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Abstract. The Community Earth System Model (CESM) de-
veloped by the National Center for Atmospheric Research
(NCAR) has been used worldwide for climate studies. This
study extends the efforts of CESM development to include
an online (i.e., in-core) ensemble coupled data assimila-
tion system (CESM-ECDA) to enhance CESM’s capability
for climate predictability studies and prediction applications.
The CESM-ECDA system consists of an online atmospheric
data assimilation (ADA) component implemented in both the
finite-volume and spectral-element dynamical cores and an
online ocean data assimilation (ODA) component. In ADA,
surface pressures (Ps) are assimilated, while in ODA, grid-
ded sea surface temperature (SST) and ocean temperature
and salinity profiles at real Argo locations are assimilated.
The system has been evaluated within a perfect twin experi-
ment framework, showing significantly reduced errors of the
model atmosphere and ocean states through “observation”
constraints by ADA and ODA. The weakly coupled data as-
similation (CDA) in which both the online ADA and ODA
are conducted during the coupled model integration shows
smaller errors of air–sea fluxes than the single ADA and
ODA, facilitating the future utilization of cross-covariance
between the atmosphere and ocean at the air–sea interface.

A 3-year CDA reanalysis experiment is also implemented
by assimilating Ps, SST and ocean temperature and salin-
ity profiles from the real world spanning the period 1978 to
1980 using 12 ensemble members. The success of the on-
line CESM-ECDA system is the first step to implementing a
high-resolution long-term climate reanalysis once the algo-
rithm efficiency is much improved.

Copyright statement. The author’s copyright for this publication is
transferred to Ocean University of China.

1 Introduction

The Community Earth System Model (CESM) is a fully
coupled global Earth system model developed by the Na-
tional Center for Atmospheric Research (NCAR), consist-
ing of several geophysical component models (atmosphere,
ocean, land, land ice, sea ice, river runoff, and ocean wave)
and a central infrastructure for coupling component models.
It can simulate the past, present, and future climate states of
the Earth system (e.g., Chiodo et al., 2016; Glotfelty et al.,
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2017; Chang et al., 2020) and has been used worldwide in nu-
merous climate studies (e.g., Goldenson et al., 2012; Cheng
et al., 2014; Gantt et al., 2014; Fasullo and Nerem, 2016)
to study the evolution mechanisms of climate and environ-
ment (e.g., Goosse and Holland, 2005; Bitz, 2008; Chandan
and Peltier, 2018), the impact of natural processes and hu-
man activities on climate change, and the prediction of cli-
mate change (e.g., Coelho and Goddard, 2009; Arblaster et
al., 2011; Asefi-Najafabady et al., 2018).

Developing coupled data assimilation (CDA) is an in-
evitable requirement to improve initialization, state estima-
tion, and prediction of coupled models with observations
available in multiple components of the Earth system (Zhang
et al., 2020b). Traditionally, data assimilation (DA) is carried
out independently in an uncoupled model, such as assim-
ilating atmospheric observations into an atmosphere com-
ponent model or assimilating oceanic observations into an
ocean component model, which is referred to as uncoupled
DA (Derber and Rosati, 1989; Rosati et al., 1997; Saha et
al., 2006; Balmaseda and Anderson, 2009). When the uncou-
pled DA is used to initialize the coupled model integration,
it is necessary to first combine the single-component analy-
ses obtained independently from the single-component DA
to form the coupled initial conditions for the coupled model.
With the wide application of coupled models in the study of
weather and climate systems, the demand for CDA is rising
rapidly (Penny et al., 2017). CDA refers to the joint assim-
ilation of observations in different component systems and
allows observational information to be transferred and ex-
changed among different components dynamically and sta-
tistically (e.g., Lu et al., 2015; Zhang et al., 2020b). It has
been shown that CDA is able to improve the interannual cli-
mate prediction skills of coupled models (e.g., Collins, 2002;
Zhang et al., 2010). Therefore, CDA is considered an effec-
tive method for the initialization of multi-component coupled
Earth system models and the production of coupled reanaly-
sis (Zhang, 2011).

As described by Penny et al. (2017), CDA can be broadly
categorized into two approaches: weakly CDA (WCDA) and
strongly CDA (SCDA). WCDA is defined by the fact that
the coupling occurs during the forecast stage using a cou-
pled forecast model as DA is ongoing. WCDA assimilates
the observations into the corresponding single model compo-
nent of the coupled model system and then transfers the ob-
servational information to other model components through
flux exchange of the coupled model. The second approach,
SCDA, uses the cross-covariance of model components to
directly assimilate the observations of an Earth system com-
ponent into other coupled model components. The advantage
of SCDA is that observations at a given time have instan-
taneous impacts across all components during all available
analyses (Penny et al., 2017; Zhang et al., 2020b). Due to the
difficulties in obtaining a high signal-to-noise ratio of the co-
variance between model components (Han et al., 2013), by
now the WCDA is still the common choice for assimilating

observations into coupled models (e.g., Laloyaux et al., 2016;
Browne et al., 2019; Skachko et al., 2019; Tang et al., 2020;
Mu et al., 2020), and meanwhile some studies have also dis-
cussed the SCDA (e.g., Penny et al., 2017). In this study, we
use WCDA.

According to the mode of data transfer between the nu-
merical model and assimilation algorithm, ensemble-based
CDA can be divided into two categories: offline CDA and
online CDA. In offline CDA, data are transferred between
the model ensemble and assimilation algorithm through data
reading and writing. The data assimilation research test bed
(DART; Anderson et al., 2009) developed by NCAR and the
Gridpoint Statistical Interpolation (GSI) ensemble Kalman
filter (EnKF) system (Kleist et al., 2009) released by the De-
velopmental Testbed Center (DTC) are both based on an of-
fline mode. Although the offline CDA is a convenient way to
implement a CDA procedure on a relatively short scale, and
the majority of the I/O cost in DART is low compared to the
total time (Karspeck et al., 2018), an online CDA system is
more efficient and necessary for climate studies. The online
CDA is usually realized by integrating a numerical model
and DA algorithm into one executable program, so that data
exchange between model and assimilation is generally re-
alized by memory management. For example, the ensem-
ble CDA (ECDA) system developed by Zhang et al. (2005,
2007), based on the Geophysical Fluid Dynamics Labora-
tory (GFDL) coupled climate model, and the Parallel Data
Assimilation Framework (PDAF) developed by Nerger and
Hiller (2013), based on the fully coupled Alfred Wegener In-
stitute, Helmholtz Center for Polar and Marine Research Cli-
mate Model (Mu et al., 2020; Nerger et al., 2020), are online
CDA systems.

Extensive offline DA works with CESM have been ex-
plored in previous studies (e.g., Anderson et al., 2009;
Raeder et al., 2012; Karspeck et al., 2013, 2018). All these
studies are based on an offline DA framework which needs
to read and write restart files at every assimilating time step.
This time-consuming method makes it difficult to produce a
long-term climate reanalysis. In order to develop a coupled
prediction and climate reanalysis, especially toward the goal
of high-resolution CESM (CESM-HR; Zhang et al., 2020a)
CDA for HR coupled model prediction initialization and re-
analysis, a continuous CDA within CESM is highly desir-
able, although the DART exists and the next-generation DA
system (Joint Center for Satellite Data Assimilation JEDI DA
system) is designed and has been under development to re-
place the GSI and other US agency DA systems. This pa-
per serves as documentation for the initial step of CESM-HR
CDA development and the ensemble coupled data assimila-
tion system (CESM-ECDA) design and its performance.

In the filtering algorithm, the DA method used in this study
(which is the ensemble adjustment Kalman filter, EAKF) is
the same as previous studies (Zhang and Anderson, 2003;
Anderson et al., 2009; Karspeck et al., 2018), but we imple-
ment the CESM-ECDA as an online CDA system which uses

Geosci. Model Dev., 15, 4805–4830, 2022 https://doi.org/10.5194/gmd-15-4805-2022



J. Sun et al.: An online ECDA system for CESM 4807

computer memory management to compile the assimilation
codes and the model codes into an executable file. Avoid-
ing frequent huge data reading and writing is extremely im-
portant to realize efficient climate reanalysis, especially for
high-resolution model cases. Although a lot of CESM DA
work using DART has been done and a 12-year reanalysis has
been presented (Karspeck et al., 2018), longer-term climate
reanalysis is still a challenge. Our motivation is to develop
an online CESM-ECDA system that can support long-time
integration and assimilation in the near future. By that, we
can make a series of long-timescale (such as 40-year or even
100-year) climate reanalysis experiments in different reso-
lutions for climate assessment. This study is different from
Karspeck et al. (2018) in the following two aspects: (1) the
CESM-ECDA system passes data through memory instead
of files, and (2) the online DA system within the spectral-
element (SE) dynamic-core atmosphere model can support
high-resolution simulation.

