Model evaluation paper
23 Jun 2022
Model evaluation paper
| 23 Jun 2022
An online ensemble coupled data assimilation capability for the Community Earth System Model: system design and evaluation
Jingzhe Sun et al.
Related authors
No articles found.
Zhenming Wang, Shaoqing Zhang, Yishuai Jin, Yinglai Jia, Yangyang Yu, Yang Gao, Xiaolin Yu, Mingkui Li, Xiaopei Lin, and Lixin Wu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-159, https://doi.org/10.5194/gmd-2022-159, 2022
Preprint under review for GMD
Short summary
Short summary
To improve the numerical model predictability of monthly extended-range scales, we use the simplified SOM to restrict the complicated SST bias from 3-D dynamical ocean model. As for SST prediction, whether in space or time, the WRF-SOM is verified to have the performance than that of the WRF-ROMS, which has a significant impact on the atmosphere. For the extreme weather event such as typhoons, the predictions of WRF-SOM are in good agreement with WRF-ROMS.
Lu Yang, Hongli Fu, Xiaofan Luo, Shaoqing Zhang, and Xuefeng Zhang
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-92, https://doi.org/10.5194/tc-2022-92, 2022
Preprint under review for TC
Short summary
Short summary
During the melting season in Arctic, sea ice thickness is difficult to detect directly by the satellite remote sensing. A bivariate regression model is put forward in this study to construct sea ice thickness. Comparisons with observations show that the new sea ice thickness data has some advantages over other data sets. The experiment shows that the model is expected to provide an available data for improving the forecast accuracy of sea ice variables in the Arctic sea ice melting season.
Yangyang Yu, Shaoqing Zhang, Haohuan Fu, Lixin Wu, Dexun Chen, Yang Gao, Zhiqiang Wei, Dongning Jia, and Xiaopei Lin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-71, https://doi.org/10.5194/gmd-2022-71, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
To understand the scientific consequence of perturbations caused by slave cores in heterogeneous computing environments, we examine the influence of perturbation amplitudes on the determination of cloud bottom and cloud top and compute the probability density function (PDF) of generated clouds. A series of comparisons on the PDFs between homogeneous and heterogeneous systems show consistently acceptable error tolerances when using slave cores in heterogeneous computing environments.
Huayang Cai, Hao Yang, Pascal Matte, Haidong Pan, Zhan Hu, Tongtiegang Zhao, and Guangliang Liu
EGUsphere, https://doi.org/10.5194/egusphere-2022-175, https://doi.org/10.5194/egusphere-2022-175, 2022
Short summary
Short summary
Quantifying the spatial-temporal water level dynamics is essential for water resources management in estuaries. In this study, we propose a simple yet powerful regression model to examine the influence of the world’s largest dam, the Three Gorges Dam (TGD), on the spatial-temporal water level dynamics within the Yangtze River estuary. The presented method is particularly useful for determining scientific strategies for sustainable water resources management in dam-controlled estuaries worldwide.
Zhao Liu, Shaoqing Zhang, Yang Shen, Yuping Guan, and Xiong Deng
Nonlin. Processes Geophys., 28, 481–500, https://doi.org/10.5194/npg-28-481-2021, https://doi.org/10.5194/npg-28-481-2021, 2021
Short summary
Short summary
A general methodology is introduced to capture regime transitions of the Atlantic meridional overturning circulation (AMOC). The assimilation models with different parameters simulate different paths for the AMOC to switch between equilibrium states. Constraining model parameters with observations can significantly mitigate the model deviations, thus capturing AMOC regime transitions. This simple model study serves as a guideline for improving coupled general circulation models.
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Jiangyu Li and Shaoqing Zhang
Geosci. Model Dev., 13, 1035–1054, https://doi.org/10.5194/gmd-13-1035-2020, https://doi.org/10.5194/gmd-13-1035-2020, 2020
Short summary
Short summary
Two assimilation systems developed using two nearly independent wave models are used to study the influences of various error sources including mode bias on wave data assimilation; a statistical method is explored to make full use of the merits of individual assimilation systems for bias correction, thus improving wave analysis greatly. This study opens a door to further our understanding of physical processes in waves and associated air–sea interactions for improving wave modeling.
Mingchen Ma, Yang Gao, Yuhang Wang, Shaoqing Zhang, L. Ruby Leung, Cheng Liu, Shuxiao Wang, Bin Zhao, Xing Chang, Hang Su, Tianqi Zhang, Lifang Sheng, Xiaohong Yao, and Huiwang Gao
Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, https://doi.org/10.5194/acp-19-12195-2019, 2019
Short summary
Short summary
Ozone pollution has become severe in China, and extremely high ozone episodes occurred in summer 2017 over the North China Plain. While meteorology impacts are clear, we find that enhanced biogenic emissions, previously ignored by the community, driven by high vapor pressure deficit, land cover change and urban landscape contribute substantially to ozone formation. This study has significant implications for ozone pollution control with more frequent heat waves and urbanization growth in future.
Yuxin Zhao, Xiong Deng, Shaoqing Zhang, Zhengyu Liu, Chang Liu, Gabriel Vecchi, Guijun Han, and Xinrong Wu
Nonlin. Processes Geophys., 24, 681–694, https://doi.org/10.5194/npg-24-681-2017, https://doi.org/10.5194/npg-24-681-2017, 2017
Short summary
Short summary
Here with a simple coupled model that simulates typical scale interactions in the climate system, we study the optimal OTWs for the coupled media so that climate signals can be most accurately recovered by CDA. Results show that an optimal OTW determined from the de-correlation timescale provides maximal observational information that best fits the characteristic variability of the coupled medium during the data blending process.
Xiaolin Yu, Shaoqing Zhang, Xiaopei Lin, and Mingkui Li
Nonlin. Processes Geophys., 24, 125–139, https://doi.org/10.5194/npg-24-125-2017, https://doi.org/10.5194/npg-24-125-2017, 2017
Short summary
Short summary
Parameter estimation (PE) with a global coupled data assimilation (CDA) system can improve the runs, but the improvement remains in a limited range. We have to come back to simple models to sort out the sources of noises. Incomplete observations and the chaotic nature of the atmosphere have much stronger influences on the PE through the state estimation (SE) process. Here, we propose the guidelines of how to enhance the signal-to-noise ratio under partial SE status.
G.-J. Han, X.-F. Zhang, S. Zhang, X.-R. Wu, and Z. Liu
Nonlin. Processes Geophys., 21, 357–366, https://doi.org/10.5194/npg-21-357-2014, https://doi.org/10.5194/npg-21-357-2014, 2014
Related subject area
Climate and Earth system modeling
MIdASv0.2.1 – MultI-scale bias AdjuStment
FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model
Assessment of the Paris urban heat island in ERA5 and offline SURFEX-TEB (v8.1) simulations using the METEOSAT land surface temperature product
The Earth system model CLIMBER-X v1.0 – Part 1: Climate model description and validation
Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models
swNEMO_v4.0: an ocean model based on NEMO4 for the new-generation Sunway supercomputer
Embedding a one-column ocean model in the Community Atmosphere Model 5.3 to improve Madden–Julian Oscillation simulation in boreal winter
Introducing new lightning schemes into the CHASER (MIROC) chemistry–climate model
Improving Madden–Julian oscillation simulation in atmospheric general circulation models by coupling with a one-dimensional snow–ice–thermocline ocean model
Atmospheric river representation in the Energy Exascale Earth System Model (E3SM) version 1.0
Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not
Spatial heterogeneity effects on land surface modeling of water and energy partitioning
Computation of longwave radiative flux and vertical heating rate with 4A-Flux v1.0 as an integral part of the radiative transfer code 4A/OP v1.5
Using a surrogate-assisted Bayesian framework to calibrate the runoff-generation scheme in the Energy Exascale Earth System Model (E3SM) v1
Description and evaluation of the tropospheric aerosol scheme in the Integrated Forecasting System (IFS-AER, cycle 47R1) of ECMWF
Tree migration in the dynamic, global vegetation model LPJ-GM 1.1: efficient uncertainty assessment and improved dispersal kernels of European trees
loopUI-0.1: indicators to support needs and practices in 3D geological modelling uncertainty quantification
Transient climate simulations of the Holocene (version 1) – experimental design and boundary conditions
Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE
Climate projections over the Great Lakes Region: using two-way coupling of a regional climate model with a 3-D lake model
Formulation of a new explicit tidal scheme in revised LICOM2.0
Evaluation of WRF-Chem model (v3.9.1.1) real-time air quality forecasts over the Eastern Mediterranean
Simulation, precursor analysis and targeted observation sensitive area identification for two types of ENSO using ENSO-MC v1.0
Stable climate simulations using a realistic general circulation model with neural network parameterizations for atmospheric moist physics and radiation processes
Description of historical and future projection simulations by the global coupled E3SMv1.0 model as used in CMIP6
Training a supermodel with noisy and sparse observations: a case study with CPT and the synch rule on SPEEDO – v.1
GREB-ISM v1.0: A coupled ice sheet model for the Globally Resolved Energy Balance model for global simulations on timescales of 100 kyr
A scalability study of the Ice-sheet and Sea-level System Model (ISSM, version 4.18)
A derivative-free optimisation method for global ocean biogeochemical models
Empirical values and assumptions in the convection schemes of numerical models
Precipitation over southern Africa: is there consensus among global climate models (GCMs), regional climate models (RCMs) and observational data?
