Articles | Volume 15, issue 11
https://doi.org/10.5194/gmd-15-4393-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/gmd-15-4393-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ocean biogeochemistry in the Canadian Earth System Model version 5.0.3: CanESM5 and CanESM5-CanOE
James R. Christian
CORRESPONDING AUTHOR
Fisheries and Oceans Canada, Sidney, BC, Canada
Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada
Kenneth L. Denman
Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Hakase Hayashida
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
now at: Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
Amber M. Holdsworth
Fisheries and Oceans Canada, Sidney, BC, Canada
Warren G. Lee
Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada
Olivier G. J. Riche
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
now at: Fisheries and Oceans Canada, Mont Joli, Québec, Canada
Andrew E. Shao
Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada
School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada
Nadja Steiner
Fisheries and Oceans Canada, Sidney, BC, Canada
Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada
Neil C. Swart
Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada
Related authors
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian
Geosci. Model Dev., 14, 6863–6891, https://doi.org/10.5194/gmd-14-6863-2021, https://doi.org/10.5194/gmd-14-6863-2021, 2021
Short summary
Short summary
CanESM5 decadal predictions that started from observed climate states represent the observed evolution of upper-ocean temperatures, surface climate, and the carbon cycle better than ones not started from observed climate states for several years into the forecast. This is due both to better representations of climate internal variability and to corrections of the model response to external forcing including changes in GHG emissions and aerosols.
Morven Muilwijk, Tore Hattermann, Rebecca L. Beadling, Neil C. Swart, Aleksi Nummelin, Chuncheng Guo, David M. Chandler, Petra Langebroek, Shenjie Zhou, Pierre Dutrieux, Jia-Jia Chen, Christopher Danek, Matthew H. England, Stephen M. Griffies, F. Alexander Haumann, André Jüling, Ombeline Jouet, Qian Li, Torge Martin, John Marshall, Andrew G. Pauling, Ariaan Purich, Zihan Song, Inga J. Smith, Max Thomas, Irene Trombini, Eveline van der Linden, and Xiaoqi Xu
EGUsphere, https://doi.org/10.5194/egusphere-2025-3747, https://doi.org/10.5194/egusphere-2025-3747, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Antarctic meltwater affects ocean stratification and temperature, which in turn influences the rate of ice shelf melting—a coupling missing in most climate models. We analyze a suite of climate models with added meltwater to explore this feedback in different regions. While meltwater generally enhances ocean warming and melt, in West Antarctica most models simulate coastal cooling, suggesting a negative feedback that could slow future ice loss there.
Sonya L. Fiddes, Matthew T. Woodhouse, Marc D. Mallet, Liam Lamprey, Ruhi S. Humphries, Alain Protat, Simon P. Alexander, Hakase Hayashida, Samuel G. Putland, Branka Miljevic, and Robyn Schofield
EGUsphere, https://doi.org/10.5194/egusphere-2024-3125, https://doi.org/10.5194/egusphere-2024-3125, 2024
Short summary
Short summary
The interaction between natural marine aerosols, clouds and radiation in the Southern Ocean is a major source of uncertainty in climate models. We evaluate the Australian climate model using aerosol observations and find it underestimates aerosol number often by over 50 %. Model changes were tested to improve aerosol concentrations, but some of our changes had severe negative effects on the larger climate system, highlighting issues in aerosol-cloud interaction modelling.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Laurie C. Menviel, Paul Spence, Andrew E. Kiss, Matthew A. Chamberlain, Hakase Hayashida, Matthew H. England, and Darryn Waugh
Biogeosciences, 20, 4413–4431, https://doi.org/10.5194/bg-20-4413-2023, https://doi.org/10.5194/bg-20-4413-2023, 2023
Short summary
Short summary
As the ocean absorbs 25% of the anthropogenic emissions of carbon, it is important to understand the impact of climate change on the flux of carbon between the ocean and the atmosphere. Here, we use a very high-resolution ocean, sea-ice, carbon cycle model to show that the capability of the Southern Ocean to uptake CO2 has decreased over the last 40 years due to a strengthening and poleward shift of the southern hemispheric westerlies. This trend is expected to continue over the coming century.