This paper is organized as follows. Section 2 describes
the CGCM (Coupled General Circulation Model) used in
this work, the ensemble filtering algorithm, and the perfect
twin experiment design for the evaluation. The implementa-
tion of the ensemble-based online CESM DA capability is
described in Sect. 3. More specifically, Sect. 3.1 describes
the atmospheric data assimilation (ADA) system within the
Community Atmosphere Model (CAM) using the finite-
volume dynamical core (dynamic core; hereafter CAM-FV),
Sect. 3.2 describes the ADA system within CAM using the
spectral-element dynamic-core CAM (hereafter CAM-SE),
and Sect. 3.3 discusses the ocean DA (ODA) system with
the Parallel Ocean Program (POP) model. Section 4 de-
scribes the establishment and evaluation of online CESM-
ECDA system. Finally, summary and discussions are given
in Sect. 5.

2 Model and filtering algorithm

2.1 Brief description of CESM

The version of CESM used in this work is not the latest ver-
sion of CESM2 (Danabasoglu et al., 2020) but is based on an
earlier version tagged as CESM1.3-beta17_sehires38, which
is a version specifically developed to better support high-
resolution CESM simulations (Small et al., 2014; Chang et
al., 2020). The corresponding component model versions are
the CAM version 5 (CAM5; Neale et al., 2012), the POP
version 2 (POP2; Smith et al., 2010), the Community Ice
Code version 4 (CICE4; Hunke and Lipscomb, 2008), and
the Community Land Model version 4 (CLM4; Lawrence et
al., 2011).

2.2 Brief summary of EAKF

The ensemble adjustment Kalman filter (EAKF) was first de-
signed by Anderson (2001) followed by some modifications

(Anderson, 2003) and immediately applied to comprehen-
sive general circulation models (Zhang and Anderson, 2003;
Zhang et al., 2005, 2007). As a popular variant of the tradi-
tional ensemble Kalman filter (EnKF; Evensen, 1994, 2003),
the EAKF has been widely used in DA research and appli-
cations. Compared with the traditional EnKF that randomly
perturbs the observations, the advantage of EAKF is that it
can retain the higher-order moments (i.e., nonlinear informa-
tion) in the prior samples (Zhang and Anderson, 2003). The
EAKF does not need to perturb observations, thus avoiding
the generating of extra noise into the analysis system. Based
on a systematic analysis of the existing ensemble filtering
algorithms, Tippett et al. (2003) pointed out that the EAKF
method is one realization of the ensemble square root filter
(EnSRF) and a deterministic filtering algorithm. When the
error distribution of each scalar observation is independent
of each other, a sequential filtering method can be used to
assimilate each scalar observation one by one. When the ob-
servation errors are correlated, the singular value decompo-
sition (SVD) can be used to first decorrelate the errors, and
then the sequential filtering can be carried out.

As a sequential filter, the EAKF can be conveniently im-
plemented by two steps consisting of two key equations (An-
derson, 2001, 2003; Zhang and Rosati, 2010). The first equa-
tion computes the observational increment 1yo

i as
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where i is the ensemble index, y represents the observable
state variable, and σ is the error standard deviation. The su-
perscript p always denotes the prior quantity estimated by the
model, and o always denotes the prior quantity estimated by
observation. The overbar denotes the ensemble mean. The
first term on the right hand is the adjusted ensemble mean,
and the second term with the third term on the right hand is
called the adjusted ensemble spread.

The second step regresses the observational increment
computed by the first step onto the relevant model grids. That
can be expressed as

1xui =
cov(1x,1y)

σ 2
y

1yo
i , (2)

where cov(1x,1y) is the covariance, and σy is the standard
deviation, which are both evaluated by the model ensem-
ble. Once all observations are looped over all the relevant
model variables on the model grids, the analysis step is com-
pleted, and the model is initialized for the integration of the
next step. For more details, please refer to Zhang and Rosati
(2010).

2.3 Twin experiment design

The implementation of CDA is a complex multi-task prob-
lem, which involves many factors, such as the coupled model
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bias, sampling of the observation system, and verification of
the analysis scheme. The uncertainty in any of these aspects
may make the evaluation of a CDA system very difficult. In
order to reduce the uncertainty and the evaluation complex-
ity, a perfect model framework based on pseudo-observations
(i.e., the perfect twin experiment) is adopted here to eliminate
the influence of model bias and observation system sampling
on the assessment of the CDA system. The advantage of the
perfect twin experiment design is that the known “truth” can
be used as an accurate and reliable reference in evaluating
the analysis quality of the CDA system. A similar frame-
work has been used in Browne and Leeuwen (2015) to as-
sess the performance of the equivalent weight filter within
a coupled ocean–atmosphere general circulation model. In
addition, when new assimilation components or observation
types are added into the CDA system, the change of the as-
similation performance can be effectively quantified.

In the perfect twin experiment design, a time series of
single-member model states are taken as the truth, which can
start from an arbitrary date (e.g., denoted as January 1980
in this paper). White noise is then added onto the truth to
generate the pseudo-observations assimilated in the analy-
sis stage. Thus, the assimilated observations here are grid-
ded data at the grid points as the model variables. The added
white noise is a parameter that determines the intensity of the
observational constraint. It is used to account for the random
measurement error of the observation system but does not in-
clude the representation error reflecting the limitation of the
sampling scale. To sufficiently decorrelate the truth and the
free integration of the model ensemble (i.e., the control ex-
periment without assimilation of any observations), we use
the restart of a 20-model-year free integration as the initial
condition of the experiments.

The surface pressure reflects the total air mass of the at-
mosphere column at a location on the Earth’s surface (terrain
or ocean). Previous studies (e.g., Whitaker et al., 2004; An-
derson et al., 2005; Compo et al., 2006) have emphasized
several advantages of using surface pressure observations
to produce historical reanalyses. As described in Compo et
al. (2006), the surface pressure information through geostro-
phy can be expected to yield a reasonable approximation to
the barotropic part of the flow, which accounts for a substan-
tial part of the total flow. There are usually two approaches to
implementing surface pressure assimilation. One is project-
ing the observational surface pressure increments to three-
dimensional atmospheric variables through the geostrophic
relationship (Poli et al., 2013). The other is using the ensem-
ble covariance between the surface pressure and other atmo-
spheric variables to adjust the three-dimensional atmosphere
(e.g., Compo et al., 2011; Yang et al., 2021). The Twentieth
Century Reanalysis (20CR) is the first centurial reanalysis to
only assimilate surface pressure observations (Compo et al.,
2006). Since then, other reanalysis products have been gen-
erated by assimilating mainly surface pressure observations,
such as ERA-20C (Poli et al., 2013), 20CRv2c (Compo et al.,

2011), 20CRv3 (Slivinski et al., 2019), and GFDL’s DCIS
(Yang et al., 2021).

Using the covariance of surface pressure to adjust three-
dimensional atmospheric variables can increase the observa-
tional constraint from surface pressure (Yang et al., 2021),
but it often requires a large ensemble size. Here, in order to
make the assimilation algorithm more portable and suitable
for future high-resolution data assimilation, and considering
the development feasibility and efficiency with finite compu-
tational resources, we use 12 ensemble members instead of a
very large ensemble size as used in 20CR. Such a small-size
ensemble may not be suitable to resolve three-dimensional
increments of atmospheric variables via the ensemble covari-
ance with surface pressure observation. Although we only
assimilate the surface pressure, other three-dimensional vari-
ables are also adjusted through a geostrophic relationship and
a thermal wind relationship. Further justification will be pro-
vided in Sect. 4.2.

The observation assimilated by ADA is surface pressure
(Ps), and the standard deviation of the added observation er-
ror is 10 hPa; the observations assimilated by ODA are sea
surface temperature (SST), three-dimensional temperature,
and salinity from in situ ocean profiles which are generated
from the truth. The corresponding standard deviations of ob-
servation errors are 0.5 K for temperature and 0.1 PSU for
salinity at the sea surface (typical error levels for SST and
sea surface salinity) and exponentially decay to one-tenth of
the surface values at 2000 m depth. These standard devia-
tions have been trialed and adopted in previous similar stud-
ies (e.g., Zhang et al., 2007). The in situ ocean profiles are
sampled using the real locations of Argo data in 2007.

The ADA assimilation frequency is 6 h, and the ODA is
1 d. As an initial verification of the CESM-ECDA system,
we do not directly use a high-resolution experimental setup
but use a standard resolution (100 km in ocean and 200 km
(100 km) in FV (SE) atmosphere). Following previous stud-
ies (Zhang et al., 2005, 2007) on the covariance localization
technique, and under computational resource constraint, trial
and error is used to determine the ensemble size to be 12 in
this perfect model study. And the ensembles of initial condi-
tions are constructed using the atmosphere states of 12 con-
secutive days.

Referring to the 20CRv2 (Compo et al., 2011), CFSR
(NCEP Climate Forecast System Reanalysis; Saha et al.,
2010), and CM2.1-ECDA (Zhang et al., 2007), the horizontal
localization radius is 2000 km in FV core and 2500 km in SE
core in ADA in this work. Referring to Zhang et al. (2007)
and Karspeck et al. (2018), the horizontal localization ra-
dius of SST observations is set to be 1000 km in ODA. In
the vertical direction, SST observations are allowed to affect
the ocean temperature of the 10 topmost model levels (100 m
depth). The horizontal localization radiuses are 1000 km for
temperature profiles and 500 km for salinity profiles. In addi-
tion, the horizontal correlation scale is multiplied by a cos(θ )
(θ is the grid latitude) factor up to 80◦ N (S) to make the
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Table 1. List of experiments.

