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Abstract. A new dynamical core, known as the Finite-
Volume Cubed-Sphere (FV3) and developed at both NASA
and NOAA, is used in NOAA’s Global Forecast System
(GFS) and in limited-area models for regional weather
and air quality applications. NOAA has also upgraded the
operational FV3GFS to version 16 (GFSv16), which in-
cludes a number of significant developmental advances to
the model configuration, data assimilation, and underly-
ing model physics, particularly for atmospheric composi-
tion to weather feedback. Concurrent with the GFSv16 up-
grade, we couple the GFSv16 with the Community Mul-
tiscale Air Quality (CMAQ) model to form an advanced
version of the National Air Quality Forecasting Capability
(NAQFC) that will continue to protect human and ecosystem
health in the US. Here we describe the development of the
FV3GFSv16 coupling with a “state-of-the-science” CMAQ
model version 5.3.1. The GFS–CMAQ coupling is made pos-
sible by the seminal version of the NOAA-EPA Atmosphere–
Chemistry Coupler (NACC), which became a major piece of
the next operational NAQFC system (i.e., NACC-CMAQ) on
20 July 2021. NACC-CMAQ has a number of scientific ad-
vancements that include satellite-based data acquisition tech-

nology to improve land cover and soil characteristics and
inline wildfire smoke and dust predictions that are vital to
predictions of fine particulate matter (PM2.5) concentrations
during hazardous events affecting society, ecosystems, and
human health. The GFS-driven NACC-CMAQ model has
significantly different meteorological and chemical predic-
tions compared to the previous operational NAQFC, where
evaluation of NACC-CMAQ shows generally improved near-
surface ozone and PM2.5 predictions and diurnal patterns,
both of which are extended to a 72 h (3 d) forecast with this
system.

1 Introduction

Air quality is defined as the degree to which the ambient air is
free of pollutants – which are either directly emitted into the
atmosphere (primary air pollutants) or formed within the at-
mosphere itself (secondary air pollutants) – that cause degra-
dation to human health, visibility, and/or ecological systems
(WHO, 2006). Air quality is as ubiquitous and important as
weather impacts, where outdoor air pollution is globally re-
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sponsible for ∼ 4.2 million early deaths each year (https://
www.who.int/health-topics/air-pollution#tab=tab_1, last ac-
cess: 5 April 2022). To put this into perspective, this is over
3 times the number of people who die from HIV/AIDS and
over 8 times the number of homicides each year (2017 Global
Burden of Disease Study: https://www.thelancet.com/gbd,
last access: 5 April 2022). Air pollution is costly and leads to
huge economic damage (Landrigan et al., 2018). There are
also disproportionate impacts of air pollution across poorer
people and some racial and ethnic groups, who are among
those who often face higher exposure and potential responses
to pollutants (Institute of Medicine, 1999; American Lung
Association, 2001; O’Neil et al., 2003; Finkelstein et al.,
2003; Zeka et al., 2006).

Air pollutants are composed of both gaseous and partic-
ulate species, which under prolonged exposure can cause
non-carcinogenic (Lee et al., 2014) and/or carcinogenic ad-
verse health effects (Demetirou and Vineis, 2015). High
ground-level ozone (O3) concentrations (i.e., smog), for ex-
ample, can lead to decreased lung function and cause respi-
ratory symptoms. These symptoms are particularly danger-
ous for sensitive groups such as young children, the elderly,
and those with preexisting conditions that include asthma,
chronic obstructive pulmonary disease (COPD), lung cancer,
and respiratory infection (Kar Kurt et al., 2016).