On the impact of dropsondes on the ECMWF Integrated Forecasting System model (CY47R1) analysis of convection during the OTREC (Organization of Tropical East Pacific Convection) field campaign
Assessment of the sea surface temperature diurnal cycle in CNRM-CM6-1 based on its 1D coupled configuration
CondiDiag1.0: a flexible online diagnostic tool for conditional sampling and budget analysis in the E3SM atmosphere model (EAM)
An evaluation of the E3SMv1 Arctic ocean and sea-ice regionally refined model
Checkerboard Patterns in E3SMv2 and E3SM-MMFv2
Intercomparison of Four Tropical Cyclones Detection Algorithms on ERA5
Surface Urban Energy and Water Balance Scheme (v2020a) in vegetated areas: parameter derivation and performance evaluation using FLUXNET2015 dataset
The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6
Evaluation of a quasi-steady-state approximation of the cloud droplet growth equation (QDGE) scheme for aerosol activation in global models using multiple aircraft data over both continental and marine environments
Better calibration of cloud parameterizations and subgrid effects increases the fidelity of the E3SM Atmosphere Model version 1
Landslide Susceptibility Assessment Tools v1.0.0b – Project Manager Suite: a new modular toolkit for landslide susceptibility assessment
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 1: Precipitation
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 2: Max and min temperature
Constraining a land cover map with satellite-based aboveground biomass estimates over Africa
Analysing the PMIP4-CMIP6 collection: a workflow and tool (pmip_p2fvar_analyzer v1)
Downscaling Multi-Model Climate Projection Ensembles with Deep Learning (DeepESD): Contribution to CORDEX EUR-44
Impacts of a revised surface roughness parameterization in the Community Land Model 5.1
Novel coupled permafrost–forest model (LAVESI–CryoGrid v1.0) revealing the interplay between permafrost, vegetation, and climate across eastern Siberia
The effects of ocean surface waves on global intraseasonal prediction: case studies with a coupled CFSv2.0–WW3 system
Peter Berg, Thomas Bosshard, Wei Yang, and Klaus Zimmermann
Geosci. Model Dev., 15, 6165–6180, https://doi.org/10.5194/gmd-15-6165-2022, https://doi.org/10.5194/gmd-15-6165-2022, 2022
Short summary
Short summary
When performing impact analyses with climate models, one is often confronted with the issue that the models have significant bias. Commonly, the modelled climatological temperature deviates from the observed climate by a few degrees or it rains excessively in the model. MIdAS employs a novel statistical model to translate the model climatology toward that observed using novel methodologies and modern tools. The coding platform allows opportunities to develop methods for high-resolution models.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022, https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
Short summary
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI) over the city of Paris and performed a set of offline runs using the SURFEX land surface model. They were compared with observations (satellite and in situ). The SURFEX-TEB runs showed the best performance in representing the UHI, reducing its bias significantly. We demonstrate the ability of the SURFEX-TEB framework to simulate urban climate, which is crucial for studying climate change in cities.
Matteo Willeit, Andrey Ganopolski, Alexander Robinson, and Neil R. Edwards
Geosci. Model Dev., 15, 5905–5948, https://doi.org/10.5194/gmd-15-5905-2022, https://doi.org/10.5194/gmd-15-5905-2022, 2022
Short summary
Short summary
In this paper we present the climate component of the newly developed fast Earth system model CLIMBER-X. It has a horizontal resolution of 5°x5° and is designed to simulate the evolution of the Earth system on temporal scales ranging from decades to >100 000 years. CLIMBER-X is available as open-source code and is expected to be a useful tool for studying past climate changes and for the investigation of the long-term future evolution of the climate.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Yuejin Ye, Zhenya Song, Shengchang Zhou, Yao Liu, Qi Shu, Bingzhuo Wang, Weiguo Liu, Fangli Qiao, and Lanning Wang
Geosci. Model Dev., 15, 5739–5756, https://doi.org/10.5194/gmd-15-5739-2022, https://doi.org/10.5194/gmd-15-5739-2022, 2022
Short summary
Short summary
The swNEMO_v4.0 is developed with ultrahigh scalability through the concepts of hardware–software co-design based on the characteristics of the new Sunway supercomputer and NEMO4. Three breakthroughs, including an adaptive four-level parallelization design, many-core optimization and mixed-precision optimization, are designed. The simulations achieve 71.48 %, 83.40 % and 99.29 % parallel efficiency with resolutions of 2 km, 1 km and 500 m using 27 988 480 cores, respectively.
Yung-Yao Lan, Huang-Hsiung Hsu, Wan-Ling Tseng, and Li-Chiang Jiang
Geosci. Model Dev., 15, 5689–5712, https://doi.org/10.5194/gmd-15-5689-2022, https://doi.org/10.5194/gmd-15-5689-2022, 2022
Short summary
Short summary
This study has shown that coupling a high-resolution 1-D ocean model (SIT 1.06) with the Community Atmosphere Model 5.3 (CAM5.3) significantly improves the simulation of the Madden–Julian Oscillation (MJO) over the standalone CAM5.3. Systematic sensitivity experiments resulted in more realistic simulations of the tropical MJO because they had better upper-ocean resolution, adequate upper-ocean thickness, coupling regions including the eastern Pacific and southern tropics, and a diurnal cycle.
Yanfeng He, Hossain Mohammed Syedul Hoque, and Kengo Sudo
Geosci. Model Dev., 15, 5627–5650, https://doi.org/10.5194/gmd-15-5627-2022, https://doi.org/10.5194/gmd-15-5627-2022, 2022
Short summary
Short summary
Lightning-produced NOx (LNOx) is a major source of NOx. Hence, it is crucial to improve the prediction accuracy of lightning and LNOx in chemical climate models. By modifying existing lightning schemes and testing them in the chemical climate model CHASER, we improved the prediction accuracy of lightning in CHASER. Different lightning schemes respond very differently under global warming, which indicates further research is needed considering the reproducibility of long-term trends of lightning.
Wan-Ling Tseng, Huang-Hsiung Hsu, Yung-Yao Lan, Wei-Liang Lee, Chia-Ying Tu, Pei-Hsuan Kuo, Ben-Jei Tsuang, and Hsin-Chien Liang
Geosci. Model Dev., 15, 5529–5546, https://doi.org/10.5194/gmd-15-5529-2022, https://doi.org/10.5194/gmd-15-5529-2022, 2022
Short summary
Short summary
We show that coupling a high-resolution one-column ocean model to three atmospheric general circulation models dramatically improves Madden–Julian oscillation (MJO) simulations. It suggests two major improvements to the coupling process in the preconditioning phase and strongest convection phase over the Maritime Continent. Our results demonstrate a simple but effective way to significantly improve MJO simulations and potentially seasonal to subseasonal prediction.