Experiment DA Obs

ctl none none
ada_fv CAM-FV ADA Ps
ada_se CAM-SE ADA Ps
oda_sst POP ODA SST
oda POP ODA SST + TS profile
cda CAM-FV ADA + POP ODA Ps + SST

scale consistent with the characteristics of the Rossby de-
formation radius for a global analysis scheme (for more de-
tails, please see Zhang et al., 2005, 2007). Each observation
is only allowed to impact at most two neighboring levels (one
above and one below), and the deepest profile layer corrects
the model values of all layers below.

The design of the evaluation experiments for the ADA,
ODA, and CDA is shown in Table 1. Given that our main pur-
pose is to document the development of the online CDA sys-
tem for the community rather than provide reanalysis prod-
ucts, and the constraint of computational resources, we only
run 1 model year to verify the reliability of the algorithm
in this perfect twin experiment. We can see that the DA in
the atmosphere and upper ocean has sufficiently converged.
The ensemble experiments include the control experiment
(ctl) without assimilating any observations, the ADA experi-
ments which only assimilate the Ps observations with CAM-
FV (ada_fv) and CAM-SE (ada_se), the ODA experiments
assimilating only the SST observations (oda_sst) and both
the SST and in situ ocean profiles of temperature and salin-
ity (TS profile; oda), and the CDA experiment assimilating
both the Ps and SST observations with CAM-FV (cda). The
experiments’ component settings in this study are BHISTC5
(historical run with CAM5) in FV and B1850CN in SE.

The validation of assimilation results is based on the root
mean square error (RMSE), which is the most widely used
statistic in system evaluation. RMSE is the standard devia-
tion of the prediction errors, which measures how much the
simulated data differ from the reference data (i.e., the truth).
Since both atmosphere and ocean observations assimilated
in this paper are located near the air–sea interface, and in
principle, CDA can make more effective use of the observa-
tions near the interface and thus improve the coupled state
estimation there, this paper mainly analyzes the model vari-
ables and fluxes near the interface. The atmosphere model
variables near the interface used in this paper include the at-
mosphere (Ps), surface temperature (Ts), surface wind com-
ponents (Us and Vs), and surface specific humidity (Qs). The
analyzed ocean model variables include SST and ocean sub-
surface temperature and salinity. The fluxes at the air–sea in-
terface used here include the sensible heat flux (SHF) and the
latent heat flux (LHF).

3 Development of online DA components with CESM

This section describes the framework and implementation
of the online DA components of the CESM-ECDA system,
which include the ADA components with CAM and the
ODA component with POP. The ADA components are im-
plemented in both CAM-FV and CAM-SE.

3.1 ADA with CAM-FV

3.1.1 Online ensemble collection and distribution with
CAM-FV data structure

CAM-FV adopts regular latitude–longitude grid in the hor-
izontal direction, and both the model and assimilation are
performed in parallel modes. The parallel domain decompo-
sition in the model integration space is realized by dividing
the global field in the horizontal direction based on the ad-
jacent geophysical location. During the forecast stage, each
processing element (PE) is responsible for a sub-domain of
the global field of a single ensemble member, and differ-
ent ensemble members are completely independent when the
model integrated forward. When the model ensemble reaches
the analysis time, a “super-parallel” technique (Zhang et al.,
2007) is used to transmit the data between the model space
and the analysis space. The super-parallel technique allows
us to make full use of the available computing resources and
enables the model integration and the analysis to be carried
out online in an iterative manner.

Online data interaction based on the super-parallel tech-
nique mainly includes two stages: online ensemble collection
and online ensemble distribution. Online collection refers to
the transformation of the parallel domain decomposition and
corresponding data storage form of the model space to those
of the analysis space. As a result, each PE can obtain the
ensemble data required by the ensemble filtering algorithm.
Conversely, online distribution indicates the transformation
of the domain decomposition and data storage form of the
analysis space back to those of the model space. In this way,
the updated analysis ensemble can be used as the initial con-
ditions for the model integration of the next assimilation cy-
cle. The transformation between the model space and the
analysis space is mainly based on the data collection and dis-
tribution functions of the Message Passing Interface (MPI;
Gropp et al., 1996), and it is an online data interaction mode
via the memory-based reading and writing. An online cou-
pling strategy and implementation of standards using MPI in
an ensemble data assimilation system have been detailed in
Browne and Wilson (2015).

Figure 1a is an example of the parallel domain decompo-
sition and online collection and distribution with a total of 16
PEs and four ensemble members with CAM-FV. In order to
conduct the parallel task decomposition in the analysis space,
the global field is divided into 16 PEs of the global PE list.
To some extent, the parallel decomposition in the analysis

https://doi.org/10.5194/gmd-15-4805-2022 Geosci. Model Dev., 15, 4805–4830, 2022



4810 J. Sun et al.: An online ECDA system for CESM

space is arbitrary, while Fig. 1a just shows a global domain
decomposition according to a layout with 4×4 PEs. It should
be noted that we can also specify other decomposition layout
types, such as 2× 8 PEs. The halo is 12 grids in our experi-
ments. In theory, the halo should depend on the localization
scale. But practically, we choose an appropriate halo accord-
ing to some previous experiments and model resolutions.

3.1.2 Implementation of sequential EAKF algorithm
with CAM-FV

The implementation of the sequential EAKF with CAM-FV
uses an approximate algorithm of the compute domain–data
domain strategy of Anderson (Anderson, 2001) to parallelize
the filter. Figure 2 shows a schematic of the implementation
of the sequential EAKF algorithm with CAM-FV. The al-
gorithm assumes that the observations will only impact the
“nearby” model grids. Here nearby is generally defined by
two conditions: one is that the nearby model grids must be
located on the current PE, and the other is that the use of
the localization scheme requires that the nearby model grids
should be within the localization radius of the current ob-
servation. In the analysis space, the global field is divided
into a group of analysis core domains (i.e., compute domain;
see Fig. 1a) in the horizontal direction. Each core domain is
surrounded by a certain number of nearby grids, which are
referred to as the halo (see Fig. 2). An analysis core domain
and its halo jointly constitute an analysis domain (i.e., data
domain). The analysis process is based on the analysis do-
main, and each PE is responsible for the assimilation of one
analysis domain. When a set of observations are available,
the online collection process transforms the required subset
of ensemble model states for each analysis domain to the cor-
responding PE. In each analysis domain, all available obser-
vations are assimilated one by one using the EAKF algorithm
(see Sect. 2.2) sequentially.

The ADA system with CAM-FV is realized using the two-
step method of EAKF (Anderson, 2003; Zhang and Rosati,
2010) based on the online ensemble collection and distribu-
tion processes. As Fig. 1a shows, after the online ensemble
collection, each PE obtains the ensemble vector of model
states for an analysis domain. Then, the observational incre-
ment is calculated based on Eq. (1) on all PEs in parallel. It
should be noted that one observation will be assimilated only
if the ensemble of all state variables required for the forward
operator calculation is available on the current PE. After
the observational increments are obtained, they are projected
onto the nearby model states to get the analysis increments
via linear regression expressed by Eq. (2). Thus, the nearby
model states can be updated by this observation via adding
the analysis increments onto the background model states.
Therefore, the model states used in the assimilation of the
current observation have already been updated by all previ-
ous assimilated observations. This two-step assimilation pro-
cess is repeated sequentially for the subsequent observations

until all available observations of the current analysis step are
processed. Finally, the analysis ensemble in the analysis core
domains needs to be converted back to each member model
space by online ensemble distribution to be ready for the next
integration stage.

3.2 ADA with CAM-SE

3.2.1 Online ensemble collection and distribution with
CAM-SE data structure

Unlike the regular latitude–longitude horizontal grid used in
CAM-FV, CAM-SE uses a cubed-sphere grid in the horizon-
tal direction (Dennis et al., 2012; Evans et al., 2013), which
is no longer a logically rectangular grid. The direct effect of
using such a grid on the form of data storage in the model
space is that the model states are no longer represented as
two-dimensional variables in the horizontal direction but are
combined into one dimension. Taking the ne30np4 resolution
of CAM-SE as an example, the two horizontal dimensions of
the model variables in the geophysical space are represented
by one dimension of length 48 602 in the array form. More-
over, due to the characteristics of the cubed-sphere grid, two
adjacent grid points in the horizontal one-dimensional rep-
resentation of the variable with CAM-SE may not represent
the two grid points being adjacent in the geophysical space.
Therefore, the parallel decomposition strategy of the analy-
sis domain with CAM-FV is no longer applicable to CAM-
SE because the adjacent model grid points in the geophysi-
cal space can no longer always be ensured to be divided and
stored on the same PE.