Patrick J. Duke, Roberta C. Hamme, Debby Ianson, Peter Landschützer, Mohamed M. M. Ahmed, Neil C. Swart, and Paul A. Covert
Biogeosciences, 20, 3919–3941, https://doi.org/10.5194/bg-20-3919-2023, https://doi.org/10.5194/bg-20-3919-2023, 2023
Short summary
Short summary
The ocean is both impacted by climate change and helps mitigate its effects through taking up carbon from the atmosphere. We used a machine learning approach to investigate what controls open-ocean carbon uptake in the northeast Pacific open ocean. Marine heatwaves that lasted 2–3 years increased uptake, while the upwelling strength of the Alaskan Gyre controlled uptake over 10-year time periods. The trend from 1998–2019 suggests carbon uptake in the northeast Pacific open ocean is increasing.
Parsa Gooya, Neil C. Swart, and Roberta C. Hamme
Earth Syst. Dynam., 14, 383–398, https://doi.org/10.5194/esd-14-383-2023, https://doi.org/10.5194/esd-14-383-2023, 2023
Short summary
Short summary
We report on the ocean carbon sink and sources of uptake uncertainty from the latest version of the Coupled Model Intercomparison Project. We diagnose the highly active regions for the sink and show how knowledge about historical regions of uptake will provide information about future regions of uptake change and uncertainty. We evaluate the dependence of uncertainty on the location and integration scale. Our results help make useful suggestions for both modeling and observational communities.
Laura C. Jackson, Eduardo Alastrué de Asenjo, Katinka Bellomo, Gokhan Danabasoglu, Helmuth Haak, Aixue Hu, Johann Jungclaus, Warren Lee, Virna L. Meccia, Oleg Saenko, Andrew Shao, and Didier Swingedouw
Geosci. Model Dev., 16, 1975–1995, https://doi.org/10.5194/gmd-16-1975-2023, https://doi.org/10.5194/gmd-16-1975-2023, 2023
Short summary
Short summary
The Atlantic meridional overturning circulation (AMOC) has an important impact on the climate. There are theories that freshening of the ocean might cause the AMOC to cross a tipping point (TP) beyond which recovery is difficult; however, it is unclear whether TPs exist in global climate models. Here, we outline a set of experiments designed to explore AMOC tipping points and sensitivity to additional freshwater input as part of the North Atlantic Hosing Model Intercomparison Project (NAHosMIP).
Alban Planchat, Lester Kwiatkowski, Laurent Bopp, Olivier Torres, James R. Christian, Momme Butenschön, Tomas Lovato, Roland Séférian, Matthew A. Chamberlain, Olivier Aumont, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, Tatiana Ilyina, Hiroyuki Tsujino, Kristen M. Krumhardt, Jörg Schwinger, Jerry Tjiputra, John P. Dunne, and Charles Stock
Biogeosciences, 20, 1195–1257, https://doi.org/10.5194/bg-20-1195-2023, https://doi.org/10.5194/bg-20-1195-2023, 2023
Short summary
Short summary
Ocean alkalinity is critical to the uptake of atmospheric carbon and acidification in surface waters. We review the representation of alkalinity and the associated calcium carbonate cycle in Earth system models. While many parameterizations remain present in the latest generation of models, there is a general improvement in the simulated alkalinity distribution. This improvement is related to an increase in the export of biotic calcium carbonate, which closer resembles observations.
Pradeebane Vaittinada Ayar, Laurent Bopp, Jim R. Christian, Tatiana Ilyina, John P. Krasting, Roland Séférian, Hiroyuki Tsujino, Michio Watanabe, Andrew Yool, and Jerry Tjiputra
Earth Syst. Dynam., 13, 1097–1118, https://doi.org/10.5194/esd-13-1097-2022, https://doi.org/10.5194/esd-13-1097-2022, 2022
Short summary
Short summary
The El Niño–Southern Oscillation is the main driver for the natural variability of global atmospheric CO2. It modulates the CO2 fluxes in the tropical Pacific with anomalous CO2 influx during El Niño and outflux during La Niña. This relationship is projected to reverse by half of Earth system models studied here under the business-as-usual scenario. This study shows models that simulate a positive bias in surface carbonate concentrations simulate a shift in the ENSO–CO2 flux relationship.
Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian
Geosci. Model Dev., 14, 6863–6891, https://doi.org/10.5194/gmd-14-6863-2021, https://doi.org/10.5194/gmd-14-6863-2021, 2021
Short summary
Short summary
CanESM5 decadal predictions that started from observed climate states represent the observed evolution of upper-ocean temperatures, surface climate, and the carbon cycle better than ones not started from observed climate states for several years into the forecast. This is due both to better representations of climate internal variability and to corrections of the model response to external forcing including changes in GHG emissions and aerosols.
Hakase Hayashida, Meibing Jin, Nadja S. Steiner, Neil C. Swart, Eiji Watanabe, Russell Fiedler, Andrew McC. Hogg, Andrew E. Kiss, Richard J. Matear, and Peter G. Strutton
Geosci. Model Dev., 14, 6847–6861, https://doi.org/10.5194/gmd-14-6847-2021, https://doi.org/10.5194/gmd-14-6847-2021, 2021
Short summary
Short summary
Ice algae are tiny plants like phytoplankton but they grow within sea ice. In polar regions, both phytoplankton and ice algae are the foundation of marine ecosystems and play an important role in taking up carbon dioxide in the atmosphere. However, state-of-the-art climate models typically do not include ice algae, and therefore their role in the climate system remains unclear. This project aims to address this knowledge gap by coordinating a set of experiments using sea-ice–ocean models.
Cited articles
Arguez, A. and Vose, R.: The Definition of the Standard WMO Climate Normal
The Key to Deriving Alternative Climate Normals, B. Am. Meteorol. Soc., 92, 699–704, https://doi.org/10.1175/2010BAMS2955.1, 2011.
Armstrong, R.: Grazing limitation and nutrient limitation in marine
ecosystems - steady-state solutions of an ecosystem model with multiple
food-chains, Limnol. Oceanogr., 39, 597–608, 1994.
Arora, V., Scinocca, J., Boer, G., Christian, J., Denman, K., Flato, G.,
Kharin, V., Lee, W., and Merryfield, W.: Carbon emission limits required to
satisfy future representative concentration pathways of greenhouse gases,
Geophys. Res. Lett., 38, L05805, https://doi.org/10.1029/2010GL046270, 2011.
Arora, V. K., Katavouta, A., Williams, R. G., Jones, C. D., Brovkin, V., Friedlingstein, P., Schwinger, J., Bopp, L., Boucher, O., Cadule, P., Chamberlain, M. A., Christian, J. R., Delire, C., Fisher, R. A., Hajima, T., Ilyina, T., Joetzjer, E., Kawamiya, M., Koven, C. D., Krasting, J. P., Law, R. M., Lawrence, D. M., Lenton, A., Lindsay, K., Pongratz, J., Raddatz, T., Séférian, R., Tachiiri, K., Tjiputra, J. F., Wiltshire, A., Wu, T., and Ziehn, T.: Carbon–concentration and carbon–climate feedbacks in CMIP6 models and their comparison to CMIP5 models, Biogeosciences, 17, 4173–4222, https://doi.org/10.5194/bg-17-4173-2020, 2020.
Asaadi, A. and Arora, V. K.: Implementation of nitrogen cycle in the CLASSIC land model, Biogeosciences, 18, 669–706, https://doi.org/10.5194/bg-18-669-2021, 2021.
Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies, Geosci. Model Dev., 8, 2465–2513, https://doi.org/10.5194/gmd-8-2465-2015, 2015.
Babbin, A., Keil, R., Devol, A., and Ward, B.: Organic Matter Stoichiometry,
Flux, and Oxygen Control Nitrogen Loss in the Ocean, Science, 344, 406–408,
https://doi.org/10.1126/science.1248364, 2014.