Sol Kim, L. Ruby Leung, Bin Guan, and John C. H. Chiang
Geosci. Model Dev., 15, 5461–5480, https://doi.org/10.5194/gmd-15-5461-2022, https://doi.org/10.5194/gmd-15-5461-2022, 2022
Short summary
Short summary
The Energy Exascale Earth System Model (E3SM) project is a state-of-the-science Earth system model developed by the US Department of Energy (DOE). Understanding how the water cycle behaves in this model is of particular importance to the DOE’s mission. Atmospheric rivers (ARs) – which are crucial to the global water cycle – move vast amounts of water vapor through the sky and produce rain and snow. We find that this model reliably represents atmospheric rivers around the world.
Timothy O. Hodson
Geosci. Model Dev., 15, 5481–5487, https://doi.org/10.5194/gmd-15-5481-2022, https://doi.org/10.5194/gmd-15-5481-2022, 2022
Short summary
Short summary
The task of evaluating competing models is fundamental to science. Models are evaluated based on an objective function, the choice of which ultimately influences what scientists learn from their observations. The mean absolute error (MAE) and root-mean-squared error (RMSE) are two such functions. Both are widely used, yet there remains enduring confusion over their use. This article reviews the theoretical justification behind their usage, as well as alternatives for when they are not suitable.
Lingcheng Li, Gautam Bisht, and L. Ruby Leung
Geosci. Model Dev., 15, 5489–5510, https://doi.org/10.5194/gmd-15-5489-2022, https://doi.org/10.5194/gmd-15-5489-2022, 2022
Short summary
Short summary
Land surface heterogeneity plays a critical role in the terrestrial water, energy, and biogeochemical cycles. Our study systematically quantified the effects of four dominant heterogeneity sources on water and energy partitioning via Sobol' indices. We found that atmospheric forcing and land use land cover are the most dominant heterogeneity sources in determining spatial variability of water and energy partitioning. Our findings can help prioritize the future development of land surface models.
Yoann Tellier, Cyril Crevoisier, Raymond Armante, Jean-Louis Dufresne, and Nicolas Meilhac
Geosci. Model Dev., 15, 5211–5231, https://doi.org/10.5194/gmd-15-5211-2022, https://doi.org/10.5194/gmd-15-5211-2022, 2022
Short summary
Short summary
Accurate radiative transfer models (RTMs) are required to improve climate model simulations. We describe the module named 4A-Flux, which is implemented into 4A/OP RTM, aimed at calculating spectral longwave radiative fluxes given a description of the surface, atmosphere, and spectroscopy. In Pincus et al. (2020), 4A-Flux has shown good agreement with state-of-the-art RTMs. Here, it is applied to perform sensitivity studies and will be used to improve the understanding of radiative flux modeling.
Donghui Xu, Gautam Bisht, Khachik Sargsyan, Chang Liao, and L. Ruby Leung
Geosci. Model Dev., 15, 5021–5043, https://doi.org/10.5194/gmd-15-5021-2022, https://doi.org/10.5194/gmd-15-5021-2022, 2022
Short summary
Short summary
The runoff outputs in Earth system model simulations involve high uncertainty, which needs to be constrained by parameter calibration. In this work, we used a surrogate-assisted Bayesian framework to efficiently calibrate the runoff-generation processes in the Energy Exascale Earth System Model v1 at a global scale. The model performance was improved compared to the default parameter after calibration, and the associated parametric uncertainty was significantly constrained.
Samuel Rémy, Zak Kipling, Vincent Huijnen, Johannes Flemming, Pierre Nabat, Martine Michou, Melanie Ades, Richard Engelen, and Vincent-Henri Peuch
Geosci. Model Dev., 15, 4881–4912, https://doi.org/10.5194/gmd-15-4881-2022, https://doi.org/10.5194/gmd-15-4881-2022, 2022
Short summary
Short summary
This article describes a new version of IFS-AER, the tropospheric aerosol scheme used to provide global aerosol products within the Copernicus Atmosphere Monitoring Service (CAMS) cycle. Several components of the model have been updated, such as the dynamical dust and sea salt aerosol emission schemes. New deposition schemes have also been incorporated but are not yet used operationally. This new version of IFS-AER has been evaluated and shown to have a greater skill than previous versions.
Deborah Zani, Veiko Lehsten, and Heike Lischke
Geosci. Model Dev., 15, 4913–4940, https://doi.org/10.5194/gmd-15-4913-2022, https://doi.org/10.5194/gmd-15-4913-2022, 2022
Short summary
Short summary
The prediction of species migration under rapid climate change remains uncertain. In this paper, we evaluate the importance of the mechanisms underlying plant migration and increase the performance in the dynamic global vegetation model LPJ-GM 1.0. The improved model will allow us to understand past vegetation dynamics and predict the future redistribution of species in a context of global change.
Guillaume Pirot, Ranee Joshi, Jérémie Giraud, Mark Douglas Lindsay, and Mark Walter Jessell
Geosci. Model Dev., 15, 4689–4708, https://doi.org/10.5194/gmd-15-4689-2022, https://doi.org/10.5194/gmd-15-4689-2022, 2022
Short summary
Short summary
Results of a survey launched among practitioners in the mineral industry show that despite recognising the importance of uncertainty quantification it is not very well performed due to lack of data, time requirements, poor tracking of interpretations and relative complexity of uncertainty quantification. To alleviate the latter, we provide an open-source set of local and global indicators to measure geological uncertainty among an ensemble of geological models.
Zhiping Tian, Dabang Jiang, Ran Zhang, and Baohuang Su
Geosci. Model Dev., 15, 4469–4487, https://doi.org/10.5194/gmd-15-4469-2022, https://doi.org/10.5194/gmd-15-4469-2022, 2022
Short summary
Short summary
We present an experimental design for a new set of transient experiments for the Holocene from 11.5 ka to the preindustrial period (1850) with a relatively high-resolution Earth system model. Model boundary conditions include time-varying full and single forcing of orbital parameters, greenhouse gases, and ice sheets. The simulations will help to study the mean climate trend and abrupt climate changes through the Holocene in response to both full and single external forcings.
James R. Christian, Kenneth L. Denman, Hakase Hayashida, Amber M. Holdsworth, Warren G. Lee, Olivier G. J. Riche, Andrew E. Shao, Nadja Steiner, and Neil C. Swart
Geosci. Model Dev., 15, 4393–4424, https://doi.org/10.5194/gmd-15-4393-2022, https://doi.org/10.5194/gmd-15-4393-2022, 2022
Short summary
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
Pengfei Xue, Xinyu Ye, Jeremy S. Pal, Philip Y. Chu, Miraj B. Kayastha, and Chenfu Huang
Geosci. Model Dev., 15, 4425–4446, https://doi.org/10.5194/gmd-15-4425-2022, https://doi.org/10.5194/gmd-15-4425-2022, 2022
Short summary
Short summary
The Great Lakes are the world's largest freshwater system. They are a key element in regional climate influencing local weather patterns and climate processes. Many of these complex processes are regulated by interactions of the atmosphere, lake, ice, and surrounding land areas. This study presents a Great Lakes climate change projection that employed the two-way coupling of a regional climate model with a 3-D lake model (GLARM) to resolve 3-D hydrodynamics essential for large lakes.
Jiangbo Jin, Run Guo, Minghua Zhang, Guangqing Zhou, and Qingcun Zeng
Geosci. Model Dev., 15, 4259–4273, https://doi.org/10.5194/gmd-15-4259-2022, https://doi.org/10.5194/gmd-15-4259-2022, 2022
Short summary
Short summary
In this paper, the inclusion of tides in a global model via the explicit calculation of the tide-generating force based on the positions of the sun and moon is proposed, rather than the traditional method of including about eight tidal constituents with empirical amplitudes and frequencies. The new scheme can better simulate the diurnal and spatial characteristics of the tidal potential of spring and neap tides as well as the spatial patterns and magnitudes of major tidal constituents.
