Articles | Volume 15, issue 12 
            
                
                    
            
            
            https://doi.org/10.5194/gmd-15-4805-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-4805-2022
                    © Author(s) 2022. This work is distributed under 
the Creative Commons Attribution 4.0 License.
                the Creative Commons Attribution 4.0 License.
An online ensemble coupled data assimilation capability for the Community Earth System Model: system design and evaluation
Jingzhe Sun
                                            Beijing Institute of Applied Meteorology, Beijing, China
                                        
                                    Yingjing Jiang
                                            Key Laboratory of Physical Oceanography, Ministry of
Education/Institute for Advanced Ocean Study/Frontiers Science Center for
Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China,
Qingdao, China
                                        
                                    
                                            College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, China
                                        
                                    Shaoqing Zhang
CORRESPONDING AUTHOR
                                            
                                    
                                            Key Laboratory of Physical Oceanography, Ministry of
Education/Institute for Advanced Ocean Study/Frontiers Science Center for
Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China,
Qingdao, China
                                        
                                    
                                            Qingdao Pilot National Laboratory for Marine Science and Technology
(QNLM), Qingdao, China
                                        
                                    
                                            College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, China
                                        
                                    Weimin Zhang
CORRESPONDING AUTHOR
                                            
                                    
                                            Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai,
China
                                        
                                    Lv Lu
                                            Key Laboratory of Physical Oceanography, Ministry of
Education/Institute for Advanced Ocean Study/Frontiers Science Center for
Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China,
Qingdao, China
                                        
                                    
                                            College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, China
                                        
                                    Guangliang Liu
                                            Shandong Provincial Key Laboratory of Computer Networks, Qilu
University of Technology (Shandong Academy of Sciences), Jinan, China
                                        
                                    Yuhu Chen
                                            Qingdao Pilot National Laboratory for Marine Science and Technology
(QNLM), Qingdao, China
                                        
                                    Xiang Xing
                                            Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai,
China
                                        
                                    Xiaopei Lin
                                            Key Laboratory of Physical Oceanography, Ministry of
Education/Institute for Advanced Ocean Study/Frontiers Science Center for
Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China,
Qingdao, China
                                        
                                    
                                            Qingdao Pilot National Laboratory for Marine Science and Technology
(QNLM), Qingdao, China
                                        
                                    
                                            College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, China
                                        
                                    Lixin Wu
                                            Key Laboratory of Physical Oceanography, Ministry of
Education/Institute for Advanced Ocean Study/Frontiers Science Center for
Deep Ocean Multispheres and Earth System (DOMES), Ocean University of China,
Qingdao, China
                                        
                                    
                                            Qingdao Pilot National Laboratory for Marine Science and Technology
(QNLM), Qingdao, China
                                        
                                    
                                            College of Oceanic and Atmospheric Sciences, Ocean University of
China, Qingdao, China
                                        
                                    Related authors
No articles found.
Wenbin Kou, Yang Gao, Dan Tong, Xiaojie Guo, Xiadong An, Wenyu Liu, Mengshi Cui, Xiuwen Guo, Shaoqing Zhang, Huiwang Gao, and Lixin Wu
                                    Atmos. Chem. Phys., 25, 3029–3048, https://doi.org/10.5194/acp-25-3029-2025, https://doi.org/10.5194/acp-25-3029-2025, 2025
                                    Short summary
                                    Short summary
                                            
                                                Unlike traditional numerical studies, we apply a high-resolution Earth system model, improving simulations of surface ozone and large-scale circulations such as atmospheric blocking. Besides local heat waves, we quantify the impact of atmospheric blocking on downstream ozone concentrations, which is closely associated with the blocking position. We identify three major pathways of Rossby wave propagation, stressing the critical role of large-scale circulation in regional air quality.
                                            