In order to implement the online ensemble collection and
distribution with CAM-SE, the model state variables are vec-
torized. When the model reaches the analysis time, the en-
semble of model states is first obtained based on the collec-
tion function of MPI. This process is similar to that with
CAM-FV, except that the collected state variables are all
one dimension fewer than the same variables with CAM-FV.
Then, all state variables of a single ensemble member are
converted into a one-dimensional array. In principle, the ar-
rangement of the model grid points in this array can be in
an arbitrary order because the location information of each
point will be recorded by a separate array. In this way, the
ensemble of all model state variables will be represented by
a two-dimensional array, where one dimension corresponds
to the grid point sequence number, and the other represents
the ensemble sequence number. Then, the parallel decom-
position of the analysis domain is achieved by dividing the
grid point dimension over all PEs. As a result, each PE ob-
tains the information about the ensemble of a subsequence of
model state variables. However, it should be emphasized that
the grid points in this subsequence in principle can be arbi-
trarily distributed and are not required to be adjacent in the
geophysical space. At this point, the data conversion from the
model integration space based on the online ensemble collec-
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Figure 1. (a) The parallel domain decomposition and the online ensemble collection and distribution of a scalar field with CAM-FV. The
four ensemble members are integrated forward in time in parallel, using four processors for each member. At analysis time, the ensemble
members are synchronized, and the global four-element ensemble vectors are decomposed onto all 16 analysis processors. For each physical
field, each analysis processor sequentially uses the observations to update the ensemble vectors at each grid point in its core domain (green)
and halo (yellow). Once all nearby observations have been assimilated, the updated ensemble vectors in the core domains are transmitted
back to the integration processors, completing the cycle. (b) The parallel domain decomposition and the online ensemble collection and
distribution of a scalar field with CAM-SE. Different from CAM-FV, CAM-SE uses the cubed-sphere grid. To address this grid change,
the implementation of domain decomposition with CAM-SE adopts a similar fashion to that used in DART (Anderson et al., 2009). This
new method allows us to “randomly” assign model states to different PEs. And the calculation of the forward operator is realized based on
the MPI2 remote memory access (RMA). At analysis time, the ensemble members are synchronized, and the global ensemble vectors are
randomly decomposed onto all eight PEs (grid points with same color in the figure). (c) Schematic of the CESM-ECDA system. During the
forecast stage of a DA cycle, ensembles of various components, including CAM and POP, of the CESM system are integrated forward. The
atmosphere model and ocean model are dynamically coupled together during the forecast phase (the double arrow between CAM and POP).
Taking the atmosphere component as an example, when the analysis time of the atmosphere is reached, the CESM ensemble integration is
suspended and the forecast ensemble of CAM is used as the background for the assimilation of the atmospheric observations (the red upward-
pointing curved arrow) using the EAKF algorithm (the red solid ellipse). When all the atmospheric observations have been assimilated, the
analysis ensemble of CAM is used as the initial conditions of the forecast stage in the next DA cycle (the red downward-pointing curved
arrow). The ODA cycle for the POP model is similar and marked as blue in the figure. The ADA and ODA may have the same or different
frequencies.

tion to the analysis space with CAM-SE is completed. When
the assimilation of all available observations at the current
time is completed, the updated analysis ensemble obtained in
the analysis space is converted back to the model space. This
process is an inverse of the collection procedure and is im-
plemented based on the MPI distribution function. Figure 1b
shows an example of the parallel domain decomposition and
online collection and distribution with a total of eight PEs
and four ensemble members with CAM-SE.

3.2.2 Implementation of parallel EAKF algorithm with
CAM-SE

The implementation of the ensemble filter with CAM-SE is
also based on the two-step EAKF algorithm. Different from
CAM-FV, the implementation needs to be adapted to the spe-
cific decomposition strategy of the analysis domains with
CAM-SE. The differences are mainly in the computation of
the observation prior ensemble and the regression of the ob-
servational increments. Figure 3 shows the schematic of the

implementation of the parallel EAKF algorithm with CAM-
SE.

The computation of the observation prior ensemble with
CAM-SE uses the same method as DART (Anderson et al.,
2009), which is implemented based on the remote memory
access (RMA) technique of MPI2 (Gropp et al., 1999). Be-
cause the grid points are divided onto different PEs in an ar-
bitrary way, the four grid points enclosing one observation
for interpolation may be located on different PEs from the
owner PE of the observation. In the best case, all four enclos-
ing points are located on the same PE as the owner PE, while
in the worst case, all four enclosing points are located on four
different PEs. Therefore, it needs to obtain the model back-
ground from the memories of other PEs (i.e., remote memo-
ries) for computing the observation priors. In order to fulfill
this requirement, the RMA technique of MPI2 is used, which
allows one PE to asynchronously read or write the memo-
ries of other PEs through a virtual window. Thus, regardless
of which PEs the four enclosing points of the observation
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Figure 2. Schematic of the implementation of the sequential EAKF algorithm with CAM-FV. The implementation is based on the two-step
method of EAKF. The decomposition strategy allows adjacent grids to be divided into the same analysis domain (i.e., onto the same analysis
PE). One analysis core domain (compute domain) and its halo constitute one analysis domain (data domain). When the observations at a
given time are available, only the prior ensemble of a single observation is first computed. Then each observation is assimilated sequentially
according to the two-step EAKF algorithm. The observational increments of an observation only regress on the nearby model states.

are located on, the prior ensemble for this observation can
be obtained with aids of the RMA technique. Then the ob-
servational increment ensemble can be calculated based on
Eq. (1).

The regression of the observational increments with CAM-
SE is based on a parallel implementation of the EAKF al-
gorithm (Anderson and Collins, 2007). With CAM-FV, the
observational increments are mapped onto the nearby model
grids via linear regression to obtain the analysis increments
of the nearby model states. With CAM-SE, the calculation of
the observation priors requires access to the remote memo-
ries through RMA, which is more complex and computation-
ally expensive than the direct access to the local memory with
CAM-FV. To optimize the filtering algorithm with CAM-SE,
the computation of the forward observation operator is im-
plemented based on a parallel algorithm of Anderson and
Collins (2007). This algorithm is suitable for the parallel im-
plementation of the EAKF algorithm. It splits the traditional

forward observation operator computation, executed once for
each observation, into a one-time calculation for all observa-
tions and an update of the nearby subsequent observation pri-
ors which have not been assimilated. Therefore, with CAM-
SE, the forward operator computation is executed only once
for each assimilation step. In this parallel implementation,
the prior ensembles are first computed for all observations
using the model background that has not been affected by any
observation. Then, when an observation comes in, its obser-
vational increments update not only the nearby model states
as in CAM-FV, but also the prior ensembles of all nearby ob-
servations that have not been assimilated (i.e., the subsequent
observation priors). This parallel algorithm has been shown
to produce identical results to the traditional sequential al-
gorithm. More details of this parallel implementation can be
found in Anderson and Collins (2007).
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Figure 3. Schematic of the implementation of the parallel EAKF algorithm with CAM-SE. The implementation is also based on the two-step
method of EAKF. In CAM-SE, the grid points are decomposed onto the analysis PEs in an arbitrary way. Therefore, the computation of the
forward observation operator may need to obtain values from other PEs, which is realized through the MPI2 RMA technique. The lower-right
dashed rectangle illustrates an example of grabbing data from PEs 1–3 to PE0 via a virtual window of RMA. When the observations at a
given time are available, the prior ensembles for all observations are computed. The observational increments of an observation regress not
only on the nearby model states, but also on the subsequent observation prior ensembles.

3.3 ODA with POP

The online collection and distribution processes with POP
are similar to those with CAM-FV (Fig. 1a). Although the
horizontal grid used in POP is different from the regular
latitude–longitude grid in CAM-FV, they both belong to the
logically rectangular grid. More specifically, the horizontal
dimensions of model variables can be represented by latitude
and longitude. Therefore, similar parallel domain decompo-
sition strategy based on the geophysical space to that with
CAM-FV is used with POP to obtain the analysis domain.
With CAM-FV, the decomposition of the analysis domains
is based on the global horizontal field, while with POP, the
analysis domain decomposition is further optimized via a so-
called local secondary decomposition on the model integra-
tion domain. In this local secondary decomposition strategy,
the same model integration domains of all ensemble mem-
bers are directly decomposed onto the PEs responsible for
the integration calculation of these integration domains of all

ensemble members. Taking Fig. 1a as an example, the south-
west (i.e., lower-left) integration domains of four ensemble
members are decomposed onto PEs 0, 4, 8, and 12 to ob-
tain the analysis domains. Because the collection of the entire
global field of model states can be avoided (replaced by the
collection of a subset of the global field), this local secondary
decomposition strategy with POP reduces the hard limit on
the PE storage capability. However, it should be pointed out
that one disadvantage of this decomposition method is that
the halo width in the analysis domain cannot exceed that of
the integration domain. The implementation of the sequential
EAKF algorithm with POP is the same as that of CAM-FV
(see Fig. 2); thus it is not repeated here.