Bronselaer, B., Winton, M., Russell, J., Sabine, C., and Khatiwala, S.:
Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO2
Uptake, Geophys. Res. Lett., 44, 12298–12305, https://doi.org/10.1002/2017GL074435,
2017.
Chisholm, S. W.: Phytoplankton size, in: Primary productivity and
biogeochemical cycles in the sea, edited by: Falkowski, P. G. and Woodhead
A. D., Plenum, New York, 213–237, https://doi.org/10.1007/978-1-4899-0762-2, 1992.
Christian, J.: Biogeochemical cycling in the oligotrophic ocean: Redfield
and non-Redfield models, Limnol. Oceanogr., 50, 646–657, 2005.
Christian, J. and Karl, D.: Microbial community structure at the United
States Joint Global Ocean Flux Study Station ALOHA – inverse methods for
estimating biochemical indicator ratios, J. Geophys. Res.-Oceans, 99, 14269–14276, https://doi.org/10.1029/94JC00681, 1994.
Christian, J., Arora, V., Boer, G., Curry, C., Zahariev, K., Denman, K.,
Flato, G., Lee, W., Merryfield, W., Roulet, N., and Scinocca, J.: The global
carbon cycle in the Canadian Earth system model (CanESM1): Preindustrial
control simulation, J. Geophys. Res.-Biogeosciences, 115, G03014,
https://doi.org/10.1029/2008JG000920, 2010.
Christian, J. R., Verschell, M. A., Murtugudde, R., Busalacchi, A. J., and
McClain, C. R.: Biogeochemical modelling of the tropical Pacific Ocean, I:
Seasonal and interannual variability, Deep-Sea Res. Pt. II, 49, 509–543, 2002a.
Christian, J. R., Verschell, M. A., Murtugudde, R., Busalacchi, A. J., and
McClain, C. R.: Biogeochemical modelling of the tropical Pacific Ocean, II:
Iron biogeochemistry, Deep-Sea Res. Pt. II, 49, 545–565, https://doi.org/10.1016/s0967-0645(01)00111-4, 2002b.
Denman, K. and Pena, M.: A coupled 1-D biological/physical model of the
northeast subarctic Pacific Ocean with iron limitation, Deep-Sea Res. Pt. II, 46, 2877–2908, https://doi.org/10.1016/S0967-0645(99)00087-9, 1999.
Denman, K. and Pena, M.: The response of two coupled one-dimensional mixed
layer/planktonic ecosystem models to climate change in the NE subarctic
Pacific Ocean, Deep-Sea Res. Pt. II,
49, 5739–5757, https://doi.org/10.1016/S0967-0645(02)00212-6, 2002.
Denman, K., Voelker, C., Pena, M., and Rivkin, R.: Modelling the ecosystem
response to iron fertilization in the subarctic NE Pacific: The influence of
grazing, and Si and N cycling on CO2 drawdown, Deep-Sea Res. Pt. II, 53, 2327–2352,
https://doi.org/10.1016/j.dsr2.2006.05.026, 2006.
Devol, A. H.: Denitrification including anammox, in: Nitrogen in the Marine
Environment, 2nd edition, edited by: Capone, D. G., Bronk, D. A., Mulholland,
M.R., and Carpenter, E. J., Elsevier, Amsterdam, 263–301, https://doi.org/10.1016/B978-0-12-372522-6.X0001-1, 2008.
Dickson, A. G., Sabine, C. L., and Christian, J. R.: Guide to best
practices for ocean CO2 measurements, PICES Special Publication 3, 191 p., ISBN 1897176074, 2007.
Elser, J. and Urabe, J.: The stoichiometry of consumer-driven nutrient
recycling: Theory, observations, and consequences, Ecology, 80, 735–751,
https://doi.org/10.1890/0012-9658(1999)080[0735:TSOCDN]2.0.CO;2, 1999.