                                            
                                        Lijing Cheng, Yuying Pan, Zhetao Tan, Huayi Zheng, Yujing Zhu, Wangxu Wei, Juan Du, Huifeng Yuan, Guancheng Li, Hanlin Ye, Viktor Gouretski, Yuanlong Li, Kevin E. Trenberth, John Abraham, Yuchun Jin, Franco Reseghetti, Xiaopei Lin, Bin Zhang, Gengxin Chen, Michael E. Mann, and Jiang Zhu
                                    Earth Syst. Sci. Data, 16, 3517–3546, https://doi.org/10.5194/essd-16-3517-2024, https://doi.org/10.5194/essd-16-3517-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                Observational gridded products are essential for understanding the ocean, the atmosphere, and climate change; they support policy decisions and socioeconomic developments. This study provides an update of an ocean subsurface temperature and ocean heat content gridded product, named the IAPv4 data product, which is available for the upper 6000 m (119 levels) since 1940 (more reliable after ~1955) for monthly and 1° × 1° temporal and spatial resolutions.
                                            
                                            
                                        Feifan Yan, Hang Su, Yafang Cheng, Rujin Huang, Hong Liao, Ting Yang, Yuanyuan Zhu, Shaoqing Zhang, Lifang Sheng, Wenbin Kou, Xinran Zeng, Shengnan Xiang, Xiaohong Yao, Huiwang Gao, and Yang Gao
                                    Atmos. Chem. Phys., 24, 2365–2376, https://doi.org/10.5194/acp-24-2365-2024, https://doi.org/10.5194/acp-24-2365-2024, 2024
                                    Short summary
                                    Short summary
                                            
                                                PM2.5 pollution is a major air quality issue deteriorating human health, and previous studies mostly focus on regions like the North China Plain and Yangtze River Delta. However, the characteristics of PM2.5 concentrations between these two regions are studied less often. Focusing on the transport corridor region, we identify an interesting seesaw transport phenomenon with stagnant weather conditions, conducive to PM2.5 accumulation over this region, resulting in large health effects.
                                            
                                            
                                        Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Dexun Chen, Yang Gao, Xiaopei Lin, Zhao Liu, and Xiaojing Lv
                                        Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-10, https://doi.org/10.5194/gmd-2024-10, 2024
                                    Preprint withdrawn 
                                    Short summary
                                    Short summary
                                            
                                                The hardware-related perturbations caused by the heterogeneous many-core architectures can blend with software or human errors, which can affect the accuracy of the model consistency verification. We develop a deep learning-based consistency test tool for ESMs on the heterogeneous systems (ESM-DCT) and evaluate it in CESM on new Sunway system. The ESM-DCT can detect the existence of software or human errors when taking hardware-related perturbations into account.
                                            
                                            
                                        Jiangyu Li, Shaoqing Zhang, Qingxiang Liu, Xiaolin Yu, and Zhiwei Zhang
                                    Geosci. Model Dev., 16, 6393–6412, https://doi.org/10.5194/gmd-16-6393-2023, https://doi.org/10.5194/gmd-16-6393-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                Ocean surface waves play an important role in the air–sea interface but are rarely activated in high-resolution Earth system simulations due to their expensive computational costs. To alleviate this situation, this paper designs a new wave modeling framework with a multiscale grid system. Evaluations of a series of numerical experiments show that it has good feasibility and applicability in the WAVEWATCH III model, WW3, and can achieve the goals of efficient and high-precision wave simulation.
                                            
                                            
                                        Chupeng Zhang, Shangfei Hai, Yang Gao, Yuhang Wang, Shaoqing Zhang, Lifang Sheng, Bin Zhao, Shuxiao Wang, Jingkun Jiang, Xin Huang, Xiaojing Shen, Junying Sun, Aura Lupascu, Manish Shrivastava, Jerome D. Fast, Wenxuan Cheng, Xiuwen Guo, Ming Chu, Nan Ma, Juan Hong, Qiaoqiao Wang, Xiaohong Yao, and Huiwang Gao
                                    Atmos. Chem. Phys., 23, 10713–10730, https://doi.org/10.5194/acp-23-10713-2023, https://doi.org/10.5194/acp-23-10713-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                New particle formation is an important source of atmospheric particles, exerting critical influences on global climate. Numerical models are vital tools to understanding atmospheric particle evolution, which, however, suffer from large biases in simulating particle numbers. Here we improve the model chemical processes governing particle sizes and compositions. The improved model reveals substantial contributions of newly formed particles to climate through effects on cloud condensation nuclei.
                                            
                                            
                                        Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
                                    Geosci. Model Dev., 16, 705–717, https://doi.org/10.5194/gmd-16-705-2023, https://doi.org/10.5194/gmd-16-705-2023, 2023
                                    Short summary
                                    Short summary
                                            
