Articles | Volume 15, issue 10
https://doi.org/10.5194/gmd-15-4239-2022
https://doi.org/10.5194/gmd-15-4239-2022
Development and technical paper
 | 
01 Jun 2022
Development and technical paper |  | 01 Jun 2022

Assessing the roles emission sources and atmospheric processes play in simulating δ15N of atmospheric NOx and NO3 using CMAQ (version 5.2.1) and SMOKE (version 4.6)

Huan Fang and Greg Michalski

Related authors

Modeling atmospheric sulfate oxidation chemistry via the oxygen isotope mass-independent fractionation using the Community Multiscale Air Quality Model (CMAQ)
Huan Fang and Wendell Walters
EGUsphere, https://doi.org/10.5194/egusphere-2025-923,https://doi.org/10.5194/egusphere-2025-923, 2025
Short summary
iNRACM: incorporating 15N into the Regional Atmospheric Chemistry Mechanism (RACM) for assessing the role photochemistry plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate
Huan Fang, Wendell W. Walters, David Mase, and Greg Michalski
Geosci. Model Dev., 14, 5001–5022, https://doi.org/10.5194/gmd-14-5001-2021,https://doi.org/10.5194/gmd-14-5001-2021, 2021
Short summary
Incorporating 15N into the outputs of SMOKE version 4.6 as the emission input dataset for CMAQ version 5.2.1 for assessing the role emission sources plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate
Huan Fang and Greg Michalski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-322,https://doi.org/10.5194/gmd-2020-322, 2020
Publication in GMD not foreseen
Short summary

Related subject area

Atmospheric sciences
Quantifying the oscillatory evolution of simulated boundary-layer cloud fields using Gaussian process regression
Gunho Loren Oh and Philip H. Austin
Geosci. Model Dev., 18, 3921–3940, https://doi.org/10.5194/gmd-18-3921-2025,https://doi.org/10.5194/gmd-18-3921-2025, 2025
Short summary
Numerical investigations on the modelling of ultrafine particles in SSH-aerosol-v1.3a: size resolution and redistribution
Oscar Jacquot and Karine Sartelet
Geosci. Model Dev., 18, 3965–3984, https://doi.org/10.5194/gmd-18-3965-2025,https://doi.org/10.5194/gmd-18-3965-2025, 2025
Short summary
The third Met Office Unified Model–JULES Regional Atmosphere and Land Configuration, RAL3
Mike Bush, David L. A. Flack, Huw W. Lewis, Sylvia I. Bohnenstengel, Chris J. Short, Charmaine Franklin, Adrian P. Lock, Martin Best, Paul Field, Anne McCabe, Kwinten Van Weverberg, Segolene Berthou, Ian Boutle, Jennifer K. Brooke, Seb Cole, Shaun Cooper, Gareth Dow, John Edwards, Anke Finnenkoetter, Kalli Furtado, Kate Halladay, Kirsty Hanley, Margaret A. Hendry, Adrian Hill, Aravindakshan Jayakumar, Richard W. Jones, Humphrey Lean, Joshua C. K. Lee, Andy Malcolm, Marion Mittermaier, Saji Mohandas, Stuart Moore, Cyril Morcrette, Rachel North, Aurore Porson, Susan Rennie, Nigel Roberts, Belinda Roux, Claudio Sanchez, Chun-Hsu Su, Simon Tucker, Simon Vosper, David Walters, James Warner, Stuart Webster, Mark Weeks, Jonathan Wilkinson, Michael Whitall, Keith D. Williams, and Hugh Zhang
Geosci. Model Dev., 18, 3819–3855, https://doi.org/10.5194/gmd-18-3819-2025,https://doi.org/10.5194/gmd-18-3819-2025, 2025
Short summary
The sensitivity of aerosol data assimilation to vertical profiles: case study of dust storm assimilation with LOTOS-EUROS v2.2
Mijie Pang, Jianbing Jin, Ting Yang, Xi Chen, Arjo Segers, Batjargal Buyantogtokh, Yixuan Gu, Jiandong Li, Hai Xiang Lin, Hong Liao, and Wei Han
Geosci. Model Dev., 18, 3781–3798, https://doi.org/10.5194/gmd-18-3781-2025,https://doi.org/10.5194/gmd-18-3781-2025, 2025
Short summary
Knowledge-inspired fusion strategies for the inference of PM2.5 values with a neural network
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025,https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary

Cited articles

Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., and Houlton, B. Z.: Agriculture is a major source of NOx pollution in California, Sci. Adv., 4, eaao3477, https://doi.org/10.1126/sciadv.aao3477, 2018. 
Ammann, M., Siegwolf, R., Pichlmayer, F., Suter, M., Saurer, M. and Brunold, C.: Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles, Oecologia, 118, 124–131, https://doi.org/10.1007/s004420050710, 1999. 
Baek B. H. and Seppanen C.: CEMPD/SMOKE: SMOKE v4.8.1 Public Release (January 29, 2021), Zenodo [data set], https://doi.org/10.5281/zenodo.4480334, 2021. 
de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals, Atmos. Environ., 116, 1–11, https://doi.org/10.1016/j.atmosenv.2015.05.056, 2015. 
Dignon, J. and Hameed, S.: Global emissions of nitrogen and sulfur oxides from 1860 to 1980, J. Air Waste Manage., 39, 180–186, https://doi.org/10.1080/08940630.1989.10466519, 1989. 
Download
Short summary
A new emission input dataset that incorporates nitrogen isotopes has been used in the CMAQ (Community Multiscale Air Quality) modeling system simulation to qualitatively analyze the changes in δ15N values, due to the dispersion, mixing, and transport of the atmospheric NOx emitted from different sources. The dispersion, mixing, and transport of the atmospheric NOx were based on the meteorology files generated from the WRF (Weather Research and Forecasting) model.
Share