Articles | Volume 15, issue 8
https://doi.org/10.5194/gmd-15-3281-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-3281-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development and evaluation of an advanced National Air Quality Forecasting Capability using the NOAA Global Forecast System version 16
Patrick C. Campbell
CORRESPONDING AUTHOR
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA, USA
Youhua Tang
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA, USA
Pius Lee
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
retired
Barry Baker
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
Daniel Tong
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
Center for Spatial Information Science and Systems, George Mason
University, Fairfax, VA, USA
Rick Saylor
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
Ariel Stein
NOAA Air Resources Laboratory (ARL), College Park, MD, USA
Jianping Huang
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
I.M. Systems Group Inc., Rockville, MD, USA
Ho-Chun Huang
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
I.M. Systems Group Inc., Rockville, MD, USA
Edward Strobach
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
I.M. Systems Group Inc., Rockville, MD, USA
Jeff McQueen
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
I.M. Systems Group Inc., Rockville, MD, USA
Ivanka Stajner
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
Jamese Sims
NOAA NWS/STI, College Park, MD, USA
Jose Tirado-Delgado
NOAA NWS/STI, College Park, MD, USA
Eastern Research Group, Inc. (ERG), College Park, MD, USA
Youngsun Jung
NOAA NWS/STI, College Park, MD, USA
Fanglin Yang
NOAA National Centers for Environmental Prediction (NCEP), College Park,
MD, USA
Tanya L. Spero
US Environmental Protection Agency, Research Triangle Park, NC, USA
Robert C. Gilliam
US Environmental Protection Agency, Research Triangle Park, NC, USA
Related authors
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, Raffaele Montuoro, and Robert C. Gilliam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-107, https://doi.org/10.5194/gmd-2024-107, 2024
Revised manuscript under review for GMD
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during August 2023 shows that the updated model greatly improves the simulation of MDA8 O3 by reducing the bias by 72 % in the contiguous US. PM2.5 prediction is only enhanced in regions less affected by wildfire, highlighting the need for future refinements.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Short summary
Emissions are a central component of atmospheric chemistry models. The Harmonized Emissions Component (HEMCO) is a software component for computing emissions from a user-selected ensemble of emission inventories and algorithms. It allows users to select, add, and scale emissions from different sources through a configuration file with no change to the model source code. We demonstrate the implementation of HEMCO in several models, all sharing the same HEMCO core code and database library.
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Edward J. Strobach, Sunil Baidar, Brian J. Carroll, Steven S. Brown, Kristen Zuraski, Matthew Coggon, Chelsea E. Stockwell, Lu Xu, Yelena L. Pichugina, W. Alan Brewer, Carsten Warneke, Jeff Peischl, Jessica Gilman, Brandi McCarty, Maxwell Holloway, and Richard Marchbanks
Atmos. Chem. Phys., 24, 9277–9307, https://doi.org/10.5194/acp-24-9277-2024, https://doi.org/10.5194/acp-24-9277-2024, 2024
Short summary
Short summary
Large-scale weather patterns are isolated from local patterns to study the impact that different weather scales have on air quality measurements. While impacts from large-scale meteorology were evaluated by separating ozone (O3) exceedance (>70 ppb) and non-exceedance (<70 ppb) days, we developed a technique that allows direct comparisons of small temporal variations between chemical and dynamics measurements under rapid dynamical transitions.
Sara Louise Farrell, Havala O. T. Pye, Robert Gilliam, George Pouliot, Deanna Huff, Golam Sarwar, William Vizuete, Nicole Briggs, and Kathleen Fahey
EGUsphere, https://doi.org/10.5194/egusphere-2024-1550, https://doi.org/10.5194/egusphere-2024-1550, 2024
Short summary
Short summary
In this work we implement heterogeneous sulfur chemistry into the Community Multiscale Air Quality (CMAQ) model. This new chemistry accounts for the formation of sulfate via aqueous oxidation of SO2 in aerosol liquid water and the formation of hydroxymethanesulfonate (HMS) – often confused by measurement techniques as sulfate. Model performance in predicting sulfur PM2.5 in Fairbanks, Alaska, and other places that experience dark and cold winters, is improved.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, Raffaele Montuoro, and Robert C. Gilliam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-107, https://doi.org/10.5194/gmd-2024-107, 2024
Revised manuscript under review for GMD
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during August 2023 shows that the updated model greatly improves the simulation of MDA8 O3 by reducing the bias by 72 % in the contiguous US. PM2.5 prediction is only enhanced in regions less affected by wildfire, highlighting the need for future refinements.
Natalie Brett, Kathy S. Law, Steve R. Arnold, Javier G. Fochesatto, Jean-Christophe Raut, Tatsuo Onishi, Robert Gilliam, Kathleen Fahey, Deanna Huff, George Pouliot, Brice Barret, Elsa Dieudonne, Roman Pohorsky, Julia Schmale, Andrea Baccarini, Slimane Bekki, Gianluca Pappaccogli, Federico Scoto, Stefano Decesari, Antonio Donateo, Meeta Cesler-Maloney, William Simpson, Patrice Medina, Barbara D'Anna, Brice Temime-Roussel, Joel Savarino, Sarah Albertin, Jingqiu Mao, Becky Alexander, Allison Moon, Peter F. DeCarlo, Vanessa Selimovic, Robert Yokelson, and Ellis S. Robinson
EGUsphere, https://doi.org/10.5194/egusphere-2024-1450, https://doi.org/10.5194/egusphere-2024-1450, 2024
Short summary
Short summary
Processes influencing dispersion of local anthropogenic emissions in Arctic wintertime are investigated with dispersion model simulations. Modelled power plant plume rise that considers surface and elevated temperature inversions improves results compared to observations. Modelled near-surface concentrations are improved by representation of vertical mixing and emission estimates. Large increases in diesel vehicle emissions at temperatures reaching -35 °C are required to reproduce observed NOx.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Xiaodan Ma, Jianping Huang, Michaela Hegglin, Patrick Joeckel, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2023-2411, https://doi.org/10.5194/egusphere-2023-2411, 2024
Short summary
Short summary
Our study examines 30 years of tropospheric ozone changes in the Northwest Pacific region. We found a significant increase in ozone levels during spring and summer in the middle-upper troposphere. This change is driven by a complex interplay between stratospheric and tropospheric ozone, with implications for climate and air quality in East Asia. Further research into these mechanisms is needed.
Li Pan, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, Stuart A. McKeen, Shobha Kondragunta, Xiaoyang Zhang, Gregory J. Frost, Fanglin Yang, and Ivanka Stajner
Geosci. Model Dev., 17, 431–447, https://doi.org/10.5194/gmd-17-431-2024, https://doi.org/10.5194/gmd-17-431-2024, 2024
Short summary
Short summary
A GEFS-Aerosols simulation was conducted from 1 September 2019 to 30 September 2020 to evaluate the model performance of GEFS-Aerosols. The purpose of this study was to understand how aerosol chemical and physical processes affect ambient aerosol concentrations by placing aerosol wet deposition, dry deposition, reactions, gravitational deposition, and emissions into the aerosol mass balance equation.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
James D. East, Barron H. Henderson, Sergey L. Napelenok, Shannon N. Koplitz, Golam Sarwar, Robert Gilliam, Allen Lenzen, Daniel Q. Tong, R. Bradley Pierce, and Fernando Garcia-Menendez
Atmos. Chem. Phys., 22, 15981–16001, https://doi.org/10.5194/acp-22-15981-2022, https://doi.org/10.5194/acp-22-15981-2022, 2022
Short summary
Short summary
We present a framework that uses a computer model of air quality, along with air pollution data from satellite instruments, to estimate emissions of nitrogen oxides (NOx) across the Northern Hemisphere. The framework, which advances current methods to infer emissions from satellite observations, provides observationally constrained NOx estimates, including in regions of the world where emissions are highly uncertain, and can improve simulations of air pollutants relevant for health and policy.
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022, https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary
Short summary
A lightning assimilation (LTA) technique implemented in the WRF model's Kain–Fritsch (KF) convective scheme is updated and applied to simulations from regional to hemispheric scales using observed lightning flashes from ground-based lightning detection networks. Different user-toggled options associated with the KF scheme on simulations with and without LTA are assessed. The model's performance is improved significantly by LTA, but it is sensitive to various factors.
Youhua Tang, Patrick C. Campbell, Pius Lee, Rick Saylor, Fanglin Yang, Barry Baker, Daniel Tong, Ariel Stein, Jianping Huang, Ho-Chun Huang, Li Pan, Jeff McQueen, Ivanka Stajner, Jose Tirado-Delgado, Youngsun Jung, Melissa Yang, Ilann Bourgeois, Jeff Peischl, Tom Ryerson, Donald Blake, Joshua Schwarz, Jose-Luis Jimenez, James Crawford, Glenn Diskin, Richard Moore, Johnathan Hair, Greg Huey, Andrew Rollins, Jack Dibb, and Xiaoyang Zhang
Geosci. Model Dev., 15, 7977–7999, https://doi.org/10.5194/gmd-15-7977-2022, https://doi.org/10.5194/gmd-15-7977-2022, 2022
Short summary
Short summary
This paper compares two meteorological datasets for driving a regional air quality model: a regional meteorological model using WRF (WRF-CMAQ) and direct interpolation from an operational global model (GFS-CMAQ). In the comparison with surface measurements and aircraft data in summer 2019, these two methods show mixed performance depending on the corresponding meteorological settings. Direct interpolation is found to be a viable method to drive air quality models.
Sarah E. Benish, Jesse O. Bash, Kristen M. Foley, K. Wyat Appel, Christian Hogrefe, Robert Gilliam, and George Pouliot
Atmos. Chem. Phys., 22, 12749–12767, https://doi.org/10.5194/acp-22-12749-2022, https://doi.org/10.5194/acp-22-12749-2022, 2022
Short summary
Short summary
We assess Community Multiscale Air Quality (CMAQ) model simulations of nitrogen and sulfur deposition over US climate regions to evaluate the model ability to reproduce long-term deposition trends and total deposition budgets. A measurement–model fusion technique is found to improve estimates of wet deposition. Emission controls set by the Clean Air Act successfully decreased oxidized nitrogen deposition across the US; we find increasing amounts of reduced nitrogen to the total nitrogen budget.