                                                To improve the numerical model predictability of monthly extended-range scales, we use the simplified slab ocean model (SOM) to restrict the complicated sea surface temperature (SST) bias from a 3-D dynamical ocean model.  As for SST prediction, whether in space or time, the WRF-SOM is verified to have better performance than the WRF-ROMS, which has a significant impact on the atmosphere. For extreme weather events such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
                                            
                                            
                                        Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
                                    Ocean Sci., 18, 1691–1702, https://doi.org/10.5194/os-18-1691-2022, https://doi.org/10.5194/os-18-1691-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                Quantifying spatial–temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial–temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
                                            
                                            
                                        Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
                                    Geosci. Model Dev., 15, 6695–6708, https://doi.org/10.5194/gmd-15-6695-2022, https://doi.org/10.5194/gmd-15-6695-2022, 2022
                                    Short summary
                                    Short summary
                                            
                                                To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of the cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons of the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
                                            
                                            
                                        Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
                                        The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
                                    Revised manuscript not accepted 
                                    Short summary
                                    Short summary
                                            
                                                During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
                                            
                                            
                                        Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
                                    Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021, https://doi.org/10.5194/npg-28-481-2021, 2021
                                    Short summary
                                    Short summary
                                            
                                                A general methodology is introduced to capture regime transitions of the Atlantic meridional overturning circulation (AMOC). The assimilation models with different parameters simulate different paths for the AMOC to switch between equilibrium states. Constraining model parameters with observations can significantly mitigate the model deviations, thus capturing AMOC regime transitions. This simple model study serves as a guideline for improving coupled general circulation models.
                                            
                                            
                                        Cited articles
                        
                        Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903, 2001. 
                    
                
                        
                        Anderson, J. L.: A local least squares framework for ensemble filtering,
Mon. Weather Rev., 131, 634–642, 2003. 
                    
                
                        
                        Anderson, J. L. and Anderson, S. L.: A monte carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758, 1999. 
                    
                
                        
                        Anderson, J. L., Wyman, B., Zhang, S., and Hoar, T.: Assimilation of surface
pressure observations using an ensemble filter in an idealized global
atmospheric prediction system, J. Atmos. Sci., 62, 2925–2938, 2005. 
                    
                
                        
                        Anderson, J. L. and Collins N.: Scalable Implementations of Ensemble Filter
Algorithms for Data Assimilation, J. Atmo. Ocean Tech., 24, 1452–1463, https://doi.org/10.1175/JTECH2049.1, 2007. 
                    
                
                        
                        Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Arellano, A.: The Data Assimilation Research Testbed: A community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009. 
                    
                
                        
                        Arblaster, J. M., Meehl, G. A., and Karoly, D. J.: Future climate change in
the Southern Hemisphere: Competing effects of ozone and greenhouse gases,
Geophys. Res. Lett., 38, L02701, https://doi.org/10.1029/2010GL045384, 2011. 
                    
                
                        
                        Asefi-Najafabady, S., Vandekar, K., Seimon, A., Lawrence, P., and Lawrence,
D.: Climate change, population and poverty: vulnerability and exposure to
heat stress in East Africa, Climatic Change, 148, 561–573, https://doi.org/10.1007/s10584-018-2211-5,
2018. 
                    
                
                        
                        Balmaseda, M. and Anderson, D.: Impact of initialization strategies and
observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701,
https://doi.org/10.1029/2008GL035561, 2009. 
                    
                
                        
                        Bitz, C. M.: Some aspects of uncertainty in predicting sea ice retreat, in:
Arctic Sea Ice Decline: observations, projections, mechanisms, and
implications, edited by: deWeaver, E.,
Bitz, C. M., and Tremblay, B., AGU Geophysical Monograph Series, American Geophysical Union, 180, 63–76, 2008. 
                    
                
                        
                        Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data
assimilation using incremental analysis updates, Mon. Weather Rev., 124,
1256, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2, 1996. 
                    
                
                        
                        Browne, P. A. and Leeuwen, P. J. van: Twin experiments with the equivalent
weights particle filter and HadCM3, Q. J. Roy. Meteor. Soc., 141,
3399–3414, https://doi.org/10.1002/qj.2621, 2015. 
                    