George K. Georgiou, Theodoros Christoudias, Yiannis Proestos, Jonilda Kushta, Michael Pikridas, Jean Sciare, Chrysanthos Savvides, and Jos Lelieveld
Geosci. Model Dev., 15, 4129–4146, https://doi.org/10.5194/gmd-15-4129-2022, https://doi.org/10.5194/gmd-15-4129-2022, 2022
Short summary
Short summary
We evaluate the skill of the WRF-Chem model to perform high-resolution air quality forecasts (including ozone, nitrogen dioxide, and fine particulate matter) over the Eastern Mediterranean, during winter and summer. We compare the forecast output to observational data from background and urban locations and the forecast output from CAMS. WRF-Chem was found to forecast the concentrations and diurnal profiles of gas-phase pollutants in urban areas with higher accuracy.
Bin Mu, Yuehan Cui, Shijin Yuan, and Bo Qin
Geosci. Model Dev., 15, 4105–4127, https://doi.org/10.5194/gmd-15-4105-2022, https://doi.org/10.5194/gmd-15-4105-2022, 2022
Short summary
Short summary
An ENSO deep learning forecast model (ENSO-MC) is built to simulate the spatial evolution of sea surface temperature, analyse the precursor and identify the sensitive area. The results reveal the pronounced subsurface features before different types of events and indicate that oceanic thermal anomaly in the central and western Pacific provides a key long-term memory for predictions, demonstrating the potential usage of the ENSO-MC model in simulation, understanding and observations of ENSO.
Xin Wang, Yilun Han, Wei Xue, Guangwen Yang, and Guang J. Zhang
Geosci. Model Dev., 15, 3923–3940, https://doi.org/10.5194/gmd-15-3923-2022, https://doi.org/10.5194/gmd-15-3923-2022, 2022
Short summary
Short summary
This study uses a set of deep neural networks to learn a parameterization scheme from a superparameterized general circulation model (GCM). After being embedded in a realistically configurated GCM, the parameterization scheme performs stably in long-term climate simulations and reproduces reasonable climatology and climate variability. This success is the first for long-term stable climate simulations using machine learning parameterization under real geographical boundary conditions.
Xue Zheng, Qing Li, Tian Zhou, Qi Tang, Luke P. Van Roekel, Jean-Christophe Golaz, Hailong Wang, and Philip Cameron-Smith
Geosci. Model Dev., 15, 3941–3967, https://doi.org/10.5194/gmd-15-3941-2022, https://doi.org/10.5194/gmd-15-3941-2022, 2022
Short summary
Short summary
We document the model experiments for the future climate projection by E3SMv1.0. At the highest future emission scenario, E3SMv1.0 projects a strong surface warming with rapid changes in the atmosphere, ocean, sea ice, and land runoff. Specifically, we detect a significant polar amplification and accelerated warming linked to the unmasking of the aerosol effects. The impact of greenhouse gas forcing is examined in different climate components.
Francine Schevenhoven and Alberto Carrassi
Geosci. Model Dev., 15, 3831–3844, https://doi.org/10.5194/gmd-15-3831-2022, https://doi.org/10.5194/gmd-15-3831-2022, 2022
Short summary
Short summary
In this study, we present a novel formulation to build a dynamical combination of models, the so-called supermodel, which needs to be trained based on data. Previously, we assumed complete and noise-free observations. Here, we move towards a realistic scenario and develop adaptations to the training methods in order to cope with sparse and noisy observations. The results are very promising and shed light on how to apply the method with state of the art general circulation models.
Zhiang Xie, Dietmar Dommenget, Felicity S. McCormack, and Andrew N. Mackintosh
Geosci. Model Dev., 15, 3691–3719, https://doi.org/10.5194/gmd-15-3691-2022, https://doi.org/10.5194/gmd-15-3691-2022, 2022
Short summary
Short summary
Paleoclimate research requires better numerical model tools to explore interactions among the cryosphere, atmosphere, ocean and land surface. To explore those interactions, this study offers a tool, the GREB-ISM, which can be run for 2 million model years within 1 month on a personal computer. A series of experiments show that the GREB-ISM is able to reproduce the modern ice sheet distribution as well as classic climate oscillation features under paleoclimate conditions.
Yannic Fischler, Martin Rückamp, Christian Bischof, Vadym Aizinger, Mathieu Morlighem, and Angelika Humbert
Geosci. Model Dev., 15, 3753–3771, https://doi.org/10.5194/gmd-15-3753-2022, https://doi.org/10.5194/gmd-15-3753-2022, 2022
Short summary
Short summary
Ice sheet models are used to simulate the changes of ice sheets in future but are currently often run in coarse resolution and/or with neglecting important physics to make them affordable in terms of computational costs. We conducted a study simulating the Greenland Ice Sheet in high resolution and adequate physics to test where the ISSM ice sheet code is using most time and what could be done to improve its performance for future computer architectures that allow massive parallel computing.
Sophy Oliver, Coralia Cartis, Iris Kriest, Simon F. B Tett, and Samar Khatiwala
Geosci. Model Dev., 15, 3537–3554, https://doi.org/10.5194/gmd-15-3537-2022, https://doi.org/10.5194/gmd-15-3537-2022, 2022
Short summary
Short summary
Global ocean biogeochemical models are used within Earth system models which are used to predict future climate change. However, these are very computationally expensive to run and therefore are rarely routinely improved or calibrated to real oceanic observations. Here we apply a new, fast optimisation algorithm to one such model and show that it can calibrate the model much faster than previously managed, therefore encouraging further ocean biogeochemical model improvements.
Anahí Villalba-Pradas and Francisco J. Tapiador
Geosci. Model Dev., 15, 3447–3518, https://doi.org/10.5194/gmd-15-3447-2022, https://doi.org/10.5194/gmd-15-3447-2022, 2022
Short summary
Short summary
The paper provides a comprehensive review of the empirical values and assumptions used in the convection schemes of numerical models. The focus is on the values and assumptions used in the activation of convection (trigger), the transport and microphysics (commonly referred to as the cloud model), and the intensity of convection (closure). Such information can assist satellite missions focused on elucidating convective processes and the evaluation of model output uncertainties.
Maria Chara Karypidou, Eleni Katragkou, and Stefan Pieter Sobolowski
Geosci. Model Dev., 15, 3387–3404, https://doi.org/10.5194/gmd-15-3387-2022, https://doi.org/10.5194/gmd-15-3387-2022, 2022
Short summary
Short summary
The region of southern Africa (SAF) is highly vulnerable to the impacts of climate change and is projected to experience severe precipitation shortages in the coming decades. Reliable climatic information is therefore necessary for the optimal adaptation of local communities. In this work we show that regional climate models are reliable tools for the simulation of precipitation over southern Africa. However, there is still a great need for the expansion and maintenance of observational data.
Stipo Sentić, Peter Bechtold, Željka Fuchs-Stone, Mark Rodwell, and David J. Raymond
Geosci. Model Dev., 15, 3371–3385, https://doi.org/10.5194/gmd-15-3371-2022, https://doi.org/10.5194/gmd-15-3371-2022, 2022
Short summary
Short summary
The Organization of Tropical East Pacific Convection (OTREC) field campaign focuses on studying convection in the eastern Pacific and Caribbean. Observations obtained from dropsondes have been assimilated into the ECMWF model and compared to a model run in which sondes have not been assimilated. The model performs well in both simulations, but the assimilation of sondes helps to reduce the departure for pre-tropical-storm conditions. Variables important to studying convection are also studied.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Hui Wan, Kai Zhang, Philip J. Rasch, Vincent E. Larson, Xubin Zeng, Shixuan Zhang, and Ross Dixon
Geosci. Model Dev., 15, 3205–3231, https://doi.org/10.5194/gmd-15-3205-2022, https://doi.org/10.5194/gmd-15-3205-2022, 2022
Short summary
Short summary
This paper describes a tool embedded in a global climate model for sampling atmospheric conditions and monitoring physical processes as a numerical simulation is being carried out. The tool facilitates process-level model evaluation by allowing the users to select a wide range of quantities and processes to monitor at run time without having to do tedious ad hoc coding.