3.4 The online CESM-ECDA system

When the DA systems in CAM and POP have each been
developed, the ocean–atmosphere CESM-ECDA system can
be constructed. Figure 1c shows the implementation frame-
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work of the CESM-ECDA system. In one assimilation cycle,
the execution of the CESM-ECDA system can be described
as follows. The CESM model reads in the initial condition
ensemble to start the forward integration of the model en-
semble. When the model integration reaches the observation
time, the model ensemble integration is suspended. Then the
forecast fields of CAM and/or POP are obtained as the back-
ground fields of the assimilation by the ADA and/or ODA
components through the online ensemble collection, then the
two-step update of EAKF is used for the sequential assim-
ilation of the observations in each component. After the as-
similation process has been completed, the analysis fields ob-
tained by ADA and/or ODA are transformed back to corre-
sponding model spaces through the online ensemble distri-
bution. Then the analysis ensemble updated by the observa-
tions is used as the initial states for the model ensemble to
continue the integration in the next forecast stage. It should
be noted that the ADA and ODA components can be exe-
cuted using the same or different frequencies. Generally, the
ODA interval is longer than that of ADA to account for the
different characteristic timescales between the ocean and the
atmosphere because the background fields used in ADA and
ODA come from the atmosphere and ocean components of
the coupled CESM, and the dynamic coupling between the
atmosphere and ocean components is performed through the
interface fluxes in the model forecast stage. The observed
information in the atmosphere and ocean can be exchanged
with each other, so that the coupled state estimation obtained
by the CESM-ECDA is more self-consistent and balanced. In
addition, because the coupled covariance between the atmo-
sphere and the ocean is not used in the current CESM-ECDA
system, the observation in one component is not allowed to
directly update the model state in the other component in
the assimilation stage, which makes it a weakly coupled DA
(WCDA) system.

4 The evaluation of CESM-ECDA system with perfect
twin experiments

4.1 ADA with CAM-FV

The assimilation of Ps observations by ADA with CAM-
FV significantly improves the atmospheric surface variables.
Figure 4a–e show the time series of RMSEs of five atmo-
spheric surface variables, and Table 2 shows the global aver-
aged RMSEs. To focus on the impact of assimilation after the
system reaches equilibrium, the globally averaged RMSEs of
atmospheric variables and fluxes are calculated with the ex-
periment output data of the first month excluded in this paper.
By assimilating Ps observations, not only the surface pres-
sure, but also other atmospheric variables are significantly
improved. Compared with the ctl, the RMSEs of surface vari-
ables are clearly and rapidly reduced by assimilating Ps ob-
servations. The global averaged RMSE of Ps is reduced from

Table 2. Globally averaged RMSEs of surface pressure Ps, surface
temperature Ts, surface specific humidity Qs, surface zonal wind
Us, and surface meridional wind Vs from ctl and ada_fv. The RM-
SEs are calculated with the data of the first month excluded.

Experiment Ps Ts Qs Us Vs
(hPa) (K) (g kg−1) (m s−1) (m s−1)

ctl 6.68 2.99 1.64 4.24 4.36
ada_fv 4.05 2.51 1.39 3.16 3.22
reduction (%) 39.4 16.1 15.5 25.5 26.1

6.68 to 4.05 hPa, nearly improved by 40 %. The RMSEs of
the other four variables are reduced by about 15 %–25 %.

Figure 5a–e show the distribution of the ada_fv-to-ctl
(hereafter ada_fv/ctl) RMSE ratio of the five atmospheric
surface variables. Compared to ctl, which does not assimi-
late observation, the assimilation of Ps in ada_fv can signifi-
cantly reduce the RMSE of Ps all over the globe. The RMSEs
of Us and Vs are also reduced throughout the globe in ada_fv.
Though the RMSEs of Ts and Qs are increased in some re-
gions in ada_fv, the assimilation of Ps observations can im-
prove the analysis accuracy over most regions. In addition,
the improvements are mostly located at the midlatitudes on
both hemispheres, especially in the Southern Hemisphere. Ps
is a two-dimensional variable, but it contains abundant three-
dimensional information of the atmosphere. Therefore, the
solo assimilation of Ps observations not only significantly
corrects the model Ps field, but also improves other atmo-
spheric variables. It should be pointed out that U , V , T , and
Q are not used as direct assimilating variables but are ad-
justed through the dynamic process and physical process of
the model after assimilating Ps. And the errors of these vari-
ables are also significantly reduced, which shows that the as-
similation effect of the system in the model is reasonable.

4.2 ADA with CAM-SE

The atmospheric surface variables by assimilating the Ps ob-
servations within CAM-SE are also significantly improved.
Figure 6a–e show the time series of RMSEs of five atmo-
spheric surface variables, and Table 3 shows the global av-
eraged RMSEs. The calculation of the global averaged RM-
SEs also excludes the output data of the first month. Gen-
erally speaking, the assimilation effects of Ps observations
with CAM-FV and CAM-SE are similar. The ADA sys-
tem with CAM-SE can also significantly improve the atmo-
spheric variables over the ctl experiment; even only the Ps
observations are assimilated. Furthermore, the amplitude of
the RMSE reduction with CAM-SE tends to be smaller than
that with CAM-FV, especially for Ps, Us, and Vs (Table 2
vs. Table 3). For example, compared with the ctl experiment,
ada_fv reduces the RMSEs of Ps,Us, and Vs by up to 39.4 %,
25.5 %, and 26.1 %, respectively, while the corresponding
RMSE reductions in ada_se are 29.4 %, 20.1 %, and 17.0 %,
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Figure 4. Time series of RMSEs of (a) surface pressure Ps, (b) surface temperature Ts, (c) surface specific humidity Qs, (d) surface zonal
wind Us, and (e) surface meridional wind Vs from ctl and ada_fv.

Table 3. Globally averaged RMSEs of surface pressure Ps, surface
temperature Ts, surface specific humidity Qs, surface zonal wind
Us, and surface meridional wind Vs from ctl and ada_se. The RM-
SEs are calculated with the data of the first month excluded.

Experiment Ps Ts Qs Us Vs
(hPa) (K) (g kg−1) (m s−1) (m s−1)

ctl 6.17 2.47 1.58 4.62 4.49
ada_se 4.36 2.10 1.32 3.69 3.72
reduction (%) 29.4 14.9 16.2 20.1 17.0

respectively. In addition, the horizontal distribution of RMSE
in SE (not shown here) is similar to that in FV.

Figure 7a–f show the time series of RMSEs of upper-
layer atmospheric variables, temperature and winds at 870
and 510 hPa being examples. The RMSEs of all these three
variabilities in ada_se are also smaller than those in ctl ex-
periment in the high-level atmosphere. At the 870 hPa level,
the RMSEs of temperature, zonal wind, and meridional wind
from ctl are 3.43 K, 6.18 m s−1, and 5.45 m s−1. After only
assimilating the surface pressure, these RMSEs are decreased
to 3.02 K, 4.99 m s−1, and 4.64 m s−1 respectively. At the
510 hPa level, the RMSEs from ctl are 3.32 K, 8.72 m s−1,

and 8.01 m s−1, while the RMSEs from ada_se are 3.00 K,
7.72 m s−1, and 7.24 m s−1 respectively. The model errors
of other atmospheric variables are also reduced, which will
not be displayed one by one here. It is worth mentioning
that the reduction rate of RMSEs for the variables in the
upper layers is much smaller than that in the surface. This
might suggest that the simultaneous increments of three-
dimensional winds, temperature, and moisture are very im-
portant for representing the atmosphere state in the whole
troposphere (Yang et al., 2021). When there are enough com-
puting resources in the future, we will consider increasing the
ensemble size to assimilate three-dimensional atmospheric
variables to further improve results.

One aspect of surface pressure data assimilation shown in
20CR is that it could have very similar weather-to-climate-
scale variability in the troposphere to other traditional atmo-
sphere reanalyses which use all available observations. Fig-
ure 8a–b show the distribution of the anomaly correlation
coefficient (ACC) between ctl (ada_se) and truth at 500 hPa
geopotential height. The ACC between ctl and truth is about
0.6–0.9 in Eurasian continent and about 0.5–0.7 in North
America (Fig. 8a). In North Pacific and North Atlantic, the
maximum ACC of ctl and truth is about 0.8, and the min-
imum is about 0.3. In the Southern Hemisphere, the ACC
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Figure 5. The distribution of the RMSE ratio (ada_fv/ctl) of (a) surface pressure Ps, (b) surface temperature Ts, (c) surface specific humidity
Qs, (d) surface zonal wind Us, and (e) surface meridional wind Vs. The RMSE ratios are calculated with the data of the first month excluded.

of ctl and truth is much smaller than that in the Northern
Hemisphere. For example, south of 30◦ S, the ACC of ctl and
truth is below 0.4 in the Southern Ocean. It may be related
to the large simulated interannual variability of CESM in
the Southern Hemisphere since we use the results of CESM
in another year as truth. Globally, the areas with the small-
est ACC are the equatorial Pacific and the equatorial In-
dian Ocean; ctl and truth are basically negatively correlated,
which may be related to the high-frequency motions in the
equatorial region. The ACC of ada_se and truth increases sig-
nificantly after assimilation (Fig. 8b). The maximum value
of ACC in the Eurasian continent can reach 0.9–1.0, and the
ACC also increases significantly in North America, Southern
Ocean, equatorial ocean, and other regions. Figure 9a shows
the time series of 500 hPa geopotential height RMSE. Com-
pared with ctl, the RMSE of ada_se significantly reduces. It
can be considered that the weather variability in the middle

troposphere is retrieved by the surface pressure data assimi-
lation.