To protect against the health and environmental impacts
of air pollution, world agencies have developed regulations
and standards on the allowable amount of primary and sec-
ondary air pollution measured at different spatiotemporal
scales (e.g., seconds to months and local to global scales),
which largely depend on the atmospheric lifetime of specific
air components (WHO, 2005, 2010). Typically, the world’s
most extreme air pollution occurs near global megacities
where population density is highest (Marlier et al., 2016).
Rapid economic growth in China, for example, has led to ex-
tremely high air pollution levels over the past decade (Zhou
et al., 2017; Liu and Wang, 2020), necessitating significant
efforts to implement air pollution prevention and control
plans (Chinese State Council, 2013; Zhao et al., 2017). The
US Environmental Protection Agency (EPA) defines ambi-
ent concentration limits for primary pollutants such as sulfur
dioxide (SO2), oxides of nitrogen (NOx=NO+NO2), car-
bon monoxide (CO), lead (Pb), and total (carbonaceous and
non-carbonaceous) particulate matter (PM). Other important
primary pollutants include total volatile organic compounds
(VOCs), which have many sources (both natural and anthro-
pogenic) and serve as vital precursor gases to secondary pol-
lutants such as ground-level O3 and the formation of fine
particulate matter with an aerodynamic diameter of less than
2.5 µm (PM2.5). Ground-level O3 and PM2.5 are two of the
six US EPA “criteria pollutants” that are regulated for their
concentrations, exposure level, and health impacts. This is
largely because there is a relatively mature understanding of
their sources, formation, and characteristics (e.g., Sillman et
al., 1990; Sillman, 1995, 1999; Pinder et al., 2008; Kim et

al., 2011a, b; Zhang et al., 2009a, b; Campbell et al., 2015;
Karamchandani et al., 2017). There is also a widespread abil-
ity to compare observed and simulated ambient ozone con-
centrations over both short-term (McKeen et al., 2005, 2007,
2009) and dynamic long-term periods (e.g., Astitha et al.,
2017), which has helped lead to an understanding of their
well-attributable health impacts (e.g., WHO, 2006; Sun et al.,
2015; Zhang et al., 2018).

To address prolific air pollution concerns in the US dur-
ing the 1950s–1960s, the first development and application
of real-time air quality forecast (RT-AQF) models began in
the 1970s–1980s (i.e., the first- and second-generation air
quality models) coincident with the establishment of the US
EPA by President Nixon. Initially the models were based
on empirical approaches and statistical models (Zhang et
al., 2012a); however, by the 1990s and early 2000s, RT-
AQF models underwent a significant evolution and evolved
to more complex 3-D numerical air quality models (third-
and fourth-generation air quality models). These RT-AQF
models involved more sophisticated techniques, including in-
creasingly complex parameterizations and chemistry, bias-
correction methods and data fusion, chemical data assimi-
lation, and hybrid statistical or numerical methods with ar-
tificial intelligence and machine learning algorithms to im-
prove RT-AQF model efficiency and predictions (Zhang et
al., 2012b; Bai et al., 2018). RT-AQF models have become
vital tools to improve our understanding and prediction of
how air pollutants form, disperse, and deposit to the surface
and are used by local health and air managers to assess the air
quality conditions to make informed decisions on mitigation
measures to reduce public exposure.

To address the nation’s need for reducing the adverse
health effects of air pollution and associated costly medical
expenses, in 2002 Congress addressed the National Oceanic
and Atmospheric Administration (NOAA) to provide Na-
tional AQF guidance (H.R. Energy Policy Act of 2002 –
Senate Amendment S. 517, SA1383, Forecasts and Warn-
ings). A joint project emerged from this amendment be-
tween NOAA and the EPA to develop and establish the
initial phase of a RT-AQF system, which consisted of the
coupled NOAA’s ETA meteorological model (Black, 1994;
Rogers et al., 1996) with EPA’s Models-3 Community Mul-
tiscale Air Quality (CMAQ) model (Byun and Ching, 1999;
Byun and Schere, 2006). This “offline-coupled” model pro-
vided O3 forecast guidance for the northeastern US states
(Kang et al., 2005; Otte et al., 2005; Eder et al., 2006)
and formed the early version of the National Air Qual-
ity Forecasting Capability (NAQFC) that was first imple-
mented for operations in September 2004 (https://www.
weather.gov/sti/stimodeling_airquality_predictions, last ac-
cess: 5 April 2022). The NAQFC was further developed at
NOAA and collaborating laboratories (Mathur et al., 2008;
McKeen et al., 2005, 2007, 2009) and was comprehensively
evaluated in Eder et al. (2009). The NAQFC has been con-
tinuously advanced to provide both O3 and PM2.5 forecast
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guidance for the entire conterminous US (CONUS), has ex-
panded its predictions to both Alaska and Hawaii, and has
provided pivotal air quality forecast guidance to a multitude
of stakeholders to help protect human health and the envi-
ronment (Stajner et al., 2011; Lee et al., 2017; Huang et al.,
2017). Prior to the advanced version described in this pa-
per, the NAQFC used the offline-coupled North American
Mesoscale Model Forecast System on the B-Grid (NMMB)
(Black, 1994; Janjic and Gall, 2012) and CMAQv5.0.2 (US
EPA, 2014). The NAQFC provides forecast guidance for O3,
PM2.5, wildfire smoke, and dust at a horizontal grid spacing
of 12 km over a domain centered on the CONUS, Alaska, and
Hawaii domains.