                
                        
                        Browne, P. A. and Wilson, S.: A simple method for integrating a complex model
into an ensemble data assimilation system using MPI, Environ. Modell. Softw.,
68, 122–128, 2015. 
                    
                
                        
                        Browne, P. A., Rosnay, P., Zuo H., Bennett, A., and Dawson, A.: Weakly
Coupled Ocean–Atmosphere Data Assimilation in the ECMWF NWP System, Remote
Sens., 11, 234, https://doi.org/10.3390/rs11030234, 2019. 
                    
                
                        
                        Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate
Reanalysis, J. Climate, 31, 6967–6983,
https://doi.org/10.1175/JCLI-D-18-0149.1, 2018. 
                    
                
                        
                        Chandan, D. and Peltier, W. R.: On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures, Clim. Past, 14, 825–856, https://doi.org/10.5194/cp-14-825-2018, 2018. 
                    
                
                        
                        Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., et
al.: An unprecedented set of high-resolution earth system simulations for
understanding multiscale interactions in climate variability and change, J.
Adv. Model. Earth Sy., 12, e2020MS002298,
https://doi.org/10.1029/2020MS002298, 2020. 
                    
                
                        
                        Cheng, W., Curchitser, E., Ladd, C., Stabeno, P., and Wang, M.: Influences
of sea ice on the Eastern Bering Sea: NCAR CESM simulations and comparison
with observations, Deep-Sea Res. Pt. II, 109, 27–38, https://doi.org/10.1016/j.dsr2.2014.03.002, 2014. 
                    
                
                        
                        Chiodo, G., Garcia-Herrera, R., Calvo, N., Vaquero, J. A., Añel, and
Matthes, K.: The impact of a future solar minimum on climate change
projections in the Northern Hemisphere, Environ. Res. Lett., 11, 034015
https://doi.org/10.1088/1748-9326/11/3/034015, 2016. 
                    
                
                        
                        Coelho, C. A. S. and Goddard, L.: El Niño–induced tropical droughts in
climate change projections, J. Climate, 22, 6456–6476,
https://doi.org/10.1175/2009JCLI3185.1, 2009. 
                    
                
                        
                        Collins, M.: Climate predictability on interannual to decadal time scales:
The initial value problem, Clim. Dynam., 19, 671–692, 2002. 
                    
                
                        
                        Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., et al.: The Twentieth
Century Reanalysis Project, Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011. 
                    
                
                        
                        Danabasoglu, G., Lamarque, J. F., Bacmeister, J., et al.: The Community
Earth System Model version 2 (CESM2), J. Adv. Model. Earth Sy., 12,
e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020. 
                    
                
                        
                        Dee, D., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011. 
                    
                
                        
                        Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley P. H.: CAM-SE: A scalable
spectral element dynamical core for the Community Atmosphere Model, Int. J.
High Perform. C, 26, 74–89, https://doi.org/10.1177/1094342011428142, 2012. 
                    
                
                        
                        Derber, J. and Rosati, A.: A global oceanic data assimilation system, J.
Phys. Oceanogr., 19, 1333–1347, 1989. 
                    
                
                        
                        Evans, K. J., Lauritzen, P. H., Mishra, S. K., Neale, R. B., Taylor, M. A., and Tribbia, J. J.: AMIP Simulation with
the CAM4 Spectral Element Dynamical Core, J. Climate, 26, 689–709, https://doi.org/10.1175/JCLI-D-11-00448.1, 2013. 
                    
                
                        
                        Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994. 
                    
                
                        
                        Evensen, G.: The ensemble Kalman filter: Theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003. 
                    
                
                        
                        Fasullo, J. T. and Nerem, R. S.: Interannual variability in global mean sea
level estimated from the CESM large and last millennium ensembles, Water, 8, 491, https://doi.org/10.3390/w8110491, 2016. 
                    
                
                        
                        Gantt, B., He, J., Zhang, X., Zhang, Y., and Nenes, A.: Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects, Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, 2014. 
                    
                
                        
                        Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two
and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417, 1999. 
                    