Milena Veneziani, Wieslaw Maslowski, Younjoo J. Lee, Gennaro D'Angelo, Robert Osinski, Mark R. Petersen, Wilbert Weijer, Anthony P. Craig, John D. Wolfe, Darin Comeau, and Adrian K. Turner
Geosci. Model Dev., 15, 3133–3160, https://doi.org/10.5194/gmd-15-3133-2022, https://doi.org/10.5194/gmd-15-3133-2022, 2022
Short summary
Short summary
We present an Earth system model (ESM) simulation, E3SM-Arctic-OSI, with a refined grid to better resolve the Arctic ocean and sea-ice system and low spatial resolution elsewhere. The configuration satisfactorily represents many aspects of the Arctic system and its interactions with the sub-Arctic, while keeping computational costs at a fraction of those necessary for global high-resolution ESMs. E3SM-Arctic can thus be an efficient tool to study Arctic processes on climate-relevant timescales.
Walter M. Hannah, Kyle G. Pressel, Mikhail Ovchinnikov, and Gregory S. Elsaesser
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-35, https://doi.org/10.5194/gmd-2022-35, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
An unphysical checkerboard signal is identified in two configurations of the atmospheric component of E3SM. The signal is very persistent, and visible after averaging years of data. The signal is very difficult to study because it is often mixed with realistic weather. A method is presented to detect checkerboard patterns and compare the model with satellite observations. The causes of the signal are identified and a solution for one configuration is discussed.
Stella Bourdin, Sébastien Fromang, William Dulac, Julien Cattiaux, and Fabrice Chauvin
EGUsphere, https://doi.org/10.5194/egusphere-2022-179, https://doi.org/10.5194/egusphere-2022-179, 2022
Short summary
Short summary
Climate models output results in the form of gridded datasets. In order to study tropical cyclones, one needs objective and automatic procedures to detect their specific pattern. We study four algorithms performing this detection by applying them to a reconstruction of the climate in which we expect to find the observed storms. We conclude that these algorithms differ in their sensitivity to weak disturbances so that they provide different frequencies and durations.
Hamidreza Omidvar, Ting Sun, Sue Grimmond, Dave Bilesbach, Andrew Black, Jiquan Chen, Zexia Duan, Zhiqiu Gao, Hiroki Iwata, and Joseph P. McFadden
Geosci. Model Dev., 15, 3041–3078, https://doi.org/10.5194/gmd-15-3041-2022, https://doi.org/10.5194/gmd-15-3041-2022, 2022
Short summary
Short summary
This paper extends the applicability of the SUEWS to extensive pervious areas outside cities. We derived various parameters such as leaf area index, albedo, roughness parameters and surface conductance for non-urban areas. The relation between LAI and albedo is also explored. The methods and parameters discussed can be used for both online and offline simulations. Using appropriate parameters related to non-urban areas is essential for assessing urban–rural differences.
Ralf Döscher, Mario Acosta, Andrea Alessandri, Peter Anthoni, Thomas Arsouze, Tommi Bergman, Raffaele Bernardello, Souhail Boussetta, Louis-Philippe Caron, Glenn Carver, Miguel Castrillo, Franco Catalano, Ivana Cvijanovic, Paolo Davini, Evelien Dekker, Francisco J. Doblas-Reyes, David Docquier, Pablo Echevarria, Uwe Fladrich, Ramon Fuentes-Franco, Matthias Gröger, Jost v. Hardenberg, Jenny Hieronymus, M. Pasha Karami, Jukka-Pekka Keskinen, Torben Koenigk, Risto Makkonen, François Massonnet, Martin Ménégoz, Paul A. Miller, Eduardo Moreno-Chamarro, Lars Nieradzik, Twan van Noije, Paul Nolan, Declan O'Donnell, Pirkka Ollinaho, Gijs van den Oord, Pablo Ortega, Oriol Tintó Prims, Arthur Ramos, Thomas Reerink, Clement Rousset, Yohan Ruprich-Robert, Philippe Le Sager, Torben Schmith, Roland Schrödner, Federico Serva, Valentina Sicardi, Marianne Sloth Madsen, Benjamin Smith, Tian Tian, Etienne Tourigny, Petteri Uotila, Martin Vancoppenolle, Shiyu Wang, David Wårlind, Ulrika Willén, Klaus Wyser, Shuting Yang, Xavier Yepes-Arbós, and Qiong Zhang
Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, https://doi.org/10.5194/gmd-15-2973-2022, 2022
Short summary
Short summary
The Earth system model EC-Earth3 is documented here. Key performance metrics show physical behavior and biases well within the frame known from recent models. With improved physical and dynamic features, new ESM components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.
Hengqi Wang, Yiran Peng, Knut von Salzen, Yan Yang, Wei Zhou, and Delong Zhao
Geosci. Model Dev., 15, 2949–2971, https://doi.org/10.5194/gmd-15-2949-2022, https://doi.org/10.5194/gmd-15-2949-2022, 2022
Short summary
Short summary
The aerosol activation scheme is an important part of the general circulation model, but evaluations using observed data are mostly regional. This research introduced a numerically efficient aerosol activation scheme and evaluated it by using stratus and stratocumulus cloud data sampled during multiple aircraft campaigns in Canada, Chile, Brazil, and China. The decent performance indicates that the scheme is suitable for simulations of cloud droplet number concentrations over wide conditions.
Po-Lun Ma, Bryce E. Harrop, Vincent E. Larson, Richard B. Neale, Andrew Gettelman, Hugh Morrison, Hailong Wang, Kai Zhang, Stephen A. Klein, Mark D. Zelinka, Yuying Zhang, Yun Qian, Jin-Ho Yoon, Christopher R. Jones, Meng Huang, Sheng-Lun Tai, Balwinder Singh, Peter A. Bogenschutz, Xue Zheng, Wuyin Lin, Johannes Quaas, Hélène Chepfer, Michael A. Brunke, Xubin Zeng, Johannes Mülmenstädt, Samson Hagos, Zhibo Zhang, Hua Song, Xiaohong Liu, Michael S. Pritchard, Hui Wan, Jingyu Wang, Qi Tang, Peter M. Caldwell, Jiwen Fan, Larry K. Berg, Jerome D. Fast, Mark A. Taylor, Jean-Christophe Golaz, Shaocheng Xie, Philip J. Rasch, and L. Ruby Leung
Geosci. Model Dev., 15, 2881–2916, https://doi.org/10.5194/gmd-15-2881-2022, https://doi.org/10.5194/gmd-15-2881-2022, 2022
Short summary
Short summary
An alternative set of parameters for E3SM Atmospheric Model version 1 has been developed based on a tuning strategy that focuses on clouds. When clouds in every regime are improved, other aspects of the model are also improved, even though they are not the direct targets for calibration. The recalibrated model shows a lower sensitivity to anthropogenic aerosols and surface warming, suggesting potential improvements to the simulated climate in the past and future.
Jewgenij Torizin, Nick Schüßler, and Michael Fuchs
Geosci. Model Dev., 15, 2791–2812, https://doi.org/10.5194/gmd-15-2791-2022, https://doi.org/10.5194/gmd-15-2791-2022, 2022
Short summary
Short summary
With LSAT PM we introduce an open-source, stand-alone, easy-to-use application that supports scientific principles of openness, knowledge integrity, and replicability. Doing so, we want to share our experience in the implementation of heuristic and data-driven landslide susceptibility assessment methods such as analytic hierarchy process, weights of evidence, logistic regression, and artificial neural networks. A test dataset is available.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with a recent observational gridded dataset as a reference, covering the entire Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional climate models encouraged this study. For precipitation, most models reveal added value. The gains are even more evident for precipitation extremes, particularly at a more local scale.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2653–2671, https://doi.org/10.5194/gmd-15-2653-2022, https://doi.org/10.5194/gmd-15-2653-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with an observational gridded dataset as a reference covering the Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional models encouraged this study. For the max and min temperature, although most models reveal added value, some display losses. At more local scales, coastal sites display important gains, contrasting with the interior.
Guillaume Marie, B. Sebastiaan Luyssaert, Cecile Dardel, Thuy Le Toan, Alexandre Bouvet, Stéphane Mermoz, Ludovic Villard, Vladislav Bastrikov, and Philippe Peylin
Geosci. Model Dev., 15, 2599–2617, https://doi.org/10.5194/gmd-15-2599-2022, https://doi.org/10.5194/gmd-15-2599-2022, 2022
Short summary
Short summary
Most Earth system models make use of vegetation maps to initialize a simulation at global scale. Satellite-based biomass map estimates for Africa were used to estimate cover fractions for the 15 land cover classes. This study successfully demonstrates that satellite-based biomass maps can be used to better constrain vegetation maps. Applying this approach at the global scale would increase confidence in assessments of present-day biomass stocks.