NOAA’s National Weather Service (NWS) transitioned
operationally in June 2019 to use a new dynamical core
known as the Finite-Volume Cubed-Sphere (FV3) in
the Global Forecast System (GFS) model. Both the Na-
tional Aeronautics and Space Administration (NASA) and
NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL;
https://www.gfdl.noaa.gov/, last access: 5 April 2022) have
developed and advanced FV3 over the past few decades (Lin
et al., 1994; Lin and Rood, 1996; Lin, 2004; Putman and Lin,
2007; Chen et al., 2013; Harris and Lin, 2013; Harris et al.,
2016; Zhou et al., 2019). Overall, the switch to a FV3-based
dynamical core with advancements to GFS’s observation
quality control, data assimilation, and model physical pa-
rameterizations (from the National Center for Environmental
Prediction) significantly increases the accuracy of 1–2 d and
longer (e.g., 3–7 d) weather forecasts (Chen et al., 2019).
Other advantages of FV3GFS are improved computational
efficiency and adaptable scaling, enhanced and flexible ver-
tical resolution, and improved representation of atmospheric
circulation and weather patterns across different horizontal
scales (Yang et al., 2020; https://www.weather.gov/media/
notification/pns20-44gfs_v16.pdf, last access: 5 April 2022;
https://www.emc.ncep.noaa.gov/emc/pages/numerical_
forecast_systems/gfs.php, last access: 5 April 2022;
https://ufscommunity.org/wp-content/uploads/2020/10/
UFS_Webnair_GFSv16_20201022_FanglinYang.pdf, last
access: 5 April 2022).

The improved representation of atmospheric conditions,
circulation, transport, and precipitation in GFS are pivotal to
the accuracy of chemical predictions when coupled to RT-
AQF models. Since 2017, there has also been significant
efforts at NOAA to use version 15 of FV3GFS (hereafter,
GFSv15) rather than NMMB as the meteorological driver
for CMAQ in the NAQFC (Huang et al., 2017, 2018, 2019).
Huang et al. (2020) and Chen et al. (2021) demonstrated that
a version of the GFS-driven CMAQv5.0.2 (GFSv15-CMAQ)
forecasting system had partly improved O3 predictions com-
pared to the NMMB-driven CMAQ (NMMB-CMAQ) sys-
tem but that the GFSv15-CMAQ had large biases for PM2.5
that still need improvement.

Concurrently, at NOAA there has been a major upgrade
of GFS from version 15 to 16 (GFSv16), which includes

a number of major developmental advances to the system
(see Sect. 2 of this paper). Thus, there was an opportunity
to simultaneously upgrade and streamline the meteorological
coupling between the GFSv16 and a more updated, “state-
of-the-science” version of CMAQ at the US EPA (US EPA,
2019; Appel et al., 2021). The current CMAQv5.0.2 used
in the NMMB-CMAQ and experimental GFSv15-CMAQ is
outdated scientifically with numerous deficiencies, many of
which led to the elevated biases and error as described in
Huang et al. (2017, 2020) and Chen et al. (2021). Hence,
there is a need to update the NAQFC to actively developing
versions of both FV3GFS and CMAQ.

The main objectives of this paper are to describe the devel-
opment of the GFSv16 coupling with a state-of-the-science
CMAQ model for the advanced updates to NAQFC that in-
cludes numerous other RT-AQF science advances (Sect. 2).
We also describe the new simulation design and input ob-
servations, and evaluate the meteorological and air quality
predictions across the US compared to the now discontin-
ued NMMB-CMAQ system for NAQFC (Sects. 3 and 4).
We conclude with a summary of NOAA-EPA Atmosphere
Chemistry Coupler (NACC)-CMAQ serving as the current
(since 20 July 2021) operational NAQFC, as well as longer-
term goals (Sect. 5). We hypothesize that advancing to closer
state-of-the-science meteorological and chemical transport
models will improve atmospheric chemical composition pre-
dictions, and the resulting air quality forecasts will better pro-
tect human health across the US.