Li Zhang, Raffaele Montuoro, Stuart A. McKeen, Barry Baker, Partha S. Bhattacharjee, Georg A. Grell, Judy Henderson, Li Pan, Gregory J. Frost, Jeff McQueen, Rick Saylor, Haiqin Li, Ravan Ahmadov, Jun Wang, Ivanka Stajner, Shobha Kondragunta, Xiaoyang Zhang, and Fangjun Li
Geosci. Model Dev., 15, 5337–5369, https://doi.org/10.5194/gmd-15-5337-2022, https://doi.org/10.5194/gmd-15-5337-2022, 2022
Short summary
Short summary
The NOAA’s air quality predictions contribute to protecting lives and health in the US, which requires sustainable development and improvement of forecast systems. GEFS-Aerosols v1 has been developed in a collaboration between the NOAA research laboratories for operational forecast since September 2020 in the NCEP. The predictions demonstrate substantial improvements for both composition and variability of aerosol distributions over those from the former operational system.
Siqi Ma, Daniel Tong, Lok Lamsal, Julian Wang, Xuelei Zhang, Youhua Tang, Rick Saylor, Tianfeng Chai, Pius Lee, Patrick Campbell, Barry Baker, Shobha Kondragunta, Laura Judd, Timothy A. Berkoff, Scott J. Janz, and Ivanka Stajner
Atmos. Chem. Phys., 21, 16531–16553, https://doi.org/10.5194/acp-21-16531-2021, https://doi.org/10.5194/acp-21-16531-2021, 2021
Short summary
Short summary
Predicting high ozone gets more challenging as urban emissions decrease. How can different techniques be used to foretell the quality of air to better protect human health? We tested four techniques with the CMAQ model against observations during a field campaign over New York City. The new system proves to better predict the magnitude and timing of high ozone. These approaches can be extended to other regions to improve the predictability of high-O3 episodes in contemporary urban environments.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Haipeng Lin, Daniel J. Jacob, Elizabeth W. Lundgren, Melissa P. Sulprizio, Christoph A. Keller, Thibaud M. Fritz, Sebastian D. Eastham, Louisa K. Emmons, Patrick C. Campbell, Barry Baker, Rick D. Saylor, and Raffaele Montuoro
Geosci. Model Dev., 14, 5487–5506, https://doi.org/10.5194/gmd-14-5487-2021, https://doi.org/10.5194/gmd-14-5487-2021, 2021
Short summary
Short summary
Emissions are a central component of atmospheric chemistry models. The Harmonized Emissions Component (HEMCO) is a software component for computing emissions from a user-selected ensemble of emission inventories and algorithms. It allows users to select, add, and scale emissions from different sources through a configuration file with no change to the model source code. We demonstrate the implementation of HEMCO in several models, all sharing the same HEMCO core code and database library.
Hyun Cheol Kim, Soontae Kim, Mark Cohen, Changhan Bae, Dasom Lee, Rick Saylor, Minah Bae, Eunhye Kim, Byeong-Uk Kim, Jin-Ho Yoon, and Ariel Stein
Atmos. Chem. Phys., 21, 10065–10080, https://doi.org/10.5194/acp-21-10065-2021, https://doi.org/10.5194/acp-21-10065-2021, 2021
Short summary
Short summary
Global outbreaks of COVID-19 offer rare opportunities of natural experiments in emission control and corresponding responses of tropospheric chemistry. This study's novel approach investigates (1) isolating the pandemic's impact from natural and anthropogenic variations, (2) emission adjustment to reproduce real-time emissions, and (3) brute-force modeling to investigate Chinese economic activities. Results provide characteristics of the region's chemistry and emissions.
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
K. Wyat Appel, Jesse O. Bash, Kathleen M. Fahey, Kristen M. Foley, Robert C. Gilliam, Christian Hogrefe, William T. Hutzell, Daiwen Kang, Rohit Mathur, Benjamin N. Murphy, Sergey L. Napelenok, Christopher G. Nolte, Jonathan E. Pleim, George A. Pouliot, Havala O. T. Pye, Limei Ran, Shawn J. Roselle, Golam Sarwar, Donna B. Schwede, Fahim I. Sidi, Tanya L. Spero, and David C. Wong
Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, https://doi.org/10.5194/gmd-14-2867-2021, 2021
Short summary
Short summary
This paper details the scientific updates in the recently released CMAQ version 5.3 (and v5.3.1) and also includes operational and diagnostic evaluations of CMAQv5.3.1 against observations and the previous version of the CMAQ (v5.2.1). This work was done to improve the underlying science in CMAQ. This article is used to inform the CMAQ modeling community of the updates to the modeling system and the expected change in model performance from these updates (versus the previous model version).
Youhua Tang, Huisheng Bian, Zhining Tao, Luke D. Oman, Daniel Tong, Pius Lee, Patrick C. Campbell, Barry Baker, Cheng-Hsuan Lu, Li Pan, Jun Wang, Jeffery McQueen, and Ivanka Stajner
Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, https://doi.org/10.5194/acp-21-2527-2021, 2021
Short summary
Short summary
Chemical lateral boundary condition (CLBC) impact is essential for regional air quality prediction during intrusion events. We present a model mapping Goddard Earth Observing System (GEOS) to Community Multi-scale Air Quality (CMAQ) CB05–AERO6 (Carbon Bond 5; version 6 of the aerosol module) species. Influence depends on distance from the inflow boundary and species and their regional characteristics. We use aerosol optical thickness to derive CLBCs, achieving reasonable prediction.
Xiaodan Ma, Jianping Huang, Tianliang Zhao, Cheng Liu, Kaihui Zhao, Jia Xing, and Wei Xiao
Atmos. Chem. Phys., 21, 1–16, https://doi.org/10.5194/acp-21-1-2021, https://doi.org/10.5194/acp-21-1-2021, 2021
Short summary
Short summary
The present work aims at identifying and quantifying the relative contributions of the key factors in driving a rapid increase in summertime surface O3 over the North China Plain during 2013–2019. In addition to anthropogenic emission reduction and meteorological variabilities, our study highlights the importance of inclusion of aerosol absorption and scattering properties rather than aerosol abundance only in accurate assessment of aerosol radiative effect on surface O3 formation and change.
Hyun Cheol Kim, Tianfeng Chai, Ariel Stein, and Shobha Kondragunta
Atmos. Chem. Phys., 20, 10259–10277, https://doi.org/10.5194/acp-20-10259-2020, https://doi.org/10.5194/acp-20-10259-2020, 2020
Short summary
Short summary
Smoke forecasts have been challenged by high uncertainty in fire emission estimates. We develop an inverse modeling system, the HYSPLIT-based Emissions Inverse Modeling System for wildfires, that estimates wildfire emissions from the transport and dispersion of smoke plumes as measured by satellite observations. Using NOAA HYSPLIT and GOES Aerosol/Smoke Product (GASP), the system resolves smoke source strength as a function of time and vertical level and outperforms current operational system.
Li Pan, HyunCheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev., 13, 2169–2184, https://doi.org/10.5194/gmd-13-2169-2020, https://doi.org/10.5194/gmd-13-2169-2020, 2020
Short summary
Short summary
Compared to anthropogenic emissions, emissions from wildfires are largely uncontrolled and unpredictable. Quantitatively describing wildfire emissions and their contributions to air pollution remains a substantial challenge for air quality forecasting efforts. In this study, we test the wildfire calculation algorithm used by the National Air Quality Forecasting Capability (NAQFC) by comparison with ground, satellite and flight measurements during the Southeast Nexus (SENEX) field experiment.
Anna Karion, Thomas Lauvaux, Israel Lopez Coto, Colm Sweeney, Kimberly Mueller, Sharon Gourdji, Wayne Angevine, Zachary Barkley, Aijun Deng, Arlyn Andrews, Ariel Stein, and James Whetstone
Atmos. Chem. Phys., 19, 2561–2576, https://doi.org/10.5194/acp-19-2561-2019, https://doi.org/10.5194/acp-19-2561-2019, 2019
Short summary
Short summary
In this study, we use atmospheric methane concentration observations collected during an airborne campaign to compare different model-based emissions estimates from the Barnett Shale oil and natural gas production basin in Texas, USA. We find that the tracer dispersion model has a significant impact on the results because the models differ in their simulation of vertical dispersion. Additional work is needed to evaluate and improve vertical mixing in the tracer dispersion models.
Tianfeng Chai, Ariel Stein, and Fong Ngan
Geosci. Model Dev., 11, 5135–5148, https://doi.org/10.5194/gmd-11-5135-2018, https://doi.org/10.5194/gmd-11-5135-2018, 2018
Short summary
Short summary
While model predictions depend on release parameters, model uncertainties in inverse modeling should also vary with the source terms. In this paper, model uncertainties that will change with the source terms are introduced in a weak-constraint inverse modeling system. Tests using HYSPLIT model and CAPTEX observations show that adding such model uncertainty terms improves release rate estimates. A cost function normalization scheme introduced to avoid spurious solutions proves to be effective.
Peng Liu, Christian Hogrefe, Ulas Im, Jesper H. Christensen, Johannes Bieser, Uarporn Nopmongcol, Greg Yarwood, Rohit Mathur, Shawn Roselle, and Tanya Spero
Atmos. Chem. Phys., 18, 17157–17175, https://doi.org/10.5194/acp-18-17157-2018, https://doi.org/10.5194/acp-18-17157-2018, 2018
Short summary
Short summary
This study represents an intercomparison of four regional-scale air quality simulations in order to understand the model similarities and differences in estimating the impact of ozone imported from outside of the US on the surface ozone within the US at process level. Vertical turbulent mixing stands out as a primary contributor to the model differences in inert tracers.