Anni Zhao, Chris M. Brierley, Zhiyi Jiang, Rachel Eyles, Damián Oyarzún, and Jose Gomez-Dans
Geosci. Model Dev., 15, 2475–2488, https://doi.org/10.5194/gmd-15-2475-2022, https://doi.org/10.5194/gmd-15-2475-2022, 2022
Short summary
Short summary
We describe the way that our group have chosen to perform our recent analyses of the Palaeoclimate Modelling Intercomparison Project ensemble simulations. We document the approach used to obtain and curate the simulations, process those outputs via the Climate Variability Diagnostics Package, and then continue through to compute ensemble-wide statistics and create figures. We also provide interim data from all steps, the codes used and the ability for users to perform their own analyses.
Jorge Baño-Medina, Rodrigo Manzanas, Ezequiel Cimadevilla, Jesús Fernández, Jose González-Abad, Antonio Santiago Cofiño, and José Manuel Gutiérrez
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-57, https://doi.org/10.5194/gmd-2022-57, 2022
Revised manuscript accepted for GMD
Short summary
Short summary
Artificial intelligence tools, namely deep neural networks, are deployed to produce regional products (i.e., temperature and precipitation) of climate change projections over Europe. The resulting dataset, DeepESD, is make publicly available and analyzed against state-of-the-art methodologies to study the evolution of regional climate, reproducing more accurately the observed climate in the historical period and showing similar trajectories into the future with fewer computational requirements.
Ronny Meier, Edouard L. Davin, Gordon B. Bonan, David M. Lawrence, Xiaolong Hu, Gregory Duveiller, Catherine Prigent, and Sonia I. Seneviratne
Geosci. Model Dev., 15, 2365–2393, https://doi.org/10.5194/gmd-15-2365-2022, https://doi.org/10.5194/gmd-15-2365-2022, 2022
Short summary
Short summary
We revise the roughness of the land surface in the CESM climate model. Guided by observational data, we increase the surface roughness of forests and decrease that of bare soil, snow, ice, and crops. These modifications alter simulated temperatures and wind speeds at and above the land surface considerably, in particular over desert regions. The revised model represents the diurnal variability of the land surface temperature better compared to satellite observations over most regions.
Stefan Kruse, Simone M. Stuenzi, Julia Boike, Moritz Langer, Josias Gloy, and Ulrike Herzschuh
Geosci. Model Dev., 15, 2395–2422, https://doi.org/10.5194/gmd-15-2395-2022, https://doi.org/10.5194/gmd-15-2395-2022, 2022
Short summary
Short summary
We coupled established models for boreal forest (LAVESI) and permafrost dynamics (CryoGrid) in Siberia to investigate interactions of the diverse vegetation layer with permafrost soils. Our tests showed improved active layer depth estimations and newly included species growth according to their species-specific limits. We conclude that the new model system can be applied to simulate boreal forest dynamics and transitions under global warming and disturbances, expanding our knowledge.
Ruizi Shi, Fanghua Xu, Li Liu, Zheng Fan, Hao Yu, Hong Li, Xiang Li, and Yunfei Zhang
Geosci. Model Dev., 15, 2345–2363, https://doi.org/10.5194/gmd-15-2345-2022, https://doi.org/10.5194/gmd-15-2345-2022, 2022
Short summary
Short summary
To better understand the effects of surface waves on global intraseasonal prediction, we incorporated the WW3 model into CFSv2.0. Processes of Langmuir mixing, Stokes–Coriolis force with entrainment, air–sea fluxes modified by Stokes drift, and momentum roughness length were considered. Results from two groups of 56 d experiments show that overestimated sea surface temperature, 2 m air temperature, 10 m wind, wave height, and underestimated mixed layer from the original CFSv2.0 are improved.
Cited articles
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation,
Mon. Weather Rev., 129, 2884–2903, 2001.
Anderson, J. L.: A local least squares framework for ensemble filtering,
Mon. Weather Rev., 131, 634–642, 2003.
Anderson, J. L. and Anderson, S. L.: A monte carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts,
Mon. Weather Rev., 127, 2741–2758, 1999.
Anderson, J. L., Wyman, B., Zhang, S., and Hoar, T.: Assimilation of surface
pressure observations using an ensemble filter in an idealized global
atmospheric prediction system, J. Atmos. Sci., 62, 2925–2938, 2005.
Anderson, J. L. and Collins N.: Scalable Implementations of Ensemble Filter
Algorithms for Data Assimilation, J. Atmo. Ocean Tech., 24, 1452–1463, https://doi.org/10.1175/JTECH2049.1, 2007.
Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and
Arellano, A.: The Data Assimilation Research Testbed: A community facility,
B. Am. Meteorol. Soc., 90, 1283–1296, https://doi.org/10.1175/2009BAMS2618.1, 2009.
Arblaster, J. M., Meehl, G. A., and Karoly, D. J.: Future climate change in
the Southern Hemisphere: Competing effects of ozone and greenhouse gases,
Geophys. Res. Lett., 38, L02701, https://doi.org/10.1029/2010GL045384, 2011.
Asefi-Najafabady, S., Vandekar, K., Seimon, A., Lawrence, P., and Lawrence,
D.: Climate change, population and poverty: vulnerability and exposure to
heat stress in East Africa, Climatic Change, 148, 561–573, https://doi.org/10.1007/s10584-018-2211-5,
2018.
Balmaseda, M. and Anderson, D.: Impact of initialization strategies and
observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701,
https://doi.org/10.1029/2008GL035561, 2009.
Bitz, C. M.: Some aspects of uncertainty in predicting sea ice retreat, in:
Arctic Sea Ice Decline: observations, projections, mechanisms, and
implications, edited by: deWeaver, E.,
Bitz, C. M., and Tremblay, B., AGU Geophysical Monograph Series, American Geophysical Union, 180, 63–76, 2008.
Bloom, S. C., Takacs, L. L., da Silva, A. M., and Ledvina, D.: Data
assimilation using incremental analysis updates, Mon. Weather Rev., 124,
1256, https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2, 1996.
Browne, P. A. and Leeuwen, P. J. van: Twin experiments with the equivalent
weights particle filter and HadCM3, Q. J. Roy. Meteor. Soc., 141,
3399–3414, https://doi.org/10.1002/qj.2621, 2015.
Browne, P. A. and Wilson, S.: A simple method for integrating a complex model
into an ensemble data assimilation system using MPI, Environ. Modell. Softw.,
68, 122–128, 2015.
Browne, P. A., Rosnay, P., Zuo H., Bennett, A., and Dawson, A.: Weakly
Coupled Ocean–Atmosphere Data Assimilation in the ECMWF NWP System, Remote
Sens., 11, 234, https://doi.org/10.3390/rs11030234, 2019.
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate
Reanalysis, J. Climate, 31, 6967–6983,
https://doi.org/10.1175/JCLI-D-18-0149.1, 2018.
Chandan, D. and Peltier, W. R.: On the mechanisms of warming the mid-Pliocene and the inference of a hierarchy of climate sensitivities with relevance to the understanding of climate futures, Clim. Past, 14, 825–856, https://doi.org/10.5194/cp-14-825-2018, 2018.
Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., et
al.: An unprecedented set of high-resolution earth system simulations for
understanding multiscale interactions in climate variability and change, J.
Adv. Model. Earth Sy., 12, e2020MS002298,
https://doi.org/10.1029/2020MS002298, 2020.
Cheng, W., Curchitser, E., Ladd, C., Stabeno, P., and Wang, M.: Influences
of sea ice on the Eastern Bering Sea: NCAR CESM simulations and comparison
with observations, Deep-Sea Res. Pt. II, 109, 27–38, https://doi.org/10.1016/j.dsr2.2014.03.002, 2014.