Franks, P., Wroblewski, J., and Flierl, G.: Behavior of a simple plankton
model with food-level acclimation by herbivores, Mar. Biol., 91,
121–129, https://doi.org/10.1007/BF00397577, 1986.
Friedrichs, M., Dusenberry, J., Anderson, L., Armstrong, R., Chai, F.,
Christian, J., Doney, S., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D.,
Moore, J., Schartau, M., Spitz, Y., and Wiggert, J.: Assessment of skill and
portability in regional marine biogeochemical models: Role of multiple
planktonic groups, J. Geophys. Res.-Oceans, 112, C08001,
https://doi.org/10.1029/2006JC003852, 2007.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D., and Reagan, J. R.: World Ocean Atlas 2018, Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. A. Mishonov Technical Ed., NOAA Atlas NESDIS 83 [data set], 38 p., https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 19 May 2022), 2018a.
Garcia, H. E., Weathers, K., Paver, C. R., Smolyar, I., Boyer, T. P.,
Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Baranova, O. K., Seidov, D. and
Reagan, J. R.: World Ocean Atlas 2018, Volume 4: Dissolved Inorganic
Nutrients (phosphate, nitrate and nitrate+nitrite, silicate), A. Mishonov
Technical Ed., NOAA Atlas NESDIS 84 [data set], 35 p., https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 19 May 2022), 2018b.
Geider, R., MacIntyre, H., and Kana, T.: A dynamic regulatory model of
phytoplanktonic acclimation to light, nutrients, and temperature, Limnol. Oceanogr., 43, 679–694, 1998.
Guilyardi, E. and Madec, G.: Performance of the OPA/ARPEGE-T21 global
ocean-atmosphere coupled model, Clim. Dynam., 13, 149–165,
https://doi.org/10.1007/s003820050157, 1997.
Hayashida, H.: Modelling sea-ice and oceanic dimethylsulfide production and
emissions in the Arctic, PhD thesis, University of Victoria, https://hdl.handle.net/1828/10486 (last access: 30 May 2022), 2018.
Holdsworth, A. M., Zhai, L., Lu, Y., and Christian, J. R.: Future changes in
oceanography and biogeochemistry along the Canadian Pacific continental
margin, Frontiers in Marine Science, 8, 2296–7745, https://doi.org/10.3389/fmars.2021.602991, 2021.
Jetten, M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., and
Strous, M.: Microbiology and application of the anaerobic ammonium oxidation
(“anammox”) process, Curr. Opin. Biotech., 12, 283–288,
https://doi.org/10.1016/S0958-1669(00)00211-1, 2001.
Johnson, K., Elrod, V., Fitzwater, S., Plant, J., Chavez, F., Tanner, S.,
Gordon, R., Westphal, D., Perry, K., Wu, J., and Karl, D.: Surface
ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre:
Aerosols, iron, and the ecosystem response, Global Biogeochem. Cy.,
17, 1063, https://doi.org/10.1029/2002GB002004, 2003.
Johnson, K. S., Gordon, R. M., and Coale, K. H.: What controls dissolved
iron concentrations in the world ocean?, Mar. Chem., 57, 137–161,
https://doi.org/10.1016/s0304-4203(97)00043-1, 1997.
Key, R. M., Olsen, A., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., and Suzuki, T.:
Global Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162,
NDP-093, Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, US Department of Energy, Oak Ridge, Tennessee,
https://www.glodap.info/wp-content/uploads/2017/08/NDP_093.pdf (last access: 19 May 2022), 2015.
Lambert, S. and Boer, G.: CMIP1 evaluation and intercomparison of coupled
climate models, Clim. Dynam., 17, 83–106, https://doi.org/10.1007/PL00013736, 2001.
Landry, M., Barber, R., Bidigare, R., Chai, F., Coale, K., Dam, H., Lewis,
M., Lindley, S., McCarthy, J., Roman, M., Stoecker, D., Verity, P., and
White, J.: Iron and grazing constraints on primary production in the central
equatorial Pacific: An EqPac synthesis, Limnol. Oceanogr., 42,
405–418, https://doi.org/10.4319/lo.1997.42.3.0405, 1997.