Christopher G. Nolte, Tanya L. Spero, Jared H. Bowden, Megan S. Mallard, and Patrick D. Dolwick
Atmos. Chem. Phys., 18, 15471–15489, https://doi.org/10.5194/acp-18-15471-2018, https://doi.org/10.5194/acp-18-15471-2018, 2018
Short summary
Short summary
Changes in air pollution in the United States are simulated under three near-future climate scenarios. Widespread increases in average ozone levels are projected, with the largest increases during summer under the highest warming scenario. Increases are driven by higher temperatures and emissions from vegetation and are magnified at the upper end of the ozone distribution. The increases in ozone have potentially important implications for efforts to protect human health.
Orren Russell Bullock Jr., Hosein Foroutan, Robert C. Gilliam, and Jerold A. Herwehe
Geosci. Model Dev., 11, 2897–2922, https://doi.org/10.5194/gmd-11-2897-2018, https://doi.org/10.5194/gmd-11-2897-2018, 2018
Short summary
Short summary
The U.S. Environmental Protection Agency is developing a new modeling system to investigate air pollution pathways on a global scale. We plan to use the Model for Prediction Across Scales – Atmosphere (MPAS-A) to define the meteorology that affects air pollution transport and fate. In order to do so, MPAS-A must accurately reproduce historical weather conditions. This work demonstrates that our implementation of four-dimensional data assimilation by analysis nudging provides that capability.
Jun Wang, Partha S. Bhattacharjee, Vijay Tallapragada, Cheng-Hsuan Lu, Shobha Kondragunta, Arlindo da Silva, Xiaoyang Zhang, Sheng-Po Chen, Shih-Wei Wei, Anton S. Darmenov, Jeff McQueen, Pius Lee, Prabhat Koner, and Andy Harris
Geosci. Model Dev., 11, 2315–2332, https://doi.org/10.5194/gmd-11-2315-2018, https://doi.org/10.5194/gmd-11-2315-2018, 2018
Short summary
Short summary
The NEMS GFS Aerosol Component (NGAC) version 2.0 for global multispecies aerosol forecast was developed at NCEP. Additional sea salt, sulfate, organic carbon, and black carbon aerosol species were included. This implementation advanced the global aerosol forecast capability and made a step forward toward developing a global aerosol data assimilation system. The aerosol products from this system have been provided to meet the stakeholder's needs.
Youhua Tang, Mariusz Pagowski, Tianfeng Chai, Li Pan, Pius Lee, Barry Baker, Rajesh Kumar, Luca Delle Monache, Daniel Tong, and Hyun-Cheol Kim
Geosci. Model Dev., 10, 4743–4758, https://doi.org/10.5194/gmd-10-4743-2017, https://doi.org/10.5194/gmd-10-4743-2017, 2017
Short summary
Short summary
In order to evaluate the data assimilation tools for regional real-time PM2.5 forecasts, we applied a 3D-Var assimilation tool to adjust the aerosol initial condition by assimilating satellite-retrieved aerosol optical depth and surface PM2.5 observations for a regional air quality model, which is compared to another assimilation method, optimal interpolation. We discuss the pros and cons of these two assimilation methods based on the comparison of their 1-month four-cycles-per-day runs.
Li Pan, Hyun Cheol Kim, Pius Lee, Rick Saylor, YouHua Tang, Daniel Tong, Barry Baker, Shobha Kondragunta, Chuanyu Xu, Mark G. Ruminski, Weiwei Chen, Jeff Mcqueen, and Ivanka Stajner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-207, https://doi.org/10.5194/gmd-2017-207, 2017
Revised manuscript not accepted
Short summary
Short summary
In this study, a system accounting for fire emissions in a chemical transport model is described. The focus of this work is to qualitatively evaluate the system's capability to capture fire signals identified by multiple observation data sets. We discuss how to use observational data correctly to filter out fire signals and synergistic use of multiple data sets together. We also address the limitations of each of the observation data sets and of the evaluation methods.
Rohit Mathur, Jia Xing, Robert Gilliam, Golam Sarwar, Christian Hogrefe, Jonathan Pleim, George Pouliot, Shawn Roselle, Tanya L. Spero, David C. Wong, and Jeffrey Young
Atmos. Chem. Phys., 17, 12449–12474, https://doi.org/10.5194/acp-17-12449-2017, https://doi.org/10.5194/acp-17-12449-2017, 2017
Short summary
Short summary
We extend CMAQ's applicability to the entire Northern Hemisphere to enable consistent examination of interactions between atmospheric processes occurring on various spatial and temporal scales. Improvements were made in model process representation, structure, and input data sets that enable a range of model applications including episodic intercontinental pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution–climate interactions.
Min Huang, Gregory R. Carmichael, James H. Crawford, Armin Wisthaler, Xiwu Zhan, Christopher R. Hain, Pius Lee, and Alex B. Guenther
Geosci. Model Dev., 10, 3085–3104, https://doi.org/10.5194/gmd-10-3085-2017, https://doi.org/10.5194/gmd-10-3085-2017, 2017
Short summary
Short summary
Various sensitivity simulations during two airborne campaigns were performed to assess the impact of different initialization methods and model resolutions on NUWRF-modeled weather states, heat fluxes, and the follow-on MEGAN isoprene emission calculations. Proper land initialization is shown to be important to the coupled weather modeling and the follow-on emission modeling, which is also critical to accurately representing other processes in air quality modeling and data assimilation.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
K. Wyat Appel, Sergey L. Napelenok, Kristen M. Foley, Havala O. T. Pye, Christian Hogrefe, Deborah J. Luecken, Jesse O. Bash, Shawn J. Roselle, Jonathan E. Pleim, Hosein Foroutan, William T. Hutzell, George A. Pouliot, Golam Sarwar, Kathleen M. Fahey, Brett Gantt, Robert C. Gilliam, Nicholas K. Heath, Daiwen Kang, Rohit Mathur, Donna B. Schwede, Tanya L. Spero, David C. Wong, and Jeffrey O. Young
Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, https://doi.org/10.5194/gmd-10-1703-2017, 2017
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system. The CMAQ model is used extensively throughout the world to simulate air pollutants for many purposes, including regulatory and air quality forecasting applications. This work describes the scientific updates made to the latest version of the CMAQ modeling system (CMAQv5.1) and presents an evaluation of the new model against observations and results from the previous model version.
Tianfeng Chai, Alice Crawford, Barbara Stunder, Michael J. Pavolonis, Roland Draxler, and Ariel Stein
Atmos. Chem. Phys., 17, 2865–2879, https://doi.org/10.5194/acp-17-2865-2017, https://doi.org/10.5194/acp-17-2865-2017, 2017
Short summary
Short summary
An inverse system based on the HYSPLIT dispersion model has been built to estimate volcanic ash source strengths, vertical distribution, and temporal variations. Using MODIS retrievals from the 2008 Kasatochi volcanic ash clouds, three options for matching model results to satellite mass loadings are tested. They all show decent skill. It is also found that simultaneously assimilating observations at different times produces better hindcasts than only assimilating the most recent observations.
Hyun Cheol Kim, Soontae Kim, Seok-Woo Son, Pius Lee, Chun-Sil Jin, Eunhye Kim, Byeong-Uk Kim, Fong Ngan, Changhan Bae, Chang-Keun Song, and Ariel Stein
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-673, https://doi.org/10.5194/acp-2016-673, 2016
Revised manuscript not accepted
Short summary
Short summary
In recent years, frequent occurrence of severe haze events in East Asia is one of the most serious public concerns in this region. We demonstrate that daily pollutant transport patterns in East Asia are visible from satellite images when inspected with corresponding synoptic weather analyses. Our manuscript focuses on the possible role of meteorology, especially by the routine passages of synoptic systems, on the production and removal of regional pollution in East Asia.
Cheng-Hsuan Lu, Arlindo da Silva, Jun Wang, Shrinivas Moorthi, Mian Chin, Peter Colarco, Youhua Tang, Partha S. Bhattacharjee, Shen-Po Chen, Hui-Ya Chuang, Hann-Ming Henry Juang, Jeffery McQueen, and Mark Iredell
Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, https://doi.org/10.5194/gmd-9-1905-2016, 2016
Short summary
Short summary
Aerosols have an important effect on the Earth's climate and implications for public health. NASA has partnered with NOAA to transfer GOCART aerosol model to NCEP, enabling the first global aerosol forecasting system at NOAA/NCEP. This collaboration reflects an effective research-to-operation transition, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders and to allow the effects of aerosols on weather and climate prediction to be considered.
Hyun Cheol Kim, Pius Lee, Laura Judd, Li Pan, and Barry Lefer
Geosci. Model Dev., 9, 1111–1123, https://doi.org/10.5194/gmd-9-1111-2016, https://doi.org/10.5194/gmd-9-1111-2016, 2016
Short summary
Short summary
Fair comparison between satellite- and modeled urban NO2 column densities is important in emission inventory evaluation and regulation policy making. This study focuses on the impact of satellite footprint resolution geometry. Since OMI NO2 pixels are too coarse to resolve fine-scale urban plumes, it may cause 20–30 % bias over major cities. We introduce approaches to adjust spatial and vertical structure (downscaling & averaging kernel), and demonstrate improved agreement between sat. and model.
M. Huang, D. Tong, P. Lee, L. Pan, Y. Tang, I. Stajner, R. B. Pierce, J. McQueen, and J. Wang
Atmos. Chem. Phys., 15, 12595–12610, https://doi.org/10.5194/acp-15-12595-2015, https://doi.org/10.5194/acp-15-12595-2015, 2015
Short summary
Short summary
We developed Arizona dust records in 2005-2013 using multiple surface and remote sensing observation data sets. The inter-annual variability of dust events was anticorrelated with three drought indicators (PDSI, satellite NDVI and soil moisture), and stronger dust activity was found in the afternoon than in the morning due to stronger winds and drier soil. Impact of a recent dust event accompanied by a stratospheric ozone intrusion was evaluated with various observational and modeling data sets.