2 Methods

2.1 Updated meteorological and surface drivers

2.1.1 The Global Forecast System version 16

The Environmental Modeling Center (EMC) at NOAA
continuously develops and improves the GFS model, which
has been in operation at the National Weather Service
since 1980. EMC has recently upgraded the GFS model
from v15.3 to v16 in February 2021, and the major up-
grade improves the model forecast performance while also
providing enhanced forecast products. Some of the major
structural changes to GFSv16 (compared to previous GFS
versions) include increased vertical layers (resolution)
from 64 to 127 (Fig. 1) and an extended model top from
54 (upper stratosphere) to 80 km (mesopause). GFSv16
also has a thinner first model layer thickness (20 m) and
higher-resolution global horizontal grids of ∼ 25 and
13 km (Yang et al., 2020; https://www.weather.gov/media/
notification/pns20-44gfs_v16.pdf, last access: 5 April 2022;
https://www.emc.ncep.noaa.gov/emc/pages/numerical_
forecast_systems/gfs.php, last access: 5 April 2022;
https://ufscommunity.org/wp-content/uploads/2020/10/
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UFS_Webnair_GFSv16_20201022_FanglinYang.pdf, last
access: 5 April 2022).

The GFSv16 has significantly improved its physical
parameterizations (e.g., planetary boundary layer (PBL),
gravity wave, radiation, clouds and precipitation, land
surface, and surface layer schemes) and upgraded to
the Global Data Assimilation System (GDAS) version
16 (Yang et al., 2020; https://www.weather.gov/media/
notification/pns20-44gfs_v16.pdf, last access: 5 April 2022;
https://www.emc.ncep.noaa.gov/emc/pages/numerical_
forecast_systems/gfs.php, last access: 5 April 2022;
https://ufscommunity.org/wp-content/uploads/2020/10/
UFS_Webnair_GFSv16_20201022_FanglinYang.pdf, last
access: 5 April 2022).

The global GFSv16 has changed the format of forecast
output history files from binary (nemsio) to netCDF with
zlib compression (data volume reduced by about 60 %), and
provides the hourly (important for CMAQ predictions) out-
put for a 72 h (3 d) forecast each day. The prior operational
NAQFC (NMMB-CMAQ) forecast is only out to 48 h (2 d).
The netCDF output is available (via live disk and archives)
to all of NOAA’s downstream model applications and is
in the form of a rectangular Gaussian grid with a globally
uniform grid resolution of ∼ 13 km (referred to as “C768”)
and a set number of latitude and longitude coordinates. The
NOAA GFDL website provides more information about FV3
and its grids (https://www.gfdl.noaa.gov/fv3/, last access:
5 April 2022). There are additional new surface fields in the
GFSv16 output, which include plant canopy surface water,
surface temperature and moisture at four below-ground lev-
els (0–0.1, 0.1–0.4, 0.4–1, 1–2 m), surface roughness, soil
and vegetation type, and friction velocity.

2.1.2 The NOAA-EPA Atmosphere Chemistry Coupler
(NACC)

The meteorological–chemical coupling of the GFSv16 to the
regional, state-of-the-science CMAQ v5.3.1 model (US EPA,
2019; Appel et al., 2021) is achieved via the NOAA-EPA At-
mosphere Chemistry Coupler (NACC) version 1 (NACC, i.e.,
“knack”, meaning an acquired skill), which is adapted from
the US EPA’s Meteorology-Chemistry Interface Processor
(MCIP) version 5 (Otte and Pleim, 2010; https://github.com/
USEPA/CMAQ, last access: 5 April 2022). The NACC and
CMAQ coupling (hereafter referred to as NACC-CMAQ) in-
volves a number of structural and scientific advancements
(Fig. 2, i.e., the advanced NAQFC) compared to the previous
operational NMMB-CMAQ; hereafter referred to as “prior
NAQFC”.

The major structural changes to NACC-CMAQ include
a variable-dependent bilinear or nearest-neighbor horizon-
tal interpolation of the GFSv16 Gaussian gridded (∼ 13 km)
fields (e.g., 2 m temperature, 2 m specific humidity, 10 m
wind speed and direction, and sea level pressure) to a Lam-
bert conic conformal (LCC) projection at 12 km horizontal

grid spacing (same as the prior NAQFC) (Fig. 3a–b). NACC-
CMAQ also includes a redefined vertical structure based on
vertical interpolation (i.e., collapsing) to a 35-layer configu-
ration (Fig. 3c) that is identical to the prior NAQFC.

