Articles | Volume 15, issue 10
https://doi.org/10.5194/gmd-15-4239-2022
https://doi.org/10.5194/gmd-15-4239-2022
Development and technical paper
 | 
01 Jun 2022
Development and technical paper |  | 01 Jun 2022

Assessing the roles emission sources and atmospheric processes play in simulating δ15N of atmospheric NOx and NO3 using CMAQ (version 5.2.1) and SMOKE (version 4.6)

Huan Fang and Greg Michalski

Related authors

Modeling atmospheric sulfate oxidation chemistry via the oxygen isotope mass-independent fractionation using the Community Multiscale Air Quality Model (CMAQ)
Huan Fang and Wendell Walters
EGUsphere, https://doi.org/10.5194/egusphere-2025-923,https://doi.org/10.5194/egusphere-2025-923, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
iNRACM: incorporating 15N into the Regional Atmospheric Chemistry Mechanism (RACM) for assessing the role photochemistry plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate
Huan Fang, Wendell W. Walters, David Mase, and Greg Michalski
Geosci. Model Dev., 14, 5001–5022, https://doi.org/10.5194/gmd-14-5001-2021,https://doi.org/10.5194/gmd-14-5001-2021, 2021
Short summary
Incorporating 15N into the outputs of SMOKE version 4.6 as the emission input dataset for CMAQ version 5.2.1 for assessing the role emission sources plays in controlling the isotopic composition of NOx, NOy, and atmospheric nitrate
Huan Fang and Greg Michalski
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-322,https://doi.org/10.5194/gmd-2020-322, 2020
Publication in GMD not foreseen
Short summary

Related subject area

Atmospheric sciences
A novel method for quantifying the contribution of regional transport to PM2.5 in Beijing (2013–2020): combining machine learning with concentration-weighted trajectory analysis
Kang Hu, Hong Liao, Dantong Liu, Jianbing Jin, Lei Chen, Siyuan Li, Yangzhou Wu, Changhao Wu, Shitong Zhao, Xiaotong Jiang, Ping Tian, Kai Bi, Ye Wang, and Delong Zhao
Geosci. Model Dev., 18, 3623–3634, https://doi.org/10.5194/gmd-18-3623-2025,https://doi.org/10.5194/gmd-18-3623-2025, 2025
Short summary
Quantification of CO2 hotspot emissions from OCO-3 SAM CO2 satellite images using deep learning methods
Joffrey Dumont Le Brazidec, Pierre Vanderbecken, Alban Farchi, Grégoire Broquet, Gerrit Kuhlmann, and Marc Bocquet
Geosci. Model Dev., 18, 3607–3622, https://doi.org/10.5194/gmd-18-3607-2025,https://doi.org/10.5194/gmd-18-3607-2025, 2025
Short summary
Diagnosis of winter precipitation types using the spectral bin model (version 1DSBM-19M): comparison of five methods using ICE-POP 2018 field experiment data
Wonbae Bang, Jacob T. Carlin, Kwonil Kim, Alexander V. Ryzhkov, Guosheng Liu, and GyuWon Lee
Geosci. Model Dev., 18, 3559–3581, https://doi.org/10.5194/gmd-18-3559-2025,https://doi.org/10.5194/gmd-18-3559-2025, 2025
Short summary
Improving winter condition simulations in SURFEX-TEB v9.0 with a multi-layer snow model and ice
Gabriel Colas, Valéry Masson, François Bouttier, Ludovic Bouilloud, Laura Pavan, and Virve Karsisto
Geosci. Model Dev., 18, 3453–3472, https://doi.org/10.5194/gmd-18-3453-2025,https://doi.org/10.5194/gmd-18-3453-2025, 2025
Short summary
UA-ICON with the NWP physics package (version ua-icon-2.1): mean state and variability of the middle atmosphere
Markus Kunze, Christoph Zülicke, Tarique A. Siddiqui, Claudia C. Stephan, Yosuke Yamazaki, Claudia Stolle, Sebastian Borchert, and Hauke Schmidt
Geosci. Model Dev., 18, 3359–3385, https://doi.org/10.5194/gmd-18-3359-2025,https://doi.org/10.5194/gmd-18-3359-2025, 2025
Short summary

Cited articles

Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., and Houlton, B. Z.: Agriculture is a major source of NOx pollution in California, Sci. Adv., 4, eaao3477, https://doi.org/10.1126/sciadv.aao3477, 2018. 
Ammann, M., Siegwolf, R., Pichlmayer, F., Suter, M., Saurer, M. and Brunold, C.: Estimating the uptake of traffic-derived NO2 from 15N abundance in Norway spruce needles, Oecologia, 118, 124–131, https://doi.org/10.1007/s004420050710, 1999. 
Baek B. H. and Seppanen C.: CEMPD/SMOKE: SMOKE v4.8.1 Public Release (January 29, 2021), Zenodo [data set], https://doi.org/10.5281/zenodo.4480334, 2021. 
de Foy, B., Lu, Z., Streets, D. G., Lamsal, L. N., and Duncan, B. N.: Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals, Atmos. Environ., 116, 1–11, https://doi.org/10.1016/j.atmosenv.2015.05.056, 2015. 
Dignon, J. and Hameed, S.: Global emissions of nitrogen and sulfur oxides from 1860 to 1980, J. Air Waste Manage., 39, 180–186, https://doi.org/10.1080/08940630.1989.10466519, 1989. 
Download
Short summary
A new emission input dataset that incorporates nitrogen isotopes has been used in the CMAQ (Community Multiscale Air Quality) modeling system simulation to qualitatively analyze the changes in δ15N values, due to the dispersion, mixing, and transport of the atmospheric NOx emitted from different sources. The dispersion, mixing, and transport of the atmospheric NOx were based on the meteorology files generated from the WRF (Weather Research and Forecasting) model.
Share