H. C. Kim, P. Lee, F. Ngan, Y. Tang, H. L. Yoo, and L. Pan
Geosci. Model Dev., 8, 2959–2965, https://doi.org/10.5194/gmd-8-2959-2015, https://doi.org/10.5194/gmd-8-2959-2015, 2015
Short summary
Short summary
This study focuses on the evaluation of regional air quality model's performance based on the cloud information from satellites. While cloud information is crucial in photochemistry model, the definitions of cloud fraction from model and satellite are not physically consistent. We demonstrate that improper modeling of cloud fraction is correlated with surface ozone bias, and we also show that current model cloud field might be too bright, causing an overestimation of surface ozone level.
P. A. Cleary, N. Fuhrman, L. Schulz, J. Schafer, J. Fillingham, H. Bootsma, J. McQueen, Y. Tang, T. Langel, S. McKeen, E. J. Williams, and S. S. Brown
Atmos. Chem. Phys., 15, 5109–5122, https://doi.org/10.5194/acp-15-5109-2015, https://doi.org/10.5194/acp-15-5109-2015, 2015
Short summary
Short summary
This study examines ozone mixing ratios over Lake Michigan as measured on the Lake Express ferry, by shoreline differential optical absorption spectroscopy (DOAS) observations in southeastern Wisconsin, and as predicted by the Community Multiscale Air Quality (CMAQ) model. Over water, ozone was determined to be an average of 3.8ppb higher than shoreline observations but overpredicted by the CMAQ model by as much as 11-16ppb midday.
M. S. Mallard, C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden
Geosci. Model Dev., 8, 1085–1096, https://doi.org/10.5194/gmd-8-1085-2015, https://doi.org/10.5194/gmd-8-1085-2015, 2015
Short summary
Short summary
Because global climate models (GCMs) are typically run at coarse spatial resolution, lakes are often poorly resolved in their global fields. When downscaling such GCMs using the Weather Research & Forecasting (WRF) model, use of WRF’s default interpolation methods can result in unrealistic lake temperatures and ice cover, which can impact simulated air temperatures and precipitation. Here, alternative methods for setting lake variables in WRF downscaling applications are presented and compared.
T. Chai, H.-C. Kim, P. Lee, D. Tong, L. Pan, Y. Tang, J. Huang, J. McQueen, M. Tsidulko, and I. Stajner
Geosci. Model Dev., 6, 1831–1850, https://doi.org/10.5194/gmd-6-1831-2013, https://doi.org/10.5194/gmd-6-1831-2013, 2013
R. D. Saylor
Atmos. Chem. Phys., 13, 693–715, https://doi.org/10.5194/acp-13-693-2013, https://doi.org/10.5194/acp-13-693-2013, 2013
Related subject area
Atmospheric sciences
Observational operator for fair model evaluation with ground NO2 measurements
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
Li Fang, Jianbing Jin, Arjo Segers, Ke Li, Ji Xia, Wei Han, Baojie Li, Hai Xiang Lin, Lei Zhu, Song Liu, and Hong Liao
Geosci. Model Dev., 17, 8267–8282, https://doi.org/10.5194/gmd-17-8267-2024, https://doi.org/10.5194/gmd-17-8267-2024, 2024
Short summary
Short summary
Model evaluations against ground observations are usually unfair. The former simulates mean status over coarse grids and the latter the surrounding atmosphere. To solve this, we proposed the new land-use-based representative (LUBR) operator that considers intra-grid variance. The LUBR operator is validated to provide insights that align with satellite measurements. The results highlight the importance of considering fine-scale urban–rural differences when comparing models and observation.
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Cited articles
Alexander, B., Park, R. J., Jacob, D. J., and Gong, S.: Transition
metal-catalyzed oxidation of atmospheric sulfur: global implications for the
sulfur budget, J. Geophys. Res., 114, D02309,
https://doi.org/10.1029/2008JD010486, 2009.
American Lung Association: Urban air pollution and health inequities: a
workshop report, Environ Health Perspect., 109 Suppl 3, 357–374, PMID: 11427385, PMCID:
PMC1240553, https://doi.org/10.2307/3434783, 2001.
Appel, K. W., Gilliam, R.C., Davis, N., Zubrow, A., and Howard, S. C.:
Overview of the atmospheric model evaluation tool (amet) v1.1 for evaluating
meteorological and air quality models, Environ. Model. Softw., 26 434–443, https://doi.org/10.1016/j.envsoft.2010.09.007, 2011.
Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Pouliot, G. A., Pye, H. O. T., Ran, L., Roselle, S. J., Sarwar, G., Schwede, D. B., Sidi, F. I., Spero, T. L., and Wong, D. C.: The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, 2021.
Astitha, M., Luo, H., Rao, S. T., Hogrefe, C., Mathur, R., and Kumar, N.:
Dynamic evaluation of two decades of WRF-CMAQ ozone simulations over the
contiguous United States, Atmos. Environ., 164, 102–116,
https://doi.org/10.1016/j.atmosenv.2017.05.020, 2017.
Bai, L., Wang, J., Ma, X., and Lu, H.: Air Pollution Forecasts:
An Overview, Int. J. Env. Res. Pub. He., 15, 780, https://doi.org/10.3390/ijerph15040780, 2018.
Baker, B. and Pan, L.: Overview of the Model and Observation Evaluation
Toolkit (MONET) Version 1.0 for Evaluating Atmospheric Transport Models, Atmosphere, 8, 210, https://doi.org/10.3390/atmos8110210, 2017.
Bash, J. O., Walker, J. T., Katul, G. G., Jones, M. R., Nemitz, E., and
Robarge, W. P.: Estimation of In-Canopy Ammonia Sources and Sinks in a
Fertilized Zea mays Field, Environ. Sci. Technol., 44, 1683–1689, https://doi.org/10.1021/es9037269, 2010.
Bash, J. O., Cooter, E. J., Dennis, R. L., Walker, J. T., and Pleim, J. E.: Evaluation of a regional air-quality model with bidirectional NH3 exchange coupled to an agroecosystem model, Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, 2013.
Bash, J. O., Baker, K. R., and Beaver, M. R.: Evaluation of improved land use and canopy representation in BEIS v3.61 with biogenic VOC measurements in California, Geosci. Model Dev., 9, 2191–2207, https://doi.org/10.5194/gmd-9-2191-2016, 2016.
Binkowski, F. S, Arunachalam, S., Adelman, Z., and Pinto, J.: Examining
photolysis rates with a prototype on-line photolysis module in
CMAQ, J. Appl. Meteorol. Clim., 46,
1252–1256, https://doi.org/10.1175/JAM2531.1, 2007.
Black, T. L.: The new NMC meso-scale Eta Model: description and forecast
examples, Weather Forecast., 9, 265–278,
https://doi.org/10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2, 1994.
Bonan, G. B., Patton, E. G., Finnigan, J. J., Baldocchi, D. D., and Harman,
I. N.: Moving beyond the incorrect but useful paradigm: reevaluating
big-leaf and multilayer plant canopies to model biosphere-atmosphere fluxes
– a review, Agr. Forest Meteorol., 306, 108435,
https://doi.org/10.1016/j.agrformet.2021.108435, 2021.
Briggs, G. A.: A plume rise model compared with
observations, J. Air Pollut. Control Assoc., 15,
433–438, https://doi.org/10.1080/00022470.1965.10468404, 1965.
Byun, D. and Schere, K. L.: Review of the governing equations, computational
algorithms, and other components of the models-3 community multiscale air
quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77, https://doi.org/10.1115/1.2128636, 2006.
Byun, D. W. and Ching, J. K. S.: Science algorithms of the EPA Models-3
Community Multi-scale Air Quality (CMAQ) modeling system, EPA/600/R-99/030,
Office of Research and Development, US Environmental Protection Agency,
https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63400&Lab=NERL (last access: 5 April 2022), 1999.
Campbell, G. S. and Norman J. M.: An introduction to environmental
biophysics, Springer, 5, ISBN 978-0-387-94937-6, 1998.
Campbell, P., Zhang, Y., Yahya, K., Wang, K., Hogrefe, C., Pouliot, G., Knote, C., Hodzic, A., San Jose, R., Perez, J., Guerrero, P., Baro, R., and Makar, P.: A Multi-Model Assessment for the 2006 and 2010 Simulations under the
Air Quality Model Evaluation International Initiative (AQMEII) Phase 2 over
North America: Part I. Indicators of the Sensitivity of O3 and PM2.5
Formation Regimes, Atmos. Environ., 115, 569–586, https://doi.org/10.1016/j.atmosenv.2014.12.026, 2015.
Campbell, P. C.: The NOAA-EPA Atmosphere-Chemistry Coupler (NACC), Zenodo [code], https://doi.org/10.5281/zenodo.5507489, 2021a.
Campbell, P. C.: The Advanced National Air Quality Forecast Capability (NAQFC), Zenodo [code], https://doi.org/10.5281/zenodo.5507511, 2021b.
Campbell, P. C., Bash, J. O., and Spero, T. L.: Updates to the Noah land
surface model in WRF-CMAQ to improve simulated meteorology, air quality, and
deposition, J. Adv. Model. Earth Sy., 11, 231–256.
https://doi.org/10.1029/2018MS001422 2019.
Campbell, P. C., Tong, D., Tang, Y., Baker, B., Lee, P., Saylor, R., Stein, A., Ma, S., and Qu, Z.:
Impacts of the COVID-19 Economic Slowdown on Ozone Pollution in the U.S., Atmos. Environ., 264, 118713, https://doi.org/10.1016/j.atmosenv.2021.118713,
2021.
Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model
with the Penn State-NCAR MM5 modeling system. Part I: Model implementation
and sensitivity, Mon. Weather Rev., 129, 569–585,
https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2, 2001.
Chen, J.-H. and Lin, S.-J.: The remarkable predictability of inter-annual
variability of Atlantic hurricanes during the past decade, Geophys. Res. Lett., 38, L11804,
https://doi.org/10.1029/2011GL047629, 2011.