Time-splitting techniques based on message passing in-
terface (MPI) commands parallelize the GFSv16-to-NACC
input and output (IO), which vastly improves the computa-
tional efficiency for the updated 72 h forecast period. The
NACC-CMAQ coupling is more unified and streamlined
compared to prior NAQFC (Stajner et al., 2011; Lee et al.,
2017; Huang et al., 2017) and experimental GFSv15-CMAQ
(Huang et al., 2018, 2019) applications, while eliminating
multiple pre- and post-processing steps. The NACC-CMAQ
processing steps are therefore subject to less uncertainty that
comes with multiple grid interpolations and restructuring
used previously and are more computationally efficient for
the 72 h forecast window. Furthermore, the vertical interpo-
lation from 127 to 35 layers results in an excellent agree-
ment in the vertical structure of key atmospheric state vari-
ables (Fig. 3c). While this example is only for the cen-
tral US, other model grid cell locations in the eastern and
western US also demonstrate excellent agreement in the na-
tive and collapsed vertical structure in NACC (not shown).
While NACC-CMAQ domains for Alaska and Hawaii are
also available for NAQFC, this paper focuses only on the re-
sults inside the CONUS domain.

The left side of Fig. 2 shows that NACC-CMAQ incorpo-
rates high-resolution satellite data for a 2018–2020 climato-
logical (12-month) averaged leaf area index (LAI), which is
based on the Visible Infrared Imager Radiometer Suite (VI-
IRS) 8 d, level 4 global 500 m sinusoidal (SIN) grid, V001
product (Myneni and Knyazikhin, 2018; https://lpdaac.usgs.
gov/products/vnp15a2hv001/, last access: 5 April 2022).
This is a substantial update from the prior NAQFC, which
assumed an unrealistic static LAI value of 4 across the en-
tire domain. The NOAA product for near-real-time (NRT)
greenness vegetation fraction (GVF) from VIIRS (Ding
and Zhu, 2018; https://www.ospo.noaa.gov/Products/land/
gvf/, last access: 5 April 2022) is used as a dynamic, direct
input in NACC-CMAQ instead of using the GFSv16 vegeta-
tion fraction (VEG). Both VIIRS LAI and GVF are prepro-
cessed, and NACC performs nearest-neighbor interpolation
to the NAQFC grid.

More realistic land cover characteristics have shown
to improve modeled meteorology, chemistry, and surface–
atmosphere exchange processes in the coupled Weather Re-
search and Forecasting (WRF; Powers et al., 2017; Ska-
marock and Klemp, 2008) and CMAQ model (e.g., Ran
et al., 2016; Campbell et al., 2019). Test results here
show that rapid-refresh of high-resolution VIIRS LAI and
GVF in NACC have distinct differences compared to an
older 2010 MODIS International Geosphere–Biosphere Pro-
gramme (IGBP) LAI climatology and GFSv16-based VEG,
respectively (Figs. S1–S2 in the Supplement). The updated
dynamic LAI and GVF alter biogenic emissions, dry depo-
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Figure 1. The (a) native FV3 gnomonic cubed-sphere grid at C48 (2◦) resolution (image courtesy of Dusan Jovic, NOAA) and (b) vertical
resolution (P vs. dP ) for the upgraded GFSv16 (green) compared to the previous GFSv15.3 (blue) and the European Centre for Medium-
Range Weather Forecasts (ECMWF) model (black).

Figure 2. Schematic of the advanced NAQFC based on NACC-CMAQ.

sition, and resulting concentrations of gases and aerosols in
NACC-CMAQ, particularly during the fall transition month
of October 2020 (Fig. S3).

NACC-CMAQ also uses global gridded soil information
based on the 2019 SoilGrids™ 250 m resolution data (https:
//www.isric.org/explore/soilgrids, last access: 5 April 2022)
to drive an inline FENGSHA windblown dust model (Fu et
al., 2014; Huang et al., 2015; Dong et al., 2016) in NACC-
CMAQ (Fig. 2). Section 2.2 below provides more informa-
tion on the specific parameters used in FENGSHA.