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016.
Li, Y.: Distribution patterns of the elements in the ocean – a synthesis,
Geochim. Cosmochim. Ac., 55, 3223–3240, 1991.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E.,
Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009,
Volume 1: Temperature, edited by: Levitus, S., NOAA Atlas NESDIS 68 [data set], 184 p., https://www.ncei.noaa.gov/archive/accession/0094866 (last access: 30 May 2022),
2010.
Locarnini, R. A., Mishonov, A. V., Baranova, O. K., Boyer, T. P., Zweng, M. M.,
Garcia, H. E., Reagan, J. R., Seidov, D., Weathers, K., Paver, C. R., and
Smolyar, I.: World Ocean Atlas 2018, Volume 1: Temperature, edited by: Mishonov A., NOAA Atlas NESDIS 81 [data set], 52 p., https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 19 May 2022) 2018.
Loladze, I., Kuang, Y., and Elser, J.: Stoichiometry in producer-grazer
systems: Linking energy flow with element cycling, B. Math.
Biol., 62, 1137–1162, https://doi.org/10.1006/bulm.2000.0201, 2000.
Lukas, R.: Pacific ocean equatorial currents, in: Encyclopedia of Ocean
Sciences, edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K.,
Academic, San Diego, 2069–2076, https://doi.org/10.1006/rwos.2001.0354, 2001.
Madec, G. and Imbard, M.: A global ocean mesh to overcome the North Pole
singularity, Clim. Dynam., 12, 381–388, https://doi.org/10.1007/s003820050115, 1996.
Moriarty, R. and O'Brien, T. D.: Distribution of mesozooplankton biomass in the global ocean, Earth Syst. Sci. Data, 5, 45–55, https://doi.org/10.5194/essd-5-45-2013, 2013.
Nozaki, Y.: Elemental Distribution, in: Encyclopedia of Ocean Sciences,
edited by: Steele, J. H., Thorpe, S. A., and Turekian, K. K., Academic, San
Diego, Encyclopedia of Ocean Sciences, 840–845, https://doi.org/10.1006/rwos.2001.0402, 2001.
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017.
Philander, S. G. and Chao, Y.: On the contrast between the seasonal cycles of
the equatorial Atlantic and Pacific oceans, J. Phys. Ocean., 21, 1399–1406, 1991.
Raven, J. and Geider, R.: Temperature and algal growth, New Phytologist,
110, 441–461, https://doi.org/10.1111/j.1469-8137.1988.tb00282.x, 1988.
Riche, O. and Christian, J.: Ocean dinitrogen fixation and its potential
effects on ocean primary production in Earth system model simulations of
anthropogenic warming, Elementa-Science of the Anthropocene, 6, 16,
https://doi.org/10.1525/elementa.277, 2018.
Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O., Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lindsay, K., Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and Romanou, A.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment, Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, 2016.
Siegel, D., Buesseler, K., Behrenfeld, M., Benitez-Nelson, C., Boss, E.,
Brzezinski, M., Burd, A., Carlson, C., D'Asaro, E., Doney, S., Perry, M.,
Stanley, R., and Steinberg, D.: Prediction of the Export and Fate of Global
Ocean Net Primary Production: The EXPORTS Science Plan, Frontiers in Marine
Science, 3, https://doi.org/10.3389/fmars.2016.00022, 2016.
Steinacher, M., Joos, F., Frölicher, T. L., Bopp, L., Cadule, P., Cocco, V., Doney, S. C., Gehlen, M., Lindsay, K., Moore, J. K., Schneider, B., and Segschneider, J.: Projected 21st century decrease in marine productivity: a multi-model analysis, Biogeosciences, 7, 979–1005, https://doi.org/10.5194/bg-7-979-2010, 2010.
Stock, C., Dunne, J., and John, J.: Global-scale carbon and energy flows through the marine planktonic food web: An analysis with a coupled physical-biological model, Prog. Oceanogr., 120, 1–28, https://doi.org/10.1016/j.pocean.2013.07.001, 2014.