                
                        
                        Glotfelty, T., He, J., and Zhang, Y.: The impact of future climate policy
scenarios on air quality and aerosol/cloud interactions using an advanced
version of CESM/CAM5. Part II: Future trend analysis and impacts of
projected anthropogenic emissions, Atmos. Environ., 152, 531–552, 2017. 
                    
                
                        
                        Goldenson, N., Doherty, S. J., Bitz, C. M., Holland, M. M., Light, B., and Conley, A. J.: Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM, Atmos. Chem. Phys., 12, 7903–7920, https://doi.org/10.5194/acp-12-7903-2012, 2012. 
                    
                
                        
                        Goosse, H. and Holland, M. M.: Mechanisms of interdecadal Arctic climate
variability in the Community Climate System Model CCSM2, J. Climate, 18,
3552–3570, 2005. 
                    
                
                        
                        Gropp, W., Lusk, E., Doss, N., and Skjellum, A.: A high-performance,
portable implementation of the mpi message passing interface standard,
Parallel Comput., 22, 789–828, 1996. 
                    
                
                        
                        Gropp, W., Lusk, E., and Thakur, R.: Using MPI-2: Advanced Features of the
Message-Passing Interface, MIT Press, 1999. 
                    
                
                        
                        Han, G., Wu, X., Zhang, S., Liu, Z., and Li, W.: Error covariance estimation
for coupled data assimilation using a Lorenz atmosphere and a simple
pycnocline ocean model, J. Climate, 26, 10218–10231, 2013. 
                    
                
                        
                        Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos sea ice model user's
manual, version 4, Los. Alamos. National Laboratory Tech. Rep.,
LA-CC-06-012, 2008. 
                    
                
                        
                        Jiang, Y., Zhang, S., and Sun, J.: Program codes and main data for the paper “An Online Ensemble Coupled Data Assimilation Capability for the Community Earth System Model: System Design and Evaluation”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5733849, 2021. 
                    
                
                        
                        Karspeck, A. R., Yeager, S., Danabasoglu, G., Hoar, Y., Collins, N., Raeder, K., Anderson, J., and Tribbia, J.: An Ensemble
Adjustment Kalman filter for the CCSM4 ocean component, J. Climate, 26,
7392–7413, 2013. 
                    
                
                        
                        Karspeck, A. R., Danabasoglu, G., Anderson, J., Karol, S., Karol, S., Collins, N., Vertenstein, M., Raeder, K., Hoar, T., Neale, R., Edwards, J., and Craig, A.: A global coupled ensemble data assimilation system using the community earth system model and the data assimilation research testbed, Q. J. Roy Meteor. Soc., 144, 2304–2430, https://doi.org/10.1002/qj.3308, 2018. 
                    
                
                        
                        Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and
Lord, S.: Introduction of the GSI into the NCEP Global Data Assimilation
System, Mon. Weather Rev., 24, 1691–1705, 2009. 
                    
                
                        
                        Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K., and Janssen P.: A
coupled data assimilation system for climate reanalysis, Q. J. Roy.
Meteor. Soc., 142, 65–78, https://doi.org/10.1002/qj.2629, 2016. 
                    
                
                        
                        Lawrence, D. M., Oleson, K. W., Flanner, M. G., et al.: Parameterization
improvements and functional and structural advances in version 4 of the
Community Land Model, J. Adv. Model. Earth Sy., 3, MS000045,
https://doi.org/10.1029/2011MS00045, 2011. 
                    
                
                        
                        Levitus, S., Antonov, J. I., Wang, J., Delworth, T. L., Dixon, K. W., and
Broccoli, A. J.: Anthropogenic warming of Earth's climate system, Science,
292, 267–270, 2001. 
                    
                
                        
                        Levitus, S., Antonov, J. I., and Boyer, T. P.:
Warming of the world ocean, 1955–2003, Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592,
2005. 
                    
                
                        
                        Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., and Zweng, M. M.: World ocean heat content and thermosteric sea level
change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106, 2012. 
                    
                
                        
                        Lu, F., Liu, Z., Zhang, S., and Liu, Y.: Strongly coupled data assimilation
using leading averaged coupled covariance (LACC). Part II: CGCM
applications, Mon. Weather Rev., 143, 4645–4659, 2015. 
                    