Chiodo, G., Garcia-Herrera, R., Calvo, N., Vaquero, J. A., Añel, and
Matthes, K.: The impact of a future solar minimum on climate change
projections in the Northern Hemisphere, Environ. Res. Lett., 11, 034015
https://doi.org/10.1088/1748-9326/11/3/034015, 2016.
Coelho, C. A. S. and Goddard, L.: El Niño–induced tropical droughts in
climate change projections, J. Climate, 22, 6456–6476,
https://doi.org/10.1175/2009JCLI3185.1, 2009.
Collins, M.: Climate predictability on interannual to decadal time scales:
The initial value problem, Clim. Dynam., 19, 671–692, 2002.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., et al.: The Twentieth
Century Reanalysis Project, Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011.
Danabasoglu, G., Lamarque, J. F., Bacmeister, J., et al.: The Community
Earth System Model version 2 (CESM2), J. Adv. Model. Earth Sy., 12,
e2019MS001916, https://doi.org/10.1029/2019MS001916, 2020.
Dee, D., Uppala, S. M., Simmons, A. J., et al.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley P. H.: CAM-SE: A scalable
spectral element dynamical core for the Community Atmosphere Model, Int. J.
High Perform. C, 26, 74–89, https://doi.org/10.1177/1094342011428142, 2012.
Derber, J. and Rosati, A.: A global oceanic data assimilation system, J.
Phys. Oceanogr., 19, 1333–1347, 1989.
Evans, K. J., Lauritzen, P. H., Mishra, S. K., Neale, R. B., Taylor, M. A., and Tribbia, J. J.: AMIP Simulation with
the CAM4 Spectral Element Dynamical Core, J. Climate, 26, 689–709, https://doi.org/10.1175/JCLI-D-11-00448.1, 2013.
Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics, J. Geophys.
Res., 99, 10143–10162, https://doi.org/10.1029/94JC00572, 1994.
Evensen, G.: The ensemble Kalman filter: Theoretical formulation and
practical implementation, Ocean Dynam., 53, 343–367,
https://doi.org/10.1007/s10236-003-0036-9, 2003.
Fasullo, J. T. and Nerem, R. S.: Interannual variability in global mean sea
level estimated from the CESM large and last millennium ensembles, Water, 8, 491, https://doi.org/10.3390/w8110491, 2016.
Gantt, B., He, J., Zhang, X., Zhang, Y., and Nenes, A.: Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects, Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, 2014.
Gaspari, G. and Cohn, S. E.: Construction of correlation functions in two
and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–757, https://doi.org/10.1002/qj.49712555417, 1999.
Glotfelty, T., He, J., and Zhang, Y.: The impact of future climate policy
scenarios on air quality and aerosol/cloud interactions using an advanced
version of CESM/CAM5. Part II: Future trend analysis and impacts of
projected anthropogenic emissions, Atmos. Environ., 152, 531–552, 2017.
Goldenson, N., Doherty, S. J., Bitz, C. M., Holland, M. M., Light, B., and Conley, A. J.: Arctic climate response to forcing from light-absorbing particles in snow and sea ice in CESM, Atmos. Chem. Phys., 12, 7903–7920, https://doi.org/10.5194/acp-12-7903-2012, 2012.
Goosse, H. and Holland, M. M.: Mechanisms of interdecadal Arctic climate
variability in the Community Climate System Model CCSM2, J. Climate, 18,
3552–3570, 2005.
Gropp, W., Lusk, E., Doss, N., and Skjellum, A.: A high-performance,
portable implementation of the mpi message passing interface standard,
Parallel Comput., 22, 789–828, 1996.
Gropp, W., Lusk, E., and Thakur, R.: Using MPI-2: Advanced Features of the
Message-Passing Interface, MIT Press, 1999.
Han, G., Wu, X., Zhang, S., Liu, Z., and Li, W.: Error covariance estimation
for coupled data assimilation using a Lorenz atmosphere and a simple
pycnocline ocean model, J. Climate, 26, 10218–10231, 2013.
Hunke, E. C. and Lipscomb, W. H.: CICE: The Los Alamos sea ice model user's
manual, version 4, Los. Alamos. National Laboratory Tech. Rep.,
LA-CC-06-012, 2008.
Jiang, Y., Zhang, S., and Sun, J.: Program codes and main data for the paper “An Online Ensemble Coupled Data Assimilation Capability for the Community Earth System Model: System Design and Evaluation”, Zenodo [code and data set], https://doi.org/10.5281/zenodo.5733849, 2021.
Karspeck, A. R., Yeager, S., Danabasoglu, G., Hoar, Y., Collins, N., Raeder, K., Anderson, J., and Tribbia, J.: An Ensemble
Adjustment Kalman filter for the CCSM4 ocean component, J. Climate, 26,
7392–7413, 2013.
Karspeck, A. R., Danabasoglu, G., Anderson, J., Karol, S., Karol, S., Collins, N., Vertenstein, M., Raeder, K., Hoar, T., Neale, R., Edwards, J., and Craig, A.: A global coupled ensemble data assimilation system using the community earth system model and the data assimilation research testbed, Q. J. Roy Meteor. Soc., 144, 2304–2430, https://doi.org/10.1002/qj.3308, 2018.
Kleist, D. T., Parrish, D. F., Derber, J. C., Treadon, R., Wu, W.-S., and
Lord, S.: Introduction of the GSI into the NCEP Global Data Assimilation
System, Mon. Weather Rev., 24, 1691–1705, 2009.
Laloyaux, P., Balmaseda, M., Dee, D., Mogensen, K., and Janssen P.: A
coupled data assimilation system for climate reanalysis, Q. J. Roy.
Meteor. Soc., 142, 65–78, https://doi.org/10.1002/qj.2629, 2016.
Lawrence, D. M., Oleson, K. W., Flanner, M. G., et al.: Parameterization
improvements and functional and structural advances in version 4 of the
Community Land Model, J. Adv. Model. Earth Sy., 3, MS000045,
https://doi.org/10.1029/2011MS00045, 2011.
Levitus, S., Antonov, J. I., Wang, J., Delworth, T. L., Dixon, K. W., and
Broccoli, A. J.: Anthropogenic warming of Earth's climate system, Science,
292, 267–270, 2001.
Levitus, S., Antonov, J. I., and Boyer, T. P.:
Warming of the world ocean, 1955–2003, Geophys. Res. Lett., 32, L02604, https://doi.org/10.1029/2004GL021592,
2005.
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., and Zweng, M. M.: World ocean heat content and thermosteric sea level
change (0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603, https://doi.org/10.1029/2012GL051106, 2012.
Lu, F., Liu, Z., Zhang, S., and Liu, Y.: Strongly coupled data assimilation
using leading averaged coupled covariance (LACC). Part II: CGCM
applications, Mon. Weather Rev., 143, 4645–4659, 2015.
Lu, L., Zhang, S., Yeager, S. G., Danabasoglu, G., Chang, P., Wu, L., Lin, X., Rosati, A., and Lu, F.: Impact of coherent ocean
stratification on AMOC reconstruction by coupled data assimilation with a
biased model, J. Climate, 33, 7319–7334,
https://doi.org/10.1175/JCLI-D-19-0735.1, 2020.
Mu, L., Nerger, L., Tang, Q., Loza, S. N., Sidorenko, D., Wang, Q., Semmler, T., Zampieri, L., Losch, M., and Goessling, H. F.: Toward a Data Assimilation System
for Seamless Sea Ice Prediction Based on the AWI Climate Model, J. Adv.
Model. Earth Sy., 12, e2019MS001937, https://doi.org/10.1029/2019MS001937,
2020.
Neale, R. B., Gettelman, A., Park, S., Conley, A. J., Kinnison, D., Dan, M., Smith, A. K., Vitt, F., Morrison, H., and Cameronsmith P.: Description of the NCAR
Community Atmosphere Model (CAM 5.0), NCAR Tech. Note NCAR/TN-486+STR,
1–289, Boulder, CO, National Center for Atmospheric Research, 2012.
Nerger, L. and Hiller, W.: Software for Ensemble-based Data Assimilation
Systems – Implementation Strategies and Scalability, Comput. Geosci., 55,
110–118, 2013.