Chen, J.-H. and Lin, S.-J.: Seasonal predictions of tropical cyclones using a
25 km-resolution general circulation model, J. Climate, 26, 380–398,
https://doi.org/10.1175/JCLI-D-12-00061.1, 2013.
Chen, J.-H., Lin, S.-J., Zhou, L., Chen, X., Rees, S. L., Bender, M., and
Morin, M.: Evaluation of Tropical Cyclone Forecasts in the Next Generation
Global Prediction System, Mon. Weather Rev., 147, 3409–3428,
https://doi.org/10.1175/MWR-D-18-0227.1, 2019.
Chen, X., Andronova, N., Van Leer, B., Penner, J. E., Boyd, J. P.,
Jablonowski, C., and Lin, S.: A Control-Volume Model of the Compressible
Euler Equations with a Vertical Lagrangian Coordinate, Mon. Weather Rev., 141, 2526–2544,
https://doi.org/10.1175/MWR-D-12-00129.1, 2013.
Chen, X., Zhang, Y., Wang, K., Tong, D., Lee, P., Tang, Y., Huang, J., Campbell, P. C., Mcqueen, J., Pye, H. O. T., Murphy, B. N., and Kang, D.: Evaluation of the offline-coupled GFSv15–FV3–CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States, Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, 2021.
Chin, M., Rood, R. B., Lin, S.-J., Muller, J. F., and Thomspon, A. M.:
Atmospheric sulfur cycle in the global model GOCART: Model description and
global properties, J. Geophys. Res., 105, 24671–24687,
https://doi.org/10.1029/2000JD900384, 2000.
Chin, M., Ginoux, P., Kinne, S., Holben, B. N., Duncan,
B. N., Martin, R. V., Logan, J. A., Akiko, H., and Nakajima, T.: Tropospheric aerosol optical thickness from the GOCART model and
comparisons with satellite and sun photometer measurements, J. Atmos. Sci., 59, 461–483,
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2, 2002.
Chinese State Council: Air Pollution Prevention and Control Action Plan (Guo
Fa [2013] No. 37,
http://en.cleanairchina.org/file/loadFile/26.html (last access: 5 April 2022), 2013.
Clough, S. A., Shephard, M. W., Mlawer, J. E., Delamere,
J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: A
summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Cooter, E. J., Bash, J. O., Walker, J. T., Jones, M. R., and Robarge, W.:
Estimation of NH3 bi-directional flux from managed agricultural soils, Atmos. Environ.,
44, 2107–2115,
https://doi.org/10.1016/j.atmosenv.2010.02.044, 2010.
Cooter, E. J., Bash, J. O., Benson, V., and Ran, L.: Linking agricultural crop management and air quality models for regional to national-scale nitrogen assessments, Biogeosciences, 9, 4023–4035, https://doi.org/10.5194/bg-9-4023-2012, 2012.
Demetriou, C. A. and Vineis, P.: Carcinogenicity of ambient air pollution:
use of biomarkers, lessons learnt and future directions, J. Thorac. Dis.,
7, 67–95, https://doi.org/10.3978/j.issn.2072-1439.2014.12.31, 2015.
Ding, H. and Zhu, Y.: NDE Vegetation Products System Algorithm Theoretical
Basis Document, Version 4.0. NOAA/NESDIS/OSPO, https://www.ospo.noaa.gov/Products/documents/GVF_ATBD_V4.0.pdf (last access: 2 February 2021), 2018.
Dong, X., Fu, J. S., Huang, K., Tong, D., and Zhuang, G.: Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia, Atmos. Chem. Phys., 16, 8157–8180, https://doi.org/10.5194/acp-16-8157-2016, 2016.
Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., Denn, F. M., Duprat, T., Fukuda, M., Grobe, H., Haeffelin, M., Hodges, G., Hyett, N., Ijima, O., Kallis, A., Knap, W., Kustov, V., Long, C. N., Longenecker, D., Lupi, A., Maturilli, M., Mimouni, M., Ntsangwane, L., Ogihara, H., Olano, X., Olefs, M., Omori, M., Passamani, L., Pereira, E. B., Schmithüsen, H., Schumacher, S., Sieger, R., Tamlyn, J., Vogt, R., Vuilleumier, L., Xia, X., Ohmura, A., and König-Langlo, G.: Baseline Surface Radiation Network (BSRN): structure and data description (1992–2017), Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, 2018.
Eder, B., Kang, D., Mathur, R., Yu, S., and Schere, K.: An operational
evaluation of the Eta-CMAQ air quality forecast
model, Atmos. Environ., 40, 4894–4905,
https://doi.org/10.1016/j.atmosenv.2005.12.062, 2006.
Eder, B., Kang, D., Mathur, R., Pleim, J., Yu, S., Otte, T., and Pouliot,
G.: A performance evaluation of the National Air Quality Forecast Capability
for the summer of 2007, Atmos. Environ., 43, 2312–2320,
https://doi.org/10.1016/j.atmosenv.2009.01.033, 2009.
Ek, M., Mitchell, B. K. E., Lin, Y., Rogers, E., Grunmann, P., Koren,
V., Gayno, G., and Tarpley, J. D.: Implementation of Noah land surface model advances in the National
Centers for Environmental Prediction operational mesoscale Eta model, J. Geophys. Res.,
108, 8851, https://doi.org/10.1029/2002JD003296, 2003.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance, J. Air Waste Manage. Assoc., 67, 582–598,
https://doi.org/10.1080/10962247.2016.1265027, 2017.
Finkelstein, M. M., Jerrett, M., DeLuca, P., Finkelstein, N., Verma, D. K.,
Chapman, K., and Sears, M. R.: Relation between income, air pollution and
mortality: A cohort study, Can. Med. Assoc. J., 169, 397-402, 2003.
Fu, X., Wang, S. X., Cheng, Z., Xing, J., Zhao, B., Wang, J. D., and Hao, J. M.: Source, transport and impacts of a heavy dust event in the Yangtze River Delta, China, in 2011, Atmos. Chem. Phys., 14, 1239–1254, https://doi.org/10.5194/acp-14-1239-2014, 2014.
Gantt, B., Kelly, J. T., and Bash, J. O.: Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2, Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, 2015.
Ginoux, P., Chin, M., Tegen, I., Prospero, J., Holben, B., Dubovik, O., and
Lin, S.-J.: Sources and global distributions of dust aerosols simulated with
the GOCART model, J. Geophys. Res., 106, 20255–20273, https://doi.org/10.1029/2000JD000053, 2001.
Grell, G. A., Dudhia, J., and Stauffer, D. R.: A description of the
fifth-generation Penn State/NCAR Mesoscale Model (MM5), NCAR tech. Note NCAR
TN-398-1-STR, 117 pp., https://doi.org/10.5065/D60Z716B, 1994.
Han, J. and Pan, H.-L.: Revision of Convection and Vertical Diffusion
Schemes in the NCEP Global Forecast System, Weather Forecast., 26, 520–533, https://doi.org/10.1175/WAF-D-10-05038.1, 2011.
Han, J. and Bretherton, C. S.: TKE-Based Moist Eddy-Diffusivity Mass-Flux
(EDMF) Parameterization for Vertical Turbulent Mixing, Weather Forecast., 34, 869–886,
https://doi.org/10.1175/WAF-D-17-0046.1, 2019.
Han, J., Wang, W., Kwon, Y. C., Hong, S.-Y., Tallapragada, V., and Yang,
F.: Updates in the NCEP GFS Cumulus Convection Schemes with Scale and
Aerosol Awareness, Weather Forecast., 32, 2005–2017,
https://doi.org/10.1175/WAF-D-17-0046.1, 2017.
Harris, L. M. and Lin, S.: A Two-Way Nested Global-Regional Dynamical Core on
the Cubed-Sphere Grid, Mon. Weather Rev., 141, 283–306,
https://doi.org/10.1175/MWR-D-11-00201.1, 2013.
Harris, L. M., Lin, S., and Tu, C.: High-Resolution Climate Simulations Using
GFDL HiRAM with a Stretched Global Grid, J. Climate, 29, 4293–4314,
https://doi.org/10.1175/JCLI-D-15-0389.1, 2016.
Huang, J. and McQueen, J.: Development and evaluation of offline
coupling of FV3-based GFS with CMAQ at NOAA, The 17th CMAS Conference,
22–24 October 2018, UNC-Chapel Hill, NC, 2018.
Huang, J., McQueen, J., Yang, B., Shafran, P., Huang, H.-C., Bhattacharjee,
P., Tang, Y., Campbell, P. C., Tong, D., Lee, P., Stajner, I., Kain, J. S., Tirado-Delgado, J., and Koch, D. M.: A comparison of global scale FV3 versus regional scale NAM
meteorological drivers for regional air quality forecastin, The 100th AGU
Fall Meeting, 9–13 December 2019, San Francisco, CA, 2019.
Huang, M., Tong, D., Lee, P., Pan, L., Tang, Y., Stajner, I., Pierce, R. B., McQueen, J., and Wang, J.: Toward enhanced capability for detecting and predicting dust events in the western United States: the Arizona case study, Atmos. Chem. Phys., 15, 12595–12610, https://doi.org/10.5194/acp-15-12595-2015, 2015.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. B.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103,
https://doi.org/10.1029/2008JD009944, 2008.
Institute of Medicine: Toward Environmental Justice: Research, Education,
and Health Policy Needs, Washington, DC, National Academy Press, https://doi.org/10.17226/6034, 1999.
Janjic, Z. and Gall, R. L.: Scientific documentation of the NCEP
nonhydrostatic multiscale model on the B grid (NMMB), Part 1 Dynamics (No.
NCAR/TN-489+STR), University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6WH2MZX, 2012.
Jimenez, P. A., Dudhia, J., Gonzalez-Rouco, J. F., Navarro, J., Montavez, J.
P., and Garcia-Bustamante, E.: A revised scheme for the WRF surface layer
formulation, Mon. Weather Rev., 140, 898–918,
https://doi.org/10.1175/MWR-D-11-00056.1, 2012.