Figure 8c–d show the distribution of ACC between ctl
(ada_se) and truth at 300 hPa geopotential height. The ACC
between ctl and truth in the Northern Hemisphere is higher
than the Southern Hemisphere, which is similar to 500 hPa.
The Northern Hemisphere is basically above 0.5, and the
Southern Hemisphere is below 0.4, except for areas around
30◦ S. The ACC in the equatorial region is also relatively
low, which is similar to 500 hPa. After assimilating the sur-
face pressure, the result of geopotential height at 300 hPa
is significantly improved. The ACC increases all over the
world. For example, the ACC is about 0.7–0.9 in the North-
ern Hemisphere continent and about 0.2–0.5 in the Southern
Ocean. Figure 9b shows the time series of 300 hPa geopoten-
tial height RMSE. Compared with ctl, the RMSE of ada_se
significantly reduces, which is similar to 500 hPa. It can be
considered evidence that the weather variability in the up-
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Figure 6. Time series of RMSEs of (a) surface pressure Ps, (b) surface temperature Ts, (c) surface specific humidity Qs, (d) surface zonal
wind Us, and (e) surface meridional wind Vs from ctl and ada_se.

per troposphere is adjusted through the dynamic process and
physical process of the model after assimilating surface pres-
sure.

4.3 ODA

4.3.1 Assimilation of SST

The assimilation of SST observations by the ODA system
with POP significantly improves the accuracy of the ocean
states. Figure 10a–b show the time series of RMSE of SST
from ctl and oda_sst and the distribution of the oda_sst-to-ctl
(hereafter oda_sst / ctl) RMSE ratio of SST. To focus on the
impact of assimilation after the ocean system reaches equi-
librium, the global averaged RMSE and the RMSE ratio of
the oceanic variables are computed with the output data in
which the first 3 months were excluded in this paper. Com-
pared with the ctl experiment, the RMSE of SST in oda_sst
significantly and quickly reduces at the beginning of the ex-
periment and then gradually decreases further and stays sta-
ble. The SST RMSE in oda_sst reduces from 0.58 to 0.13 K.
The distribution of the RMSE ratio (oda_sst / ctl) shows that
the oda_sst experiment can improve the quality of SST over
almost the entire globe, except in the high-latitude regions of

the Northern Hemisphere. In addition, the distribution of the
improvement in oda_sst is relatively uniform compared with
that in the ADA experiments discussed above. By assimilat-
ing SST, the RMSE of SST is significantly reduced, which is
consistent with previous studies such as CFSR (Saha et al.,
2010).

4.3.2 Assimilation of in situ ocean profiles

The design of the assimilation of in situ ocean profile tem-
perature and salinity observations with POP is similar to
the EAKF algorithm of CM2.1-ECDA (Zhang et al., 2007),
since the locations of the real profile observations are chang-
ing over time, and they are not coincident with the model
grid points. The first step of profile assimilation is to get the
model values at the positions of profiles by interpolating and
then calculating the observational increment. When calculat-
ing the observational increment, eight-point interpolation is
used; that is, both the upper and lower four points are used
for the interpolation to obtain the model value at the observa-
tional point. The second step is to project the observational
increment onto the surrounding model grid points. In the ver-
tical direction, each profile affects one layer above and one
layer below, with a total of two model layers. The same as
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Figure 7. Time series of RMSEs of (a) 870 hPa temperature, (b) 510 hPa temperature, (c) 870 hPa zonal wind, (d) 510 hPa zonal wind,
(e) 870 hPa meridional wind, and (f) 510 hPa meridional wind from ctl (black lines) and ada_se (green lines).

the previous study (Zhang et al., 2007), the impact of tem-
perature on salinity and the impact of salinity on tempera-
ture are both activated. In accordance with the SST assimila-
tion, the frequency of profile observation assimilation is also
1 d. The distributions of the profile observations are shown in
Fig. 11a–d.

The addition of ocean profile observations to the ODA sys-
tem further significantly improves the ocean state estimates
over the control run. Figure 12a–d show the time series of
RMSEs of ocean temperature and salinity vertically averaged
from 0–500 and 500–2000 m from the ctl and oda experi-
ments. And Table 4 shows the global averaged RMSEs of
these four variables, with the data of the last 6 months. Com-
pared with the ctl experiment, the RMSEs of temperature and
salinity are both significantly reduced. Assimilation of tem-
perature and salinity profile observations rapidly reduces the
RMSE compared to ctl at the beginning of the experiments in

0–500 m. Compared with the salinity, the RMSE of temper-
ature decreases more rapidly to a stable level (approximately
3–4 months for the temperature vs. 7–8 months for the salin-
ity). In addition, at the same depth range, the improvement of
the temperature tends to be larger than the salinity, with the
RMSE reduction of 25.0 % (9.9 %) and 7.1 % (1.2 %) for 0–
500 m (500–2000 m) temperature and salinity, respectively.
And for the same variable, the reduction of RMSE in the
shallower ocean is larger than the deeper ocean (Table 4),
which may be caused by the slower variability of the deeper
ocean.

Compared with ctl, oda greatly improves the ocean tem-
perature and salinity estimates, especially in the shallow
ocean (0–500 m). The RMSEs of ocean temperature and
salinity are clearly reduced in most regions of the globe be-
tween the surface and 500 m depth, in addition to the coast
of Africa and the high-latitude areas of the North Pacific.
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Figure 8. Map of the local anomaly correlation between four-times-daily anomalies of 500 hPa (a, b) and 300 hPa (c, d) geopotential (a,
c) between ctl and truth and (b, d) between ada_se and truth. Anomalies are computed separately for each dataset with respect to the mean
annual cycle of the period shown.

Figure 9. Time series of RMSEs of (a) 500 hPa geopotential and (b) 300 hPa geopotential from ctl (black lines) and ada_se (red lines).
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Figure 10. (a) Time series of RMSE of SST from ctl and oda_sst
and (b) the distribution of the RMSE ratio (oda_sst / ctl) of SST.
The RMSE ratio is calculated with the data of the first 3 months
excluded.

Table 4. Globally averaged RMSEs of ocean temperature and salin-
ity vertically averaged between the surface and 500 m and between
500 and 2000 m from ctl and oda with the data of the last 6 months.

Experiment 0–500 m 500–2000 m 0–500 m 500–2000 m
T (K) T (K) S (PSU) S (PSU)

ctl 0.59 0.14 0.121 0.0204
oda 0.44 0.13 0.109 0.0202
reduction (%) 25.0 7.1 9.9 1.2

The largely improved regions are mostly located in the low-
latitude to midlatitude regions, especially in the Pacific and
Indian oceans. In the deeper ocean (500–2000 m), the im-
provement of temperature and salinity is less significant than
in the upper ocean, showing a small RMSE reduction from
ctl compared to the upper ocean. Overall, the improvement of
salinity is smaller than temperature. This method of improv-
ing ocean model state estimate by assimilating temperature
and salinity profiles has also been applied in previous stud-
ies, such as Zhang et al. (2007) and Carton et al. (2018). The
conclusion in this work is basically consistent with them.

4.4 CDA

After the ADA and ODA components have been imple-
mented based on CAM and POP, respectively, the CESM-
ECDA system is also constructed. Because the ocean–
atmosphere coupled error covariance is not used in the
CESM-ECDA system, the observation in one component
system (such as the atmosphere) cannot directly affect the

model state in another component (such as the ocean) in
the analysis stage. Therefore, the CESM-ECDA system is
implemented in the WCDA style. In the current version
of the CESM-ECDA system, the ADA component is capa-
ble of assimilating the atmospheric observations of the two-
dimensional surface pressure, the three-dimensional temper-
ature, wind components, and humidity; and the ODA com-
ponent can assimilate the oceanic observations of the two-
dimensional SST and the three-dimensional in situ profiles of
temperature and salinity. In addition, the localization, covari-
ance inflation, and incremental analysis update (IAU; Bloom
et al., 1996) schemes are also included. More specifically, the
localization schemes include the variable localization, hor-
izontal localization, and vertical localization based on the
widely used filter from Gaspari and Cohn (1999), and the
covariance inflation is applied with both the classic scheme
from Anderson and Anderson (1999) and the relaxation-to-
prior scheme (Zhang et al., 2004).

4.4.1 Impact of CDA on atmosphere state estimation

The CESM-ECDA system can improve the quality of the at-
mosphere state estimation over the single ADA experiment.
When the assimilation of Ps observations in the atmosphere
and SST observations in the ocean are both activated, the
CDA system operates in a WCDA style (i.e., the cda ex-
periment). Compared with the single ADA experiment, the
cda experiment can be used to evaluate the assimilation per-
formance of the CESM-ECDA system in the atmosphere.
Figure 13a–e show the time series of RMSEs of five atmo-
spheric surface variables. When the Ps and SST observations
are both assimilated, the cda experiment can further reduce
the RMSEs of the atmospheric variables in comparison with
the ada_fv experiment, which only assimilates the Ps obser-
vations into the atmosphere.