                
                        
                        Lu, L., Zhang, S., Yeager, S. G., Danabasoglu, G., Chang, P., Wu, L., Lin, X., Rosati, A., and Lu, F.: Impact of coherent ocean
stratification on AMOC reconstruction by coupled data assimilation with a
biased model, J. Climate, 33, 7319–7334,
https://doi.org/10.1175/JCLI-D-19-0735.1, 2020. 
                    
                
                        
                        Mu, L., Nerger, L., Tang, Q., Loza, S. N., Sidorenko, D., Wang, Q., Semmler, T., Zampieri, L., Losch, M., and Goessling, H. F.: Toward a Data Assimilation System
for Seamless Sea Ice Prediction Based on the AWI Climate Model, J. Adv.
Model. Earth Sy., 12, e2019MS001937, https://doi.org/10.1029/2019MS001937,
2020. 
                    
                
                        
                        Neale, R. B., Gettelman, A., Park, S., Conley, A. J., Kinnison, D., Dan, M., Smith, A. K., Vitt, F., Morrison, H., and Cameronsmith P.: Description of the NCAR
Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR,
1–289, Boulder, CO, National Center for Atmospheric Research, 2012. 
                    
                
                        
                        Nerger, L. and Hiller, W.: Software for Ensemble-based Data Assimilation
Systems – Implementation Strategies and Scalability, Comput. Geosci., 55,
110–118, 2013. 
                    
                
                        
                        Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev., 13, 4305–4321, https://doi.org/10.5194/gmd-13-4305-2020, 2020. 
                    
                
                        
                        Penny, S. G., Akella, S., Buehner, M., Chevallier, M., Counillon, F., Draper, C., Frolov, S., Fujii, Y., Karspeck, A., Kumar, A., et al.: “Coupled Data Assimilation
for Integrated Earth System Analysis and Prediction: Goals, Challenges and
Recommendations”, WMO, WWRP 2017-3, 2017. 
                    
                
                        
                        Raeder, K., Anderson, J. L., Collins, N., Hoar, T. J., and Pincus, R.:
DART/CAM: an ensemble data assimilation system for cesm atmospheric models,
J. Climate, 25, 6304–6317, 2012. 
                    
                
                        
                        Rayner, N., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., and Rowell, D. P.: Global analyses of sea surface temperature, sea ice,
and night marine air temperature since the late nineteenth century, J.
Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003. 
                    
                
                        
                        Roberts, M. J., Jackson, L. C., Roberts, C. D., et al.: Sensitivity of
the Atlantic meridional overturning circulation to model resolution in CMIP6
HighResMIP simulations and implications for future changes, J. Adv. Model.
Earth Sy., 12, e2019MS002014, https://doi.org/10.1029/2019MS002014, 2020. 
                    
                
                        
                        Rosati, A., Miyakoda, K., and Gudgel, R.: The impact of ocean initial conditions
on ENSO forecasting with a coupled model, Mon. Weather Rev., 125, 754–772,
1997. 
                    
                
                        
                        Saha, S., Nadiga, S., Thiaw, C., and Wang, J.: The NCEP climate forecast
system, J. Climate, 27, 2185–2208, https ://doi.org/10.1175/JCLI3812.1,
2006. 
                    
                
                        
                        Saha, S., Moorthi, S., Pan H.-L., et al.: The NCEP Climate Forecast System Reanalysis, B.
Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1,
2010. 
                    
                
                        
                        Skachko, S., Buehner, M., Laroche, S., Lapalme, E., Smith, G., Roy, F., Surcel-Colan, D., Bélanger, J.-M., and Garand, L.: Weakly coupled atmosphere–ocean data assimilation in the Canadian global prediction system (v1), Geosci. Model Dev., 12, 5097–5112, https://doi.org/10.5194/gmd-12-5097-2019, 2019. 
                    
                
                        
                        Slivinski, L. C., Compo, G. P., Whitaker, J. S., et al.: Towards a more
reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019. 
                    
                
                        
                        Small, R. J., Bacmeister, J., Bailey, D., et al.: A new synoptic scale
resolving global climate simulation using the community earth system model,
J. Adv. Model. Earth Sy., 6, 1065–1094,
https://doi.org/10.1002/2014MS000363, 2014. 
                    