Kang, D., Eder, B. K., Stein, A. F., Grell, G. A., Peckham, S. E., and
McHenry, J.: The New England Air Quality Forecasting Pilot Program:
Development of an Evaluation Protocol and Performance Benchmark, J. Air Waste Manage. Assoc., 55,
1782–1796, https://doi.org/10.1080/10473289.2005.10464775,
2005.
Karamchandani, P., Long, Y., Pirovano, G., Balzarini, A., and Yarwood, G.: Source-sector contributions to European ozone and fine PM in 2010 using AQMEII modeling data, Atmos. Chem. Phys., 17, 5643–5664, https://doi.org/10.5194/acp-17-5643-2017, 2017.
Kar Kurt, O., Zhang, J., and Pinkerton, K. E.: Pulmonary Health Effects of
Air Pollution, Curr. Opin. Pulm. Med., 22, 138–143,
https://doi.org/10.1097/MCP.0000000000000248, 2016.
Kelly, J. T., Bhave, P. V., Nolte, C. G., Shankar, U., and Foley, K. M.: Simulating emission and chemical evolution of coarse sea-salt particles in the Community Multiscale Air Quality (CMAQ) model, Geosci. Model Dev., 3, 257–273, https://doi.org/10.5194/gmd-3-257-2010, 2010.
Kim, Y., Sartelet, K., and Seigneur, C.: Formation of secondary aerosols over Europe: comparison of two gas-phase chemical mechanisms, Atmos. Chem. Phys., 11, 583–598, https://doi.org/10.5194/acp-11-583-2011, 2011a.
Kim, Y., Couvidat, F., Sartelet, K., and Seigneur, C.: Comparison of
different gas phase mechanisms and aerosol modules for simulating
particulate matter
formation, J. Air Waste Manage., 61, 1218e1226,
https://doi.org/10.1080/10473289.2011.603999, 2011b.
Krueger, S. K., Fu, Q., Liou, K. N., and Chin, H.-N. S.: Improvement of an
ice-phase microphysics parameterization for use in numerical simulations of
tropical convection, J. Appl. Meteorol., 34, 281–287, https://doi.org/10.1175/1520-0450-34.1.281, 1995.
Landrigan, P. J., Fuller, R., Acosta, N. J., Adeyi, O., Arnold, R.,
Basu, N., Bibi Balde, A., Bertollini, R. Bose-O'Reilly, S., Boufford, J. I.., Breysse, P. N., Chiles, T., Mahidol, C., Coll-Seck, A. M., Cropper, M. L., Fobil, J., Fuster, V., Greenstone, M., Haines, A., Hanrahan, D., Hunter, D., Khare, M., Krupnick, A., Lanphear, B., Lohani, B., Martin, K., Mathiasen, K., McTeer, M. A., Murray, C. J. L., Ndahimananjara, J. D., Perera, F., Potocnik, J., Preker, A. S., Ramesh, J., Rockstrom, J., Salinas, C., Samson, L. D., Sandilya, K., Sly, P. D., Smith, K. R., Steiner, A., Stewart, R. B., Suk, W. A., van Schayck, O. C. P., Yadama, G. N., Yumkella, K., and Zhong, M.: The Lancet Commission on pollution and health, Lancet, 391, 462–512,
https://doi.org/10.1016/S0140-6736(17)32345-0, 2018.
Lee, B.-J., Kim, B., and Lee, K.: Air Pollution Exposure and Cardiovascular
Disease, Toxicol Res.-UK, 30, 71–75, https://doi.org/10.5487/TR.2014.30.2.071, 2014.
Lee, P., McQueen, J., Stajner, I., Huang, J., Pan, L., Tong, D., Kim, H., Tang, Y., Kondragunta, S., Ruminski, M., Lu, S., Rogers, E., Saylor, R., Shafran, P., Huang, H.-C., Gorline, J., Upadhayay, S., and Artz, R.:
NAQFC Developmental Forecast Guidance for Fine Particulate Matter (PM2.5),
Weather Forecast., 32, 343–360, https://doi.org/10.1175/waf-d-15-0163.1,
2017.
Lin, S.: A “Vertically Lagrangian” Finite-Volume Dynamical Core for
Global Models, Mon. Weather Rev., 132, 2293–2307,
https://doi.org/10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2, 2004.
Lin, S. and Rood, R. B.: Multidimensional Flux-Form Semi-Lagrangian
Transport Schemes, Mon. Weather Rev., 124, 2046–2070,
https://doi.org/10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2, 1996.
Lin, S., Chao, W. C., Sud, Y. C., and Walker, G. K.: A Class of the van
Leer-type Transport Schemes and Its Application to the Moisture Transport in
a General Circulation Model, Mon. Weather Rev., 122, 1575–1593,
https://doi.org/10.1175/1520-0493(1994)122<1575:ACOTVL>2.0.CO;2, 1994.
Lin, Y.-L., Farley, R. D., and Orville, H. D.: Bulk parameterization of the
snow field in a cloud model, J. Clim. Appl. Meteorol., 22, 1065–1092, https://doi.org/10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2, 1983.
Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 – Part 1: The complex and varying roles of meteorology, Atmos. Chem. Phys., 20, 6305–6321, https://doi.org/10.5194/acp-20-6305-2020, 2020.
Lord, S. J., Willoughby, H. E., and Piotrowicz, J. M.: Role of a
parameterized ice-phase microphysics in an axisymmetric, nonhydrostatic
tropical cyclone model, J. Atmos. Sci., 41, 2836–2848,
https://doi.org/10.1175/1520-0469(1984)041<2836:ROAPIP>2.0.CO;2, 1984.
Makar, P. A., Staebler, R., Akingunola, A., Zhang, J., McLinden, C.,
Kharol, S. K., Pabla, B., Cheung, P., and Zheng, Q.: The effects of forest canopy shading and turbulence on
boundary layer ozone, Nat Commun., 8, 15243,
https://doi.org/10.1038/ncomms15243, 2017.
Makar, P. A., Stroud, C., Akingunola, A., Zhang, J., Ren, S., Cheung, P., and Zheng, Q.: Vehicle-induced turbulence and atmospheric pollution, Atmos. Chem. Phys., 21, 12291–12316, https://doi.org/10.5194/acp-21-12291-2021, 2021.
Marlier, M. E., Jina, A. S., Kinney, P. L., and DeFries, R. S.: Extreme Air
Pollution in Global Megacities, Curr Clim Change Rep., 2, 15–27, https://doi.org/10.1007/s40641-016-0032-z, 2016.
Martin, R. L. and Good, T. W.: Catalyzed oxidation of sulfur dioxide in
solution: the iron-manganese synergism, Atmos. Environ., 25A, 2395–2399, https://doi.org/10.1016/0960-1686(91)90113-L, 1991.
Massad, R.-S., Nemitz, E., and Sutton, M. A.: Review and parameterisation of bi-directional ammonia exchange between vegetation and the atmosphere, Atmos. Chem. Phys., 10, 10359–10386, https://doi.org/10.5194/acp-10-10359-2010, 2010.
Mathur, R., Yu, S., Kang, D., and Schere, K. L.: Assessment of the
wintertime performance of developmental particulate matter forecasts with
the Eta-Community Multiscale Air Quality modeling system, J. Geophys. Res., 113, D02303,
https://doi.org/10.1029/2007JD008580, 2008.
Matthias, V., Arndt, J. A., Aulinger, A., Bieser, J., Denier
van der Gon, H., Kranenburg, R., Kuenen, J., Neumann, D., Pouliot, G., and Quante, M.: Modeling emissions for three-dimensional
atmospheric chemistry transport models, J. Air Waste Manage., 68, 763–800, https://doi.org/10.1080/10962247.2018.1424057, 2018.
McKeen, S., Wilczak, J., Grell, G., Djalova, I., Peckham, S.,
Hsie, E.-Y., Gong, W., Bouchet, V., Menard, S., Moffet, R., McHenry, J., McQueen, J., Tang, Y., Carmichael, G. R., Pagowski, M., Chan, A., Dye, T., Frost, G., Lee, P., and Mathur, R.: Assessment of an ensemble of seven real-time ozone forecasts over
eastern North America during the summer of 2004, J. Geophys. Res., 110, D21307,
https://doi.org/10.1029/2005JD005858, 2005.
McKeen, S., Chung, S. H., Wilczak, J., Grell, G., Djalalova,
I., Peckham, S., Gong, W., Bouchet, V., Moffet, R., Tang, Y., Carmichael, G. R., Mathur, R., and Yu, S.: Evaluation of several PM2.5 forecast models
using data collected during the
ICARTT/NEAQS 2004 field study, J. Geophys. Res., 112, D10S20,
https://doi.org/10.1029/2006JD007608, 2007.
McKeen, S., Grell, G., Peckham, S., Wilczak, J., Djalalova,
I., Hsie, E., Frost, G., Peischl, J., Schwartz, J., Spackman, R., Holloway, J., de Gouw, J., Warneke, C., Gong, W., Bouchet, V., Gaudreault, S., Racine, J., McHenry, J., McQueen, J., Lee, P., Tang, Y., Carmichael, G. R., and Mathur, R.: An evaluation of real-time air quality forecasts and their urban
emissions over eastern Texas during the summer of 2006 Second Texas Air
Quality Study field study, J. Geophys. Res., 114, D00F11,
https://doi.org/10.1029/2008JD011697, 2009.
Miller, J., Safford, H., Crimmins, M., and Thode, A.: Quantitative evidence
for increasing forest fire severity in the Sierra Nevada and Southern
Cascade Mountains, California and Nevada, USA, Ecosystems, 12, 16–32,
https://doi.org/10.1007/s10021-008-9201-9, 2009.
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S.
A.: Radiative transfer for inhomogeneous atmosphere: RTTM, a validated
correlated-k model for the longwave, J. Geophys. Res., 102, 16663–16682,
https://doi.org/10.1029/97JD00237, 1997.
Monin, A. S. and Obukhov, A. M.: Basic laws of turbulent mixing in the
surface layer of the atmosphere, Tr. Akad. Nauk SSSR Geophiz. Inst., 24, 163–187, 1954 (in Russian).
Myneni, R. and Knyazikhin, Y.: VIIRS/NPP Leaf Area Index/FPAR 8-Day L4
Global 500m SIN Grid V001, NASA EOSDIS Land Processes DAAC [data set],
https://doi.org/10.5067/VIIRS/VNP15A2H.001, 2018.
National Emissions Inventory (NEIC): NEI 2014v2 Emissions, U.S. EPA Repository [data set],
https://edap.epa.gov/public/extensions/nei_report_2014/dashboard.html#sector-db (last access: 26 February 2020), 2014.
National Emissions Inventory Collaborative (NEI): 2016v1 Emissions
Modeling Platform [data set], http://views.cira.colostate.edu/wiki/wiki/10202 (last access: 5 April 2022), 2019.
Nemitz, E., Sutton, M. A., Schjoerring, J. K., Husted, S., and Wyers, G. P.:
Resistance modelling of ammonia exchange over oilseed rape, Agr. Forest Meteorol., 105,
405–425, https://doi.org/10.1016/S0168-1923(00)00206-9, 2000.
Niinemets, Ü., Arneth, A., Kuhn, U., Monson, R. K., Peñuelas, J., and Staudt, M.: The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses, Biogeosciences, 7, 2203–2223, https://doi.org/10.5194/bg-7-2203-2010, 2010.
NOAA/NWS: Global Forecast System (GFS) Version 16 [data set], https://www.nco.ncep.noaa.gov/pmb/products/gfs/, last access: 5 April 2022a.
NOAA/NWS: Air Quality Forecast Guidance – Operational [data set], https://airquality.weather.gov/, last access: 5 April 2022b.
NOAA/NWS: Air Quality Forecast Guidance – Experimental [data set], https://digital.mdl.nws.noaa.gov/airquality/, last access: 5 April 2022c.
NOAA/NWS: Operational CMAQ Verification – Experimental [data set], https://www.emc.ncep.noaa.gov/mmb/aq/verification_diagnostics/cmaq_verf/ last access: 5 April 2022d.
O’Neill, M. S., Jerrett, M., Kawachi, I., Levy, J. I., Cohen, A. J.,
Gouveia, N., Wilkinson, P., Fletcher, T., Cifuentes, L., and Schwartz, J.: Health, wealth, and air pollution: Advancing theory and methods,
Environ. Health Persp., 111, 1861–1870, https://doi.org/10.1289/ehp.6334, 2003.
Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ modeling system: updates through MCIPv3.4.1, Geosci. Model Dev., 3, 243–256, https://doi.org/10.5194/gmd-3-243-2010, 2010.
Otte, T. L., Pouliot, G., Pleim, J. E., Young, J. O., Schere, K. L.,
Wong, D. C., Lee, P., Tsidulko, M., McQueen, J., Davidson, P., Mathur, R., Chuang, H.-Y., DiMego, G., and Seaman, N. L.: Linking the Eta Model with the Community Multiscale Air
Quality (CMAQ) Modeling System to Build a National Air Quality Forecasting
System, Weather Forecast., 20, 367–384,
https://doi.org/10.1175/WAF855.1, 2005.
Pinder, R. W., Dennis, R. L., and Bhave, P. V.: Observable indicators of the
sensitivity of PM2.5 nitrate to emission reductions: part I. Derivation of
the adjusted gas
ratio and applicability at regulatory-relevant time scales, Atmos. Environ., 42,
1275e1286, https://doi.org/10.1016/j.atmosenv.2007.10.039,
2008.
Pleim, J. and Ran, L.: Surface flux modeling for air quality applications,
Atmosphere, 2, 271–302, https://doi.org/10.3390/atmos2030271, 2011.
Pleim, J. E.: A combined local and nonlocal closure model for the
atmospheric boundary layer. Part I: Model description and testing, J. Appl. Meteor. Climatol., 46,
1383–1395, https://doi.org/10.1175/JAM2539.1, 2007a.
Pleim, J. E.: A combined local and nonlocal closure model for the
atmospheric boundary layer. Part II: Application and evaluation in a
mesoscale meteorological model, J. Appl. Meteorol. Clim., 46, 1396–1409,
https://doi.org/10.1175/JAM2534.1, 2007b.
Pleim, J. E., Bash, J. O., Walker, J. T., and Cooter, E. J.: Development and
evaluation of an ammonia bidirectional flux parameterization for air quality
models, J. Geophys. Res.-Atmos., 118, 3794–3806, https://doi.org/10.1002/jgrd.50262,
2013.
Pleim, J. E., Ran, L., Appel, W., Shephard, M. W., and Cady-Pereira, K.: New
bidirectional ammonia flux model in an air quality model coupled with an
agricultural model, J. Adv. Model. Earth Sy., 11, 2934–2957,
https://doi.org/10.1029/2019MS001728, 2019.
Powers, J. G., Klemp, J. B., Skamarock, W. C., Davis, C.
A., Dudhia, J., Gill, D. O., Coen, J. L., Gochis, D. J., Ahmadov, R., Peckham, S. E., Grell, G. A., Michalakes, J., Trahan, S., Benjamin, S. G., Alexander, C. R., Dimego, G. J., Wang, W., Schwartz, C. S., Romine, G. S., Liu, Z., Snyder, C., Chen, F., Barlarge, M., Yu, M., and Duda, M.: The weather research and forecasting model: Overview,
system efforts, and future directions, B. Am. Meteorol. Soc., 98, 1717–1737,
https://doi.org/10.1175/BAMS-D-15-00308.1, 2017.
Putman, W. M. and Lin, S.-J.: Finite-volume transport on various
cubed-sphere grids, J. Comput. Phys., 227, 55–78,
https://doi.org/10.1016/j.jcp.2007.07.022, 2007.
Pye, H. O. T., Pinder, R. W., Piletic, I., Xie, Y., Capps,
S. L., Lin, Y.-H., Surratt, J. D., Zhang, Z., Gold, A., Luecken, D. J., Hutzell, W. T., Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Lewandowski, M., and Edney, E. O.: Epoxide pathways improve model predictions of isoprene markers and
reveal key role of acidity in aerosol formation, Environ. Sci. Technol., 47, 11056–11064,
https://doi.org/10.1021/es402106h, 2013.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol liquid water and phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, 2017.
Ran, L., Cooter, E., Benson, V., and He, Q.: Development of an agricultural
fertilizer modeling system for bi-directional ammonia fluxes in the CMAQ
model, edited by: Steyn, D. G. and Castelli, S. T., Air Pollution Modeling
and its Application XXI, Chapter 36, Dordrecht, Springer,
213–219, https://doi.org/10.1007/978-94-007-1359-8_36, 2011.
Ran, L., Pleim, J., Gilliam, R., Binkowski, F. S., Hogrefe, C., and Band,
L.: Improved meteorology from an updated WRF/CMAQ modeling system with MODIS
vegetation and albedo, J. Geophys. Res.-Atmos., 121, 2393–2415, https://doi.org/10.1002/2015JD024406, 2016.
Rogers, E., Black, T., Deaven, D., DiMego, G., Zhao,
Q., Baldwin, M., Junker, N. W., and Lin, Y.:
Changes to the operational “early” Eta Analysis/Forecast System at the
National Centers for Environmental Prediction, Weather Forecast., 11 391–413, https://doi.org/10.1175/1520-0434(1996)011<0391:CTTOEA>2.0.CO;2, 1996.
Sarwar, G., Fahey, K., Napelenok, S., Roselle, S., and Mathur, R.: Examining
the impact of CMAQ model updates on aerosol sulfate predictions, The 10th
Annual CMAS Models-3 User's Conference, 24–26 October 2011, Chapel Hill, NC, 2011.
Sarwar, G., Gantt, B., Foley, K., Fahey, K., Spero, T. L., Kang, D., Mathur, R., Foroutan, H., Xing, J., Sherwen, T., and Saiz-Lopez, A.:
Influence of bromine and iodine chemistry on annual, seasonal, diurnal, and
background ozone: CMAQ simulations over the Northern Hemisphere, Atmos. Environ., 213,
395–404, https://doi.org/10.1016/j.atmosenv.2019.06.020, 2019.
Schwede, D., Pouliot, G. A., and Pierce, T.: Changes to the Biogenic
Emissions Inventory System Version 3 (BEIS3), in: Proceedings of the 4th CMAS
Models-3 Users' Conference, 26–28 September 2005, Chapel Hill, NC, 2005.
Sillman, S.: The use of NOy, H2O2, and HNO3 as indicators for
ozone-NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res.-Atmos., 100, 14175–14188,
https://doi.org/10.1029/94JD02953, 1995.
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.
Sillman, S., Logan, J. A., and Wofsy, S. C.: The sensitivity of ozone to
nitrogen oxides and hydrocarbons in regional ozone episodes, J. Geophys. Res., 95,
1837–1852, https://doi.org/10.1029/JD095iD02p01837, 1990.
Skamarock, W. C. and Klemp, J. B.: A time-split nonhydrostatic atmospheric
model for weather research and forecasting applications, J. Computat. Phys., 227,
3465–3485, https://doi.org/10.1016/j.jcp.2007.01.037, 2008.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner,
J., and Huang, X.: A Description of the Advanced Research WRF Model Version
4 (No. NCAR/TN-556+STR), https://doi.org/10.5065/1dfh-6p97,
2019.
Sofiev, M., Ermakova, T., and Vankevich, R.: Evaluation of the smoke-injection height from wild-land fires using remote-sensing data, Atmos. Chem. Phys., 12, 1995–2006, https://doi.org/10.5194/acp-12-1995-2012, 2012.
Stajner, I., Davidson, P., Byun, D., McQueen, J., Draxler, R., Dickerson,
P., and Meagher, J.: US National Air Quality Forecast Capability: Expanding
Coverage to Include Particulate Matter, Springer, Dordrecht,
379–384, https://doi.org/10.1007/978-94-007-1359-8_64,
2011.
Sun, J., Fu, J. S., Huang, K., and Gao, Y.: Estimation of future PM2.5- and
ozone-related mortality over the continental United States in a changing
climate: An application of high-resolution dynamical downscaling technique,
J. Air Waste Manage., 65, 611–623, https://doi.org/10.1080/10962247.2015.1033068,
2015.
Tang, Y., Lee, P., Tsidulko, M., Huang, H.-C., Mcqueen, J., DiMego, G. J., Emmons, L. K., Pierce, R. B., Thompson, A. M., Lin, H.-M., Kang, D., Tong, D., Yu, S., Mathur, R., Pleim, J. E., Otte, T. L., Pouliot, G., Young, J. O., Schere, K. L., Davidson, P. M., and Stajner, I.:
The impact of chemical lateral boundary conditions on CMAQ predictions of
tropospheric ozone over the continental United States, Environ. Fluid Mech., 9, 43–58,
https://doi.org/10.1007/s10652-008-9092-5, 2009.
Tang, Y., Chai, T., Pan, L., Lee, P., Tong, D., Kim, H.-C., and Chen, W.: Using
optimal interpolation to assimilate surface measurements and satellite AOD
for ozone and PM2.5: A case study for July 2011, J. Air Waste Manage., 65, 1206–1216,
https://doi.org/10.1080/10962247.2015.1062439, 2015.
Tang, Y., Bian, H., Tao, Z., Oman, L. D., Tong, D., Lee, P., Campbell, P. C., Baker, B., Lu, C.-H., Pan, L., Wang, J., McQueen, J., and Stajner, I.: Comparison of chemical lateral boundary conditions for air quality predictions over the contiguous United States during pollutant intrusion events, Atmos. Chem. Phys., 21, 2527–2550, https://doi.org/10.5194/acp-21-2527-2021, 2021.
Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J., and Cuenca, R. H.:
Implementation and verification of the unified NOAH land surface model in
the WRF model, 20th Conference on Weather Analysis
and Forecasting/16th Conference on Numerical Weather Prediction,
Seattle, WA, 14 January 2004, https://ams.confex.com/ams/84Annual/techprogram/paper_69061.htm (last access: 6 April 2022) 2004.
Tong, D. Q., Lee, P., and Saylor, R. D.: New Direction: The need to develop
process-based emission forecasting models, Atmos. Environ., 47, 560–561,
https://doi.org/10.1016/j.atmosenv.2011.10.070, 2012.
Tong, D. Q., Wang, J. X. L., Gill, T. E., Lei, H., and Wang, B.: Intensified
dust storm activity and Valley fever infection in the southwestern United
States, Geophys. Res. Lett., 44, 4304–4312,
https://doi.org/10.1002/2017GL073524, 2017.
Troen, I. and Mahrt, L.: A simple model of the atmospheric boundary layer:
Sensitivity to surface evaporation, Bound.-Lay. Meteorol., 37, 129–148,
https://doi.org/10.1007/BF00122760, 1986.
US EPA Office of Research and Development: CMAQv5.0.2 (Version 5.0.2),
Zenodo [data set], https://doi.org/10.5281/zenodo.1079898, 2014.
US EPA Office of Research and Development: CMAQ (Version 5.3.1), Zenodo [data set],
https://doi.org/10.5281/zenodo.3585898, 2019.
Vukovich, J. M. and Pierce, T.: The Implementation of BEIS3 within the SMOKE
modeling framework, Environ. Sci., 2002.
Weiss, A. and Norman, J.: Partitioning solar radiation into direct and
diffuse, visible and nearinfrared components, Agr. Forest Meteorol., 34, 205–213,
https://doi.org/10.1016/0168-1923(85)90020-6, 1985.
Westerling A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming and
earlier spring increase western US forest wildfire activity, Science, 313, 940–943,
https://doi.org/10.1126/science.1128834, 2006.
Wilkins, J., Pouliot, G., Pierce, T., and Beidler, J.: Exploring the
Vertical Distribution of Wildland Fire Smoke in CMAQ, 2019 International
Emissions Inventory Conference, 28 July–2 August 2019, Dallas, Texas,
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=346294 (last access: 6 April 2022), 2019.
Williams, A. P., Cook, E. R., Smerdon, J. E., Cook, B. I.,
Abatzoglou, J. T., Bolles, K., Baek, S. H., Badger, A. M., and Livneh, B.: Large contribution from anthropogenic warming to an
emerging North American megadrought, Science, 368, 314–318,
https://doi.org/10.1126/science.aaz9600, 2020.
Williams, J. R.: The EPIC model, in: Computer models in
watershed hydrology, edited by: Singh, V. P., Chapter 25, 909–1000, Littleton, CO, Water
Resources Publications, ISBN-13 978-0-918334-91-6, 1995.
World Health Organization (WHO): Air Quality Guidelines, Global update 2005,
Particulate matter, ozone, nitrogen dioxide and sulfur dioxide, ISBN 92-890-2192-6, 2006.
World Health Organization (WHO): WHO Guidelines for Indoor Air Quality:
Selected Pollutants, World Health Organization, Regional Office for Europe
Scherfigsvej 8, 2100 Copenhagen, Denmark, ISBN 9789289002134, 2010.
Yang, F., Tallapragada, V., Kain, J. S., Wei, H., Yang, R., Yudin,
V. A., Moorthi, S., Han, J., Hou, Y. T., Wang, J., Treadon, R., and Kleist, D. T.: Model Upgrade Plan and Initial Results from a Prototype NCEP Global
Forecast System Version 16, 2020 AMS Conference, Boston, MA, 15 January 2020,
https://ams.confex.com/ams/2020Annual/webprogram/Paper362797.html (last access: 6 April 2022), 2020.
Yarwood, G., Whitten, G. Z., and Jung, J.: Final Report. Development,
Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism
(CB6), 22 September 2010, ENVIRON International Corporation, 06-17477Y,
https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/5820784005FY1026-20100922-environ-cb6.pdf (last access: 6 April 2022), 2010.
Zeka A., Zanobetti, A., and Schwartz, J.: Short term effects of particulate
matter on cause specific mortality: effects of lags and modification by city
characteristics, Occup. Environ. Med., 62, 718–725,
https://doi.org/10.1136/oem.2004.017012, 2006.
Zhang, X., Kondragunta, S., Ram, J., Schmidt, C., and Huang, H.-C.:
Near-real-time global biomass burning emissions product from geostationary
satellite constellation, J. Geophys. Res.-Atmos., 117, D14201,
https://doi.org/10.1029/2012JD017459, 2012.
Zhang, X., Kondragunta, S., and Roy, D. P.: Interannual variation in biomass
burning and fire seasonality derived from geostationary satellite data
across the contiguous United States from 1995 to 2011, J. Geophys. Res.-Biogeo., 119, 1147–1162,
https://doi.org/10.1002/2013JG002518, 2014.
Zhang, Y., Vijayaraghavan, K., Wen, X.-Y., Snell, H. E., and Jacobson, M. Z.:
Probing into regional ozone and particulate matter pollution in the United
States: 1. A 1
year CMAQ simulation and evaluation using surface and satellite data,
J. Geophys. Res., 114, D22304, https://doi.org/10.1029/2009JD011898, 2009a.
Zhang, Y., Wen, X.-Y., Wang, K., Vijayaraghavan, K., and Jacobson, M. Z.:
Probing
into regional ozone and particulate matter pollution in the United States:
2. An
examination of formation mechanisms through a process analysis technique
and sensitivity study, J. Geophys. Res., 114, D22304, https://doi.org/10.1029/2009JD011898, 2009b.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part I: History, techniques, and current
status, Atmos. Environ., 60, 632–655,
https://doi.org/10.1016/j.atmosenv.2012.06.031, 2012a.
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., and Baklanov, A.:
Real-time air quality forecasting, part II: State of the science, current
research needs, and future prospects, Atmos. Environ., 60, 656–676, https://doi.org/10.1016/j.atmosenv.2012.02.041, 2012b.
Zhang, Y., West, J. J., Mathur, R., Xing, J., Hogrefe, C., Roselle, S. J., Bash, J. O., Pleim, J. E., Gan, C.-M., and Wong, D. C.: Long-term trends in the ambient PM2.5- and O3-related mortality burdens in the United States under emission reductions from 1990 to 2010, Atmos. Chem. Phys., 18, 15003–15016, https://doi.org/10.5194/acp-18-15003-2018, 2018.
Zhao, H., Zheng, Y., and Li, T.: Air Quality and Control Measures Evaluation
during the 2014 Youth Olympic Games in Nanjing and its Surrounding Cities,
Atmosphere, 8, 8060100, https://doi.org/10.3390/atmos8060100, 2017.
Zhou, L., Lin, S., Chen, J., Harris, L. M., Chen, X., and Rees, S. L.:
Toward Convective-Scale Prediction within the Next Generation Global
Prediction System, B. Am. Meteorol. Soc., 100, 1225–1243, https://doi.org/10.1175/BAMS-D-17-0246.1, 2019.
Zhou, T., Sun, J., and Yu, H.: Temporal and Spatial Patterns of China's Main
Air Pollutants: Years 2014 and 2015, Atmosphere, 8, 8080137,
https://doi.org/10.3390/atmos8080137, 2017.
Short summary
NOAA's National Air Quality Forecast Capability (NAQFC) continues to protect Americans from the harmful effects of air pollution, while saving billions of dollars per year. Here we describe and evaluate the development of the most advanced version of the NAQFC to date, which became operational at NOAA on 20 July 2021. The new NAQFC is based on a coupling of NOAA's operational Global Forecast System (GFS) version 16 with the Community Multiscale Air Quality (CMAQ) model version 5.3.1.
NOAA's National Air Quality Forecast Capability (NAQFC) continues to protect Americans from the...