Table 5 lists the global averaged RMSEs of these five vari-
ables and three important air–sea interface fluxes with the
data. Although the cda experiment can improve all the at-
mospheric surface variables considered here over ada_fv, the
error reductions are small (approximately 1 %–2 %, and the
Ts is 4.3 %). This may be caused by the strong correlation
between the ocean temperature and atmosphere temperature
near the air–sea interface, while the correlation between SST
and other atmospheric surface variables is weak. Compared
with ada_fv, the cda experiment further includes the assimi-
lation of SST observations into the ocean component. There-
fore, the model SST state is well constrained by the SST
observations. The improved SST in cda can further benefit
the overlying atmosphere through the ocean–atmosphere dy-
namic coupling. Although all atmospheric states should be
improved by the better lower boundary conditions provided
by the ocean, only those strongly correlated with the SST
more significantly benefit from the improved SST.

The cda experiment shows a mixed distribution of de-
creased and increased RMSE and a global averaged weak
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Figure 11. Argo locations on (a) 1 January 2007, (b) 1 to 10 January 2007, (c) 1 to 31 January 2007, and (d) 1 January to 31 December 2007.

Figure 12. Time series of RMSEs of (a) 0–500 m and (b) 500–2000 m ocean temperature and (c) 0–500 m and (d) 500–2000 m ocean salinity
from ctl (black line) and oda (blue line).
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Figure 13. Time series of RMSEs of (a) surface pressure Ps, (b) surface temperature Ts, (c) surface specific humidity Qs, (d) surface zonal
wind Us, and (e) surface meridional wind Vs from ada_fv and cda.

Table 5. Globally averaged RMSEs of surface pressure Ps, surface temperature Ts, surface specific humidity Qs, surface zonal wind Us,
surface meridional wind Vs, sensible heat flux SHF, and latent heat flux LHF from ada_fv and cda. The RMSEs are calculated with the data
of the first month excluded.

Experiment Ps Ts Qs Us Vs SHF LHF
(hPa) (K) (g kg−1) (m s−1) (m s−1) (W m−2) (W m−2)

ada_fv 4.05 2.51 1.39 3.16 3.22 17.53 40.44
cda 3.98 2.40 1.35 3.12 3.19 16.86 39.60
reduction (%) 1.8 4.3 2.4 1.3 1.1 3.8 2.1

improvement for Ps, Qs, Us, and Vs. The regions of signifi-
cant improvement are mostly located in the tropical eastern
Indian Ocean and the tropical to subtropical Atlantic, which
may indicate the more significant positive impact of the cou-
pling between SST and air–sea fluxes. It should be noted here
that the cda experiment can significantly improve the Ts state
over almost the entire ocean areas, especially in the tropi-
cal Indian Ocean, the tropical to subtropical Atlantic, and the
midlatitude Pacific.

The improvement of CESM-ECDA over single ADA ex-
periment can also be reflected in the air–sea interface fluxes.
Figure 14a–d show the time series and ratio (cda / ada_fv)

distribution of RMSEs of SHF and LHF. These fluxes can
also be improved by the further assimilation of the SST ob-
servations into the ocean in the cda experiment. Compared
with ada_fv, cda further reduces the RMSEs of SHF and LHF
by 3.8 % and 2.1 % (Table 5), respectively. These two fluxes
share significant improved regions with above variables, such
as the tropical Indian Ocean and the tropical to subtropical
Atlantic. The assimilation of SST observations in cda im-
proves the air–sea coupling processes in these regions, lead-
ing to corrected interface fluxes there. Then the improved in-
terface fluxes further transmit the correcting information to
the overlying atmosphere.
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Figure 14. Time series of RMSEs of (a) sensible heat flux (SHF), (c) latent heat flux (LHF) from ada_fv and cda, and (e) SST from oda_sst
and cda and distribution of the RMSE ratio of (b) SHF (cda / ada_fv), (d) LHF (cda / ada_fv), and (f) SST(cda/oda). The RMSE ratios are
calculated with the data of the first month excluded.

4.4.2 Impact of CDA on ocean state estimation

The CESM-ECDA system can obtain improved ocean states
over the single ODA experiment. Figure 14e–f show the time
series and distribution of the SST RMSE from the oda and
cda experiments. Compared with oda which only assimilates
the SST and profiles observations, cda further assimilates the
Ps observations into the atmosphere component. Therefore,
the comparison between oda and cda can be used to evaluate
the impact of the CESM-ECDA system on the ocean state es-
timation. Assimilation of SST observations alone in the oda
experiment has already largely reduced the SST RMSE in

comparison with the ctl experiment, while cda can further re-
duce the SST RMSE by up to 10.4 % (from 0.134 to 0.120 K,
with the data of the first 3 months excluded from the com-
putation). The RMSE of SST can be significantly reduced
in most regions except for the Arctic Ocean by further as-
similating the Ps observations into the atmosphere. The SST
RMSE in cda decreases about 10 %–20 % compared to oda.
When Ps observations are assimilated into the atmosphere,
the atmospheric states are better constrained, which provides
an improved upper-boundary condition for the ocean.
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4.5 Computational efficiency of online vs. offline CDA

The data assimilation can be implemented by either an of-
fline or an online mode. In offline mode, data assimilation
and model integration are independently performed in two
programs, for which at each assimilation time the model inte-
gration needs to stop and write (read) model states on (from)
local disks for assimilation (next model integration). In on-
line mode, data assimilation and model integration are per-
formed in one program, in which the model integration and
assimilation are linked by memory management. Both on-
line and offline assimilation modes share model integration
and assimilation consumptions, but the offline mode needs
additional I/O and initialization consumptions at each assim-
ilation step. So, their difference of CPU (central processing
unit) time mainly depends on the process of initialization and
I/O, as well as the assimilation frequency.

If at an assimilation interval, the model initialization and
I/O time is A, model integration time is B, analysis time is
C, and the total CPU time in offline and online assimilation
is respectively n×(A+B+C) and A+n×(B+C) for n as-
similation steps. So, the ratio between online time and offline
time can be expressed as

R =
online time
offline time

=
A+ n(B +C)

n(A+B +C)

= 1−
(n− 1)A

n(A+B +C)
= 1−

n− 1
n

1

1+ B+C
A

. (3)

As n is large enough, (n− 1)/n→ 1. The CPU time saved
by online assimilation mainly depends on the proportion of
(B+C) and A. For example, if A= B+C, R ≈ 1/2; if A=
4(B +C), R ≈ 1/5. By the way, here we only discuss the
difference of CPU times in offline and online assimilation
modes. However, depending on the performance of the HPC
(high-performance computing) system, the I/O process wall
clock time may be much longer than the CPU time.

Table 6 presents the comparison of CPU time in offline
cda experiments and online cda experiments. We use the res-
olution of ne30_g16 and the component setting of B1850CN
for system evaluation. The assimilation frequency is daily in
ocean and 6-hourly in atmosphere. The number of observa-
tions is the same every day. The ensemble size is set to 12,
and each member uses 32 PEs (32 tasks, 1 thread). In Table 6,
total time mainly consists of initialization time (init time) and
running time (run time).

It takes about 36 min 29 s to run 1 d offline cda, but it only
takes about 14 min 43 s to run a 1 d online cda experiment.
A 30 d offline cda experiment takes 18 h 15 min 11 s, and the
online experiment only takes 3 h 51 min 31 s. The CPU time
of online assimilation is only 21.14 % of offline assimilation.
Indeed, a 365 d online cda takes about 20.53 % of offline cda
time. If the reanalyses are carried out over decades, the ef-
ficiency of online assimilation will be much higher than the
offline mode. Again, depending on the performance of the

HPC system, the I/O process wall clock time may take much
more time through offline assimilation.

5 The real-observation assimilation experiments

The results of the perfect twin experiments show that the
CESM-ECDA system can work well. To further verify its
performance in the real world, a 3-year reanalysis experi-
ment (hereafter referred to as real-CDA) from 1978 to 1980
(1-year ODA and 2-year CDA) with the component setting
of BHISTC5 is conducted using 12 ensemble members. Sur-
face pressure from ERA-Interim (Dee et al., 2011), grid-
ded observational SST from HadISST (Rayner et al., 2003),
and three-dimensional temperature and salinity profiles from
XBT, CTD, MBT, and OSD are assimilated. Considering that
observations below 2000 m are very sparse, and internal vari-
ability in the deep ocean is weak, we employ global restora-
tion of climatological temperature and salinity (e.g., Levitus
et al., 2001, 2005, 2012) in the deep ocean to relax the dis-
torted ocean stratification caused by strong data constraints
in upper ocean (Lu et al., 2020). A control experiment (here-
after referred to as real-CTL) is also conducted with the same
setup, except that it does not employ data assimilation.