Nerger, L., Tang, Q., and Mu, L.: Efficient ensemble data assimilation for coupled models with the Parallel Data Assimilation Framework: example of AWI-CM (AWI-CM-PDAF 1.0), Geosci. Model Dev., 13, 4305–4321, https://doi.org/10.5194/gmd-13-4305-2020, 2020.
Penny, S. G., Akella, S., Buehner, M., Chevallier, M., Counillon, F., Draper, C., Frolov, S., Fujii, Y., Karspeck, A., Kumar, A., et al.: “Coupled Data Assimilation
for Integrated Earth System Analysis and Prediction: Goals, Challenges and
Recommendations”, WMO, WWRP 2017-3, 2017.
Raeder, K., Anderson, J. L., Collins, N., Hoar, T. J., and Pincus, R.:
DART/CAM: an ensemble data assimilation system for cesm atmospheric models,
J. Climate, 25, 6304–6317, 2012.
Rayner, N., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., and Rowell, D. P.: Global analyses of sea surface temperature, sea ice,
and night marine air temperature since the late nineteenth century, J.
Geophys. Res.-Atmos., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Roberts, M. J., Jackson, L. C., Roberts, C. D., et al.: Sensitivity of
the Atlantic meridional overturning circulation to model resolution in CMIP6
HighResMIP simulations and implications for future changes, J. Adv. Model.
Earth Sy., 12, e2019MS002014, https://doi.org/10.1029/2019MS002014, 2020.
Rosati, A., Miyakoda, K., and Gudgel, R.: The impact of ocean initial conditions
on ENSO forecasting with a coupled model, Mon. Weather Rev., 125, 754–772,
1997.
Saha, S., Nadiga, S., Thiaw, C., and Wang, J.: The NCEP climate forecast
system, J. Climate, 27, 2185–2208, https ://doi.org/10.1175/JCLI3812.1,
2006.
Saha, S., Moorthi, S., Pan H.-L., et al.: The NCEP Climate Forecast System Reanalysis, B.
Am. Meteorol. Soc., 91, 1015–1058, https://doi.org/10.1175/2010BAMS3001.1,
2010.
Skachko, S., Buehner, M., Laroche, S., Lapalme, E., Smith, G., Roy, F., Surcel-Colan, D., Bélanger, J.-M., and Garand, L.: Weakly coupled atmosphere–ocean data assimilation in the Canadian global prediction system (v1), Geosci. Model Dev., 12, 5097–5112, https://doi.org/10.5194/gmd-12-5097-2019, 2019.
Slivinski, L. C., Compo, G. P., Whitaker, J. S., et al.: Towards a more
reliable historical reanalysis: Improvements for version 3 of the Twentieth
Century Reanalysis system, Q. J. Roy. Meteor. Soc., 145, 2876–2908,
https://doi.org/10.1002/qj.3598, 2019.
Small, R. J., Bacmeister, J., Bailey, D., et al.: A new synoptic scale
resolving global climate simulation using the community earth system model,
J. Adv. Model. Earth Sy., 6, 1065–1094,
https://doi.org/10.1002/2014MS000363, 2014.
Smith, R. D., Jones, P., Briegleb, B., et al.: The parallel ocean
program (POP) reference manual, Los Alamos National Laboratory tech. Rep.
LAUR-10-01853, 2010.
Poli, P., Hersbach, H., Tan, D. G. H., et al.: The data assimilation system and initial performance
evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating
surface observations only (ERA-20C), ECMWF ERA Rep. 14, 59 pp., 2013.
Tang, Q., Mu, L., Sidorenko, D., Goessling, H., Semmler, T., and Nerger, L.:
Improving the ocean and atmosphere in a coupled ocean–atmosphere model by
assimilating satellite sea-surface temperature and subsurface profile data,
Q. J. Roy. Meteor. Soc., 146, 4014–4029, 2020.
Tippett, M. K., Anderson, J. L., Bishop, C. H., Hamill, T. M., and Whitaker,
J. S.: Ensemble square root filters, Mon. Weather Rev., 131, 1485–1490,
2003.
Whitaker, J. S., Compo, G. P., Wei, X., and Hamill, T. M.: Reanalysis without
radiosondes using ensemble data assimilation, Mon. Weather Rev., 132,
1190–1200, 2004.
Yang, X., Delworth, T. L., Zeng, F., Zhang, L., Cooke, W. F., Harrison, M.
J., Rosati, A., Underwood, S., Compo, G. P., and McColl, C.: On the Development
of GFDL's decadal prediction system: initialization approaches and
retrospective forecast assessment, J. Adv. Model. Earth Sy., 13,
e2021MS002529, https://doi.org/10.1029/2021MS002529, 2021.
Yu, X., Zhang, S., Li, J., Lu, L., Liu, Z., Li, M., Yu, H., Han, G., Lin, X., Wu, L., and Chang, P.: A multi-timescale EnOI-Like
high-efficiency approximate filter for coupled model data assimilation, J.
Adv. Model. Earth Sy., 11, 45–63, https://doi.org/10.1029/2018MS001504,
2019.
Zhang, F. Q., Snyder, C., and Sun, J.: Impacts of initial estimate and
observation availability on convective-scale data assimilation with an
ensemble kalman filter, Mon. Weather Rev., 132, 1–16, 2004.
Zhang, S.: A study of impacts of coupled model initial shocks and
state-parameter optimization on climate prediction using a simple pycnocline
prediction model, J. Climate, 24, 6210–6226, 2011.
Zhang, S. and Anderson, J. L.: Impact of spatially and temporally varying
estimates of error covariance on assimilation in a simple atmospheric model,
Tellus A, 55, 126–147, 2003.
Zhang, S. and Rosati, A.: An Inflated Ensemble Filter for Ocean Data
Assimilation with a Biased Coupled GCM, Mon. Weather Rev., 138, 3905–3931,
https://doi.org/10.1175/2010MWR3326.1, 2010.
Zhang, S., Harrison, M. J., Wittenberg, A. T., Rosati, A., Anderson, J. L., and
Balaji, V.: Initialization of an ENSO forecast system using a parallelized
ensemble filter, Mon. Weather Rev., 133, 3176–3201, 2005.
Zhang, S., Harrison, M. J., Rosati, A., and Wittenberg, A.: System design
and evaluation of coupled ensemble data assimilation for global oceanic
climate studies, Mon. Weather Rev., 135, 3541–3564,
https://doi.org/10.1175/MWR3466.1, 2007.
Zhang, S., Rosati, A., and Delworth, T.: The Adequacy of Observing Systems
in Monitoring the Atlantic Meridional Overturning Circulation and North
Atlantic Climate, J. Climate, 23, 5311–5324, 2010.
Zhang, S., Fu, H., Wu, L., Li, Y., Wang, H., Zeng, Y., Duan, X., Wan, W., Wang, L., Zhuang, Y., Meng, H., Xu, K., Xu, P., Gan, L., Liu, Z., Wu, S., Chen, Y., Yu, H., Shi, S., Wang, L., Xu, S., Xue, W., Liu, W., Guo, Q., Zhang, J., Zhu, G., Tu, Y., Edwards, J., Baker, A., Yong, J., Yuan, M., Yu, Y., Zhang, Q., Liu, Z., Li, M., Jia, D., Yang, G., Wei, Z., Pan, J., Chang, P., Danabasoglu, G., Yeager, S., Rosenbloom, N., and Guo, Y.: Optimizing high-resolution Community Earth System Model on a heterogeneous many-core supercomputing platform, Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, 2020a.
Zhang, S., Liu, Z., Zhang, X., et al.: Coupled data assimilation and
parameter estimation in coupled ocean–atmosphere models: a review, Clim.
Dynam., 54, 5127–5144, https://doi.org/10.1007/s00382-020-05275-6, 2020b.
Short summary
An online ensemble coupled data assimilation system with the Community Earth System Model is designed and evaluated. This system uses the memory-based information transfer approach which avoids frequent I/O operations. The observations of surface pressure, sea surface temperature, and in situ temperature and salinity profiles can be effectively assimilated into the coupled model. That will facilitate a long-term high-resolution climate reanalysis once the algorithm efficiency is much improved.
An online ensemble coupled data assimilation system with the Community Earth System Model is...