                
                        
                        Smith, R. D., Jones, P., Briegleb, B., et al.: The parallel ocean
program (POP) reference manual, Los Alamos National Laboratory tech. Rep.
LAUR-10-01853, 2010. 
                    
                
                        
                        Poli, P., Hersbach, H., Tan, D. G. H., et al.: The data assimilation system and initial performance
evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating
surface observations only (ERA-20C), ECMWF ERA Rep. 14, 59 pp., 2013. 
                    
                
                        
                        Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T., and Nerger, L.:
Improving the ocean and atmosphere in a coupled ocean–atmosphere model by
assimilating satellite sea-surface temperature and subsurface profile data,
Q. J. Roy. Meteor. Soc., 146, 4014–4029, 2020. 
                    
                
                        
                        Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker,
J. S.: Ensemble square root filters, Mon. Weather Rev., 131, 1485–1490,
2003. 
                    
                
                        
                        Whitaker, J. S., Compo, G. P., Wei, X., and Hamill, T. M.: Reanalysis without
radiosondes using ensemble data assimilation, Mon. Weather Rev., 132,
1190–1200, 2004. 
                    
                
                        
                        Yang, X., Delworth, T. L., Zeng, F., Zhang, L., Cooke, W. F., Harrison, M.
J., Rosati, A., Underwood, S., Compo, G. P., and McColl, C.: On the Development
of GFDL's decadal prediction system: initialization approaches and
retrospective forecast assessment, J. Adv. Model. Earth Sy., 13,
e2021MS002529, https://doi.org/10.1029/2021MS002529, 2021. 
                    
                
                        
                        Yu, X., Zhang, S., Li, J., Lu, L., Liu, Z., Li, M., Yu, H., Han, G., Lin, X., Wu, L., and Chang, P.: A multi-timescale EnOI-Like
high-efficiency approximate filter for coupled model data assimilation, J.
Adv. Model. Earth Sy., 11, 45–63, https://doi.org/10.1029/2018MS001504,
2019. 
                    
                
                        
                        Zhang, F. Q., Snyder, C., and Sun, J.: Impacts of initial estimate and
observation availability on convective-scale data assimilation with an
ensemble kalman filter, Mon. Weather Rev., 132, 1–16, 2004. 
                    
                
                        
                        Zhang, S.: A study of impacts of coupled model initial shocks and
state-parameter optimization on climate prediction using a simple pycnocline
prediction model, J. Climate, 24, 6210–6226, 2011. 
                    
                
                        
                        Zhang, S. and Anderson, J. L.: Impact of spatially and temporally varying
estimates of error covariance on assimilation in a simple atmospheric model,
Tellus A, 55, 126–147, 2003. 
                    
                
                        
                        Zhang, S. and Rosati, A.: An Inflated Ensemble Filter for Ocean Data
Assimilation with a Biased Coupled GCM, Mon. Weather Rev., 138, 3905–3931,
https://doi.org/10.1175/2010MWR3326.1, 2010. 
                    
                
                        
                        Zhang, S., Harrison, M. J., Wittenberg, A. T., Rosati, A., Anderson, J. L., and
Balaji, V.: Initialization of an ENSO forecast system using a parallelized
ensemble filter, Mon. Weather Rev., 133, 3176–3201, 2005. 
                    
                
                        
                        Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A.: System design
and evaluation of coupled ensemble data assimilation for global oceanic
climate studies, Mon. Weather Rev., 135, 3541–3564,
https://doi.org/10.1175/MWR3466.1, 2007. 
                    
                
                        
                        Zhang, S., Rosati, A., and Delworth, T.: The Adequacy of Observing Systems
in Monitoring the Atlantic Meridional Overturning Circulation and North
Atlantic Climate, J. Climate, 23, 5311–5324, 2010. 
                    
                
                        
                        Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020a.
 
                    
                
                        
                        Zhang, S., Liu, Z., Zhang, X., et al.: Coupled data assimilation and
parameter estimation in coupled ocean–atmosphere models: a review, Clim.
Dynam., 54, 5127–5144, https://doi.org/10.1007/s00382-020-05275-6, 2020b. 
                    
                Short summary
            An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
            An online ensemble coupled data assimilation system with the Community Earth System Model is...
            
         
 
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
                        
                                         
             
             
            