We compare the Ps and SST results of real-CDA with
those of CFSR (Saha et al., 2010), 20CRv2 (Compo et al.,
2011), 20CRv3 (Slivinski et al., 2019), ERA-20C (Poli et al.,
2013), and CERA-20C (Laloyaux et al., 2018) in Fig. 15a–
d for 1980. The RMSE of Ps in real-CDA (red line) is
smaller than real-CTL (black line) and 20CRv2 (yellow) but
larger than the CFSR (purple line), ERA-20C (pink line), and
20CRv3 (green line). The mean RMSEs of real-CTL, real-
CDA, CFSR, 20CRv2, ERA-20C, and 20CRv3 are 15.57,
11.84, 9.21, 13.89, 6.68, and 4.82 hPa, respectively. In these
reanalysis products, the RMSE of 20CRv3 is the smallest if
we take ERA-Interim as truth.

The RMSE of SST in real-CDA is smaller than real-CTL
(black) and CERA-20C (pink line) and close to CFSR (pur-
ple line). The mean RMSEs are 1.41, 0.16, 0.16, and 0.80◦

in real-CTL, real-CDA, CFSR, and CERA-20C, respectively.
From the distributions in Fig. 15c–d, we see that the glob-
ally averaged Ps RMSE in real-CDA decreases 30 %–50 %
compared to real-CTL in addition to Africa. Compared with
CERA-20C, the SST RMSE is greatly reduced worldwide
to an extent of about 30 %–90 %. Here, we are not saying
that the results of real-CDA are better than CERA-20C be-
cause the SST in CERA-20C is relaxed toward the HadISST2
monthly ensemble product (Laloyaux et al., 2018). The lim-
ited results in Fig. 15 only show the effectiveness of the
CESM-ECDA system. More real-observation assimilation
experiments and more comprehensive verification analysis
will be carried out in future work.
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Table 6. Comparison of CPU time in offline cda experiments and online cda experiments.

Experiment Run days 1 d 5 d 30 d 365 d

Offline Init time 29 min 01 s 2 h 25 min 09 s 14 h 30 min 55 s 176 h 36 min 17 s
Run time 7 min 28 s 37 min 22 s 3 h 44 min 16 s 45 h 28 min 44 s

Total time 36 min 29 s 3 h 02 min 31 s 18 h 15 min 11 s 222 h 15 min 01 s

Online Init time 7 min 15 s 7 min 15 s 7 min 15 s 7 min 15 s
Run time 7 min 28 s 37 min 22 s 3 h 44 min 16 s 45 h 28 min 44 s

Total time 14 min 43 s 44 min 37 s 3 h 51 min 31 s 45 h 35 min 59 s

Ratio (online / offline) Total time 40.35 % 24.45 % 21.14 % 20.53 %

Init time is the initialization period + the input period. Run time is the model period + the analysis period + the output period.

Figure 15. Time series of RMSE of (a) Ps and (b) SST from the real-observation assimilation experiment and RMSE ratio distributions of
Ps (real-CDA/real-CTL) and SST (real-CDA/CERA-20C) in 1980. The numbers in (a) and (b) are RMSEs of the mean value corresponding
to each product.

6 Summary and discussions

In this paper, an online ensemble atmosphere–ocean cou-
pled data assimilation system within the Community Earth
System Model, which consists of the ODA component and
the ADA components (both for the finite-volume and the
spectral-element dynamical cores for ADA), is designed and
evaluated systematically. In the ADA component, the surface
pressure observations are assimilated. In the ODA compo-
nent, the gridded SST observations and the in situ profiles
of temperature and salinity are both assimilated. The perfect

twin experiments have been conducted steadily for 1 model
year for the single ADA components, the single ODA com-
ponent, and the weakly coupled CESM-ECDA system. The
results show that the CESM-ECDA system is effective in as-
similating observations in both atmosphere and ocean. By as-
similating the surface pressure observations alone, the RM-
SEs are significantly reduced by up to 39 % for Ps and 16 %–
26 % for Ts, Qs, Us, and Vs within CAM-FV. The RMSE
reductions for the single ADA experiment within CAM-SE
are generally smaller but still more significant than those in
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CAM-FV. By assimilating the SST observations alone, the
SST RMSE is greatly reduced by up to 77 %. When the three-
dimensional in situ temperature and salinity profiles are fur-
ther assimilated in the ODA system, the three-dimensional
ocean temperature and salinity can be significantly improved.

When the atmospheric and oceanic observations are
jointly assimilated, the CESM-ECDA system executes in a
WCDA style. Results show that the CESM-ECDA system
can obtain robustly improved state estimations in both atmo-
sphere and ocean compared with the corresponding single-
component DA experiments discussed above, respectively,
which confirms the stability and effectiveness of the estab-
lished CESM-ECDA system. The atmosphere–ocean cou-
pled assimilation allows us to make more effective use of the
available observations in both atmosphere and ocean com-
ponents. Therefore, the observational information in differ-
ent component systems is allowed to be transmitted and ex-
changed across the air–sea interface in the forecast stage of
the coupled model. It is worth mentioning that due to the sig-
nificant difference of the characteristic spatial and temporal
scales between the atmosphere and the ocean and the differ-
ence of the air–sea coupling mechanisms in different regions,
the coupled state estimation obtained shows a more compli-
cated distribution.

This study also introduces and compares the offline and
online assimilation approaches. A test which assimilates SST
and TS profiles once a day and Ps four times a day shows
that the online assimilation can save about 80 % CPU time,
which will greatly improve the efficiency of long-term cli-
mate reanalysis. Furthermore, the reanalysis experiment with
real observations shows that the Ps RMSE of CESM-ECDA
is smaller than 20CRv2 if we take ERA-Interim as truth. The
SST RMSE of CESM-ECDA is smaller than CERA-20C and
close to CFSR when HadISST is assimilated.

A previous adaptively inflated ensemble filter study has
been designed to enhance the consistency of upper- and deep-
ocean adjustments, which is based on “climatological” stan-
dard deviations being adaptively updated by observations
(Zhang and Rosati, 2010). But in this study, we only focus
on the system design and evaluation of the CESM-ECDA;
the inflation is not used in this study. The inflation scheme
can be considered into the ADA system in the next work.
While in ocean, the situation is more complex because the
variability is different in upper and deep ocean. It needs
much deeper and further work to explore the inflation in this
CESM-ECDA system.

In this study, our purpose is to document the design and
evaluation of the online CESM-ECDA system instead of pro-
viding a climate reanalysis product. Only several 1-year per-
fect twin experiments and a 3-year analysis experiment with
real observations are conducted. In follow-up studies, we
plan to complete a half-century climate reanalysis with an
improved CDA system using ensemble optimal interpolation
(EnOI)-like filtering (Yu et al., 2019), which can effectively
solve the problem of redistribution between model integra-

tion and assimilation, in which only one dynamical model
member is integrated.

The online CESM-ECDA system reported in this study
uses multiple ensemble members to carry out the assimilation
process. The required computing resources are large for such
an ensemble-based CDA system with the full-complexity
CGCM to execute, especially when using a high-resolution
configuration (e.g., the CESM-HR, Zhang et al., 2020a). In
addition, observations of other types and variables need to
be further assimilated into the system. Further, the current
CESM-ECDA system is only a weakly coupled system in
which the observations in one component cannot directly up-
date the state in another component. It is worth mentioning
that some ocean dynamic processes (particularly in the trop-
ics, such as ENSO, the El Niño–Southern Oscillation) have
influences over a long spatial scale. However, depending on
the reliability of statistical correlation, such as the ensemble
size, the localization radius is a tunable parameter in practical
data assimilation. Considering the compressibility and that
the Rossby radius of deformation in the atmosphere is gener-
ally larger than the ocean, the impact radius of atmosphere is
larger than the ocean in this work. We highlight here that an
appropriate utilization of localization is important in the real-
observation data assimilation and coupled reanalysis, which
shall be further explored.

It is worth mentioning that a high-resolution configuration
of CESM has been performed and evaluated thoroughly for
century-long climate simulations (Small et al., 2014; Zhang
et al., 2020a) and participated in the High-Resolution Model
Intercomparison Project (HighResMIP; Roberts et al., 2020).
A 500-year preindustrial control simulation and a 250-year
historical and future climate simulation have also been com-
pleted and evaluated (Zhang et al., 2020a; Chang et al.,
2020). In this paper, the CESM-ECDA system is only eval-
uated with a standard resolution. In the future, the CESM-
ECDA system will be assessed with the high-resolution ver-
sion of CESM. Referring to the multi-timescale EnOI-like
high-efficiency approximate filter (Yu et al., 2019), our ul-
timate goal is to develop a computationally efficient CDA
system suitable for the CESM-HR (e.g., 25 km ADA system
within CAM-SE and 10 km ODA system within POP2) us-
ing only one CESM integration instead of multiple ensemble
members. This CDA system with CESM-HR is expected to
be used to produce a high-resolution coupled reanalysis us-
ing various real observations. Therefore, much work remains
to be done in the future. The ability to assimilate real obser-
vations of various types needs to be included in the future, by
which similarities and differences with the previous studies
(e.g., Zhang et al., 2007; Lu et al., 2020) can be compared,
and important climate phenomena such as ENSO and the At-
lantic meridional overturning circulation (AMOC) can also
be further explored. In addition, the cross-domain coupled
error covariance is desired to be included in the future to ex-
tend the current weakly CDA system to a strongly CDA one.
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