Stramski, D., Reynolds, R. A., Babin, M., Kaczmarek, S., Lewis, M. R., Röttgers, R., Sciandra, A., Stramska, M., Twardowski, M. S., Franz, B. A., and Claustre, H.: Relationships between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans, Biogeosciences, 5, 171–201, https://doi.org/10.5194/bg-5-171-2008, 2008.
Strous, M., Heijnen, J., Kuenen, J., and Jetten, M.: The sequencing batch
reactor as a powerful tool for the study of slowly growing anaerobic
ammonium-oxidizing microorganisms, Appl. Microbiol. Biot.,
50, 589–596, https://doi.org/10.1007/s002530051340, 1998.
Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019a.
Swart, N. C., Cole, J., Kharin, S., Lazare, M., Scinocca, J., Gillett, N.,
Anstey, J., Arora, V., Christian, J., Hanna, S., Jiao, Y., Lee, W., Majaess,
F., Saenko, O., Seiler, C., Seinen, C., Shao, A., Solheim, L., von Salzen, K., Yang, D., and Winter, B.: The
Canadian Earth System Model (CanESM), v5.0.3., Zenodo [code],
https://doi.org/10.5281/zenodo.3251114, 2019b.
Takeda, S., Chai, F., and Nishioka, J.: Report of Working Group 22 on
Iron Supply and its Impact on Biogeochemistry and Ecosystems in the North
Pacific Ocean, PICES Sci. Rep. No. 42, 60 p., ISBN P: 978-1-927797-04-4, W: 978-1-927797-04-4, 2013.
Taylor, K.: Summarizing multiple aspects of model performance in a single
diagram., J. Geophys. Res.-Atmospheres, 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.
Tesdal, J., Christian, J., Monahan, A., and von Salzen, K.: Evaluation of
diverse approaches for estimating sea-surface DMS concentration and air-sea
exchange at global scale, Environ. Chem., 13, 390–412,
https://doi.org/10.1071/EN14255, 2016.
von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J. N., Cole, J. N.
S., Plummer, D., Verseghy, D., Reader, M. C., Ma, X. Y., Lazare, M., and
Solheim, L.: The Canadian Fourth Generation Atmospheric Global Climate Model
(CanAM4). Part I: Representation of Physical Processes, Atmos.-Ocean,
51, 104–125, https://doi.org/10.1080/07055900.2012.755610, 2013.
Wolf-Gladrow, D., Zeebe, R., Klaas, C., Kortzinger, A., and Dickson, A.:
Total alkalinity: The explicit conservative expression and its application
to biogeochemical processes, Mar. Chem., 106, 287–300,
10.1016/j.marchem.2007.01.006, 2007.
Zahariev, K., Christian, J., and Denman, K.: Preindustrial, historical, and
fertilization simulations using a global ocean carbon model with new
parameterizations of iron limitation, calcification, and N2 fixation,
Prog. Oceanogr., 77, 56–82, https://doi.org/10.1016/j.pocean.2008.01.007, 2008.
Zweng, M. M., Reagan, J. R., Seidov, D., Boyer, T. P., Locarnini, R. A., Garcia,
H. E., Mishonov, A. V., Baranova, O. K., Weathers, K., Paver, C. R., and
Smolyar, I.: World Ocean Atlas 2018, Volume 2: Salinity, edited by: Mishonov, A., NOAA Atlas NESDIS 82 [data set], 50 p., https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 19 May 2022), 2018.
Short summary
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model (CanESM5) are described in detail and evaluated against observations and other Earth system models. In the basic CanESM5 model, ocean biogeochemistry is similar to CanESM2 but embedded in a new ocean circulation model. In addition, an entirely new model, the Canadian Ocean Ecosystem model (CanESM5-CanOE), was developed. The most significant difference is that CanOE explicitly includes iron.
The ocean chemistry and biology modules of the latest version of the Canadian Earth System Model...
Special issue