As in the prior NAQFC, the chemical initial conditions
(beginning on 20 July 2021 for NACC-CMAQ) are taken
from the previous day’s (CMAQ) forecast output, and a NRT
bias-correction using AirNow surface observations (https:
//www.airnow.gov/, last access: 5 April 2022) is applied to
the 72 h predictions of O3 and PM2.5 (Fig. 2). Huang et
al. (2017) provides more information on the bias-correction
technique.

https://doi.org/10.5194/gmd-15-3281-2022 Geosci. Model Dev., 15, 3281–3313, 2022

https://www.isric.org/explore/soilgrids
https://www.isric.org/explore/soilgrids
https://www.airnow.gov/
https://www.airnow.gov/


3286 P. C. Campbell et al.: Development and evaluation of an advanced NAQFC

Figure 3. Examples of the NACC-CMAQ (a) GFSv16 Gaussian grid surface temperature (C768 ∼ 13 km), (b) associated bilinear horizontal
interpolation NACC LCC output (12 km), and (c) Skew-T Log-P diagram of both native GFSv16 (127 layers; solid) and interpolated NACC
(35 layers; dashed) profiles of temperature (black), dew point (blue), and wind speed and direction (wind barbs, with native shown in black
and collapsed shown in red). The example sounding pertains to a date of 24 September 2020 at the closest model grid square to 39.07◦ N and
95.62◦W (black dot in a–b).

2.2 Updated chemistry, emissions, and air–surface
exchange processes

2.2.1 The Community Multiscale Air Quality (CMAQ)
model version 5.3.1

A major update in NACC-CMAQ is coupling the GFSv16
to a state-of-the-science chemical transport model,
CMAQv5.3.1 (US EPA, 2019; Appel et al., 2021) (Fig. 2).
The prior NAQFC and experimental GFSv15-CMAQ both
use CMAQv5.0.2, released in April 2014 (US EPA, 2014).
The major release of CMAQv5.3 incorporates significant
improvements to gas chemistry (e.g., halogen-mediated
ozone loss), aerosol modules (e.g., improved secondary
organic aerosol formation), photolysis rates, aqueous and
heterogeneous chemistry, transport processes, air–surface
exchange, emissions, and other structural and compu-
tational improvements (Appel et al., 2021). The use of
CMAQv5.3.1 in NACC-CMAQ also contains a number of
bug fixes to v5.3. Version 6 of the Carbon Bond (CB6)
mechanism is used for gas-phase chemistry (Yarwood et
al., 2010), and the updated US EPA’s AERO7 module is
used for aerosol formation in NACC-CMAQ. The US EPA’s
GitHub web page (https://github.com/USEPA/CMAQ/blob/
master/DOCS/Release_Notes/README.md, last access:

5 April 2022) contains the CMAQv5.3 and v5.3.1 release
notes, mechanism descriptions, and enhancements.

2.2.2 National Emissions Inventory Collaborative
(NEIC) 2016 version 1 emissions

The anthropogenic emissions modeling data may be the most
influential input for chemical transport model predictions in
any AQF system (Matthias et al., 2018). The model emis-
sions are updated from National Emissions Inventory (NEI)
2014 version 2 (2014v2) that is used by the prior NAQFC
to NEI Collaborative (NEIC) 2016 version 1 (2016v1) Emis-
sions Modeling Platform (NEIC, 2019), which is based on
updated models and datasets applied to the US Environ-
mental Protection Agency’s (EPA) NEI2014v2. The prior
NAQFC uses an older NEI2014v2 emissions dataset. There
have been substantial updates to the NEIC2016v1, which in-
clude emission decreases for CO, NOx , SO2, and PM2.5 and
increases in total VOC and ammonia (NH3) emissions com-
pared to NEI2014v2 (NEIC, 2019). The intermittent, “event-
based” emissions from wildfires and windblown dust, as well
as persistent biogenic emissions sources, are not from the
NEIC2016v1 but are instead dynamically predicted inline
within NACC-CMAQ (described in following sections). The
NEIC2016v1 area source (i.e., 2-D) emissions are given in
a gridded netCDF/IOAPI format that are interpolated to the
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12 km NAQFC domain. The NEIC2016v1 also provides ma-
jor point source (i.e., 3-D) emissions from six sectors: com-
mercial marine vehicles (CMV12 and CMV3), electricity-
generating units (EGUs), non-EGUs, oil–gas sources, and
“other” point sources. The anthropogenic point source plume
rise is calculated inline within NACC-CMAQ using the
Briggs plume rise method (Briggs, 1965). Slight adjustments
are made to reduce the anthropogenic aerosol and fugitive
dust emissions over snow and wet soil surfaces to account
for different forecasted meteorology in GFSv16 compared to
the conditions used in generating the NEIC2016v1.

We note that the NEIC2016v1 emissions are not projected
into the actual forecast year, with the time lag being a long-
recognized issue in NAQFC (e.g., Tong et al., 2012). Thus,
the NACC-CMAQ air quality simulations for the fall of 2020
and the winter of 2021 are impacted by the COVID-19 pan-
demic, which resulted in spatiotemporal changes to emis-
sion patterns and ozone formation over the US in 2020 and
beyond (Campbell et al., 2021). In addition, mobile source
emissions have continued to decline since 2016, and thus it
is likely that the emissions used in the analysis do not entirely
reflect recent changes to the emissions compared to 2016 (al-
most 5 years earlier). We are actively working to improve
the representativeness of anthropogenic emissions sources in
NACC-CMAQ and next-generation versions of the NAQFC.

2.2.3 Inline biogenic emissions and bidirectional NH3
fluxes

NACC-CMAQ uses the latest version of the Biogenic
Emission Inventory System (BEIS) v3.6.1 (Vukovich and
Pierce, 2002; Schwede, 2005) for estimating the biogenic
VOC (BVOC) emissions. BEISv3.6.1 includes updated
vegetation inputs and advanced two-layer canopy model
formulations for estimating leaf (sun and shade) temper-
atures and vegetation data (Weiss and Norman, 1985;
Campbell and Norman, 1998; Niinemets et al., 2010;
Bash et al., 2016). NACC-CMAQ also uses the revised
Biogenic Emissions Landuse Dataset version 5 (BELD5),
which includes a newer version of the Forest Inventory and
Analysis (FIA) version 8.0 and updated agricultural land
use from the 2017 US Department of Agriculture (USDA)
crop data layer. The BELD5 dataset also uses a MODIS
21-category land use dataset with lakes identified separately
from oceans. The prior NAQFC used a much older BELD3
version (https://www.epa.gov/air-emissions-modeling/
biogenic-emissions-landuse-database-version-3-beld3, last
access: 6 April 2022).

The prior NAQFC also only considered summer factors
in BEIS and did not capture seasonal (summer and win-
ter) changes to the normalized biogenic emissions factors
(specific to vegetation species). NACC-CMAQ is improved
and uses a new “vegetation frost switch” that adjusts be-
tween summer and winter normalized emission factors in
BEISv3.6.1 based on the calendar date and 2 m temperature

(TEMP2). In NACC, a new time-dependent variable, “SEA-
SON” is equal to 1 during the growing season or equal to 0
outside the growing season. The SEASON is (boreal) sum-
mer if the calendar date is on or between 15 April and 15 Oc-
tober but switches to winter if TEMP2 drops below 28 ◦F
(−2 ◦C), and it is winter if the date is on or between 16 Oc-
tober and 14 April but switches to summer if TEMP2 rises
above 32 ◦F (0 ◦C). Thus, the SEASON variable in NACC-
CMAQ differs from typical retrospective CMAQ applica-
tions and is more dynamic with hourly variability based on
the GFSv16-forecasted TEMP2. Test results show generally
improved model performance for all US regions in Decem-
ber 2020 (winter) with vegetation frost switch compared to
using only summer season normalized emissions (Table S1
in the Supplement). Using BELD5 further improves model
performance and reduces the error in all CONUS regions
compared to the older BELD3 used in December 2020 tests
(Table S1).

NACC-CMAQ includes bidirectional NH3 (BIDI-NH3)
for NH3 fluxes (i.e., both deposition and evasion) in the
CMAQv5.3.1 “M3Dry” deposition model (Nemitz et al.,
2000; Cooter et al., 2010; Massad et al., 2010; Pleim and
Ran, 2011; Bash et al., 2010, 2013; Pleim et al., 2013;
2019). Here, the NH3 fertilizer emissions are removed from
the base NEIC2016v1 inventory to avoid double count-
ing, as the inline BIDI-NH3 module calculates these fluxes.
The BIDI-NH3 module typically requires daily inputs (e.g.,
soil ammonia content, soil pH, soil moisture, and other
soil characteristics) from the USDA’s Environmental Pol-
icy Integrated Climate (EPIC) agroecosystem model (https://
epicapex.tamu.edu/epic/, last access: 5 April 2022; Williams
et al., 1995) to calculate the soil ammonia concentrations
that are combined with air concentrations in CMAQ to cal-
culate BIDI-NH3 fluxes. Typically, the Fertilizer Emission
Scenario Tool (FEST-C, https://www.cmascenter.org/fest-c/,
last access: 5 April 2022) processes the necessary meteo-
rological conditions for integration with the EPIC simula-
tion for input to CMAQ (Ran et al., 2011; Cooter et al.,
2012). Use of the EPIC/FEST-C system is not feasible in an
NRT operational forecasting model, and thus we use a pre-
generated, full-year 2011 EPIC/FEST-C simulation based on
Campbell et al. (2019) for the daily inputs to BIDI-NH3 in
NACC-CMAQ. NACC-CMAQ directly uses the GFSv16 soil
moisture conditions in place of the FEST-C processed soil
conditions required for the latest version of BIDI-NH3 in
CMAQv5.3.1 (Pleim et al., 2019).

2.2.4 Inline wildfire smoke and windblown dust
emissions

Wildfires have been increasing in size (Westerling et al.,
2006) and potentially in severity (Miller et al., 2009) over
the past decades. Wildfire smoke outbreaks can lead to ex-
treme concentrations of PM2.5 and enhanced O3 and are ma-
jor concerns for air quality forecasting and consequential hu-
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man and ecosystem health impacts. NACC-CMAQ includes
a new inline calculation of wildfire smoke emissions based
on the Blended Global Biomass Burning Emissions Product
(GBBEPx V3; Zhang et al., 2012, 2014). GBBEPx provides
daily global biomass burning emissions (PM2.5; black car-
bon, BC; organic carbon, OC; NOx ; NH3; CO; and SO2).
It blends fire observations from two sensors, including the
Moderate Resolution Imaging Spectroradiometer (MODIS)
on the NASA Terra and Aqua satellites and the Visible In-
frared Imaging Spectrometer (VIIRS) on the Suomi National
Polar-orbiting Partnership (SNPP) and Joint Polar-orbiting
Satellite System 1 (JPSS1) satellites. The GBBEPx data are
further processed to prepare model-ready emission datasets.
First, the 0.1×0.1◦ latitude and longitude data are converted
into the NAQFC LCC projection. US EPA-based Sparse Ma-
trix Operator Kernel Emissions (SMOKE) fire speciation and
diurnal profiles provide the PM speciation and diurnal pat-
terns in NACC-CMAQ, respectively, while both land use and
region are used to identify fire types. The fire duration per-
sists for the 72 h forecast period (with scaling of 1.0, 0.25,
and 0.25 for day 1, 2, and 3, respectively) for wildfires iden-
tified when the grid cell forest fraction is > 0.4. In the east-
ern US (longitude east of 100◦W), however, the fires are
assumed to be mainly prescribed burns in forested regions
that only persist for the first 24 h. The wildfire plume rise
is calculated inline within NACC-CMAQ using either the
Briggs (1965) or Sofiev et al. (2012) algorithms (Wilkins et
al., 2019); currently the Briggs method is used by default.

Climate models project warming and drying trends in
the southwestern US, where intermittent windblown dust
storms are becoming more frequent with the occurrence of
drought (Tong et al., 2017) or even “megadrought” condi-
tions (Williams et al., 2020). Windblown dust storms can
lead to extreme levels of coarse-mode particulate matter (i.e.,
PM10) and cause detrimental effects to human and agroe-
cosystem health and visibility. NACC-CMAQ includes a
novel inline methodology for calculating windblown dust
based on the FENGSHA model (Huang et al., 2015; Dong
et al., 2016). In NACC-CMAQ, the potential for vertical
dust flux in FENGSHA is generally controlled by the sedi-
ment supply map (SSM), and the magnitude of the friction
velocity (USTAR) compared to a threshold friction veloc-
ity (UTHR) that determines the USTAR needed to trans-
fer dust from soil surfaces to the atmