function (and RMSE) reduction similar to REF. Moreover,
although the global posterior emissions with an increased
number of categories are very close to those inferred with
REF (less than 1 TgCH4 yr−1), the posterior isotopic signa-
tures can be modified in some regions (more than 1 ‰ in
China). Also, starting from globally averaged values for the
source signatures (T2) makes the system unable to retrieve
the region-specific isotopic signatures from REF. Increas-
ing the number of δ13C(CH4) observations could help us to
cope with this issue. Finally, configurations constraining the
source signatures (T3–T4) show differences in global flux
estimates of more than 10 TgCH4 yr−1, compared to REF.
This emphasizes the need for good prior source signature es-
timates.

The major drawback of this inversion system is undoubt-
edly the large computational burden of a full minimization
process. At least 40 iterations appear to be necessary to reach
a satisfying convergence state at the regional scale. For the
LMDz-SACS model, a maximum of eight CPUs can be run
in parallel, resulting in an elapsed time of 5–6 weeks to
run one of the inversions of this study. A new generation of
transport models, such as DYNAMICO (Dubos et al., 2015),
could help to address this problem in the future by allow-
ing more processors to run in parallel. Also, further develop-
ments will implement some parallelization methods to enable
computational burden reduction (e.g., Chevallier, 2013). In
addition, variational inversions, as implemented in the CIF,
do not provide a quantification (even approximated) of the
posterior uncertainties. Dedicated efforts need to be made to
address this issue in the future and at an achievable numerical
cost. In particular, using the CONGRAD algorithm instead of
M1QN3 could be a solution, as both algorithms can be eas-
ily selected in the CIF. However, additional work is needed
to ensure that switching the optimization algorithm does not
affect the results inferred with our new system.

This system is implemented within the CIF framework and
can therefore be used for inversions with the various CTMs
embedded in the CIF, provided the adjoint codes of the mod-
els exist. As the operations developed for the purpose of this
study are performed outside the model structure, forward,
tangent linear, and adjoint codes from other CTMs do not
require any modifications as long as the model is capable of
simulating both 12CH4 and 13CH4 simultaneously. The prior
input must be adapted to the new model (spatial and time
resolution), but the format of the observational data and of
the prescribed errors can be preserved. Also, due to the vari-
ational method benefits, the efforts dedicated to the prepa-
ration of inputs do not scale with either the size of the ob-

servational datasets or the length of the simulation time win-
dow. Therefore, this system is very powerful and is particu-
larly relevant to study, in a consistent way, the influence of
multiple physical parameters on atmospheric isotopic ratios
such as the transport, the isotopic signatures, the emission
scenarios, the KIE values, etc. We did not try to assess the
sensitivity of the system to these parameters here as only the
technical aspects of the system were tested. This will be part
of future analyses.

As mentioned in the introduction, future work will address
the estimation of CH4 emissions over longer periods of time
using this new system. For instance, the 2000–2006 CH4 sta-
bilization period and the subsequent renewed growth are par-
ticularly interesting to study using the isotopic constraint as
global δ13C(CH4) started to decrease after 2006. These pe-
riods of time have already attracted considerable critical at-
tention from many inversion studies (with or without the iso-
topic constraint) and comparing the results derived from such
a complete 3-D variational inversion system with other recent
estimates should be highly relevant. The most important limi-
tation of assimilating δ13C(CH4) lies in the fact that very lim-
ited δ13C(CH4) data are available, and therefore, evaluating
the posterior simulated δ13C(CH4) is often challenging, if
not impossible. However, satellite and balloon/AirCore data
can easily be used to evaluate the posterior simulated CH4.
δ13C(CH4) is not the only kind of isotopic data that can

be assimilated in such a system. Many δD(CH4) observa-
tions have also been retrieved during the 2004–2010 period
at many different locations. These isotopic values can pro-
vide additional information that can further help to discrim-
inate the co-emitted CH4 fluxes (Rigby et al., 2012). More-
over, ethane (C2H6) is co-emitted with CH4 by fossil fuel
extraction and distribution (Kort et al., 2016; Smith et al.,
2015), and observations have been available at a multitude of
sites since the early 1980s. Therefore, assimilating these data
can provide additional constraints. The system will therefore
be improved in the future in order to assimilate δ13C(CH4),
δD(CH4) and C2H6 observations together.

Data availability. The code files of the CIF version used in
the present paper are registered under the following link:
https://doi.org/10.5281/zenodo.6304912 (Berchet et al., 2022).
Prior anthropogenic fluxes (EDGARv4.3.2) can be downloaded
from the EDGAR website (https://edgar.jrc.ec.europa.eu/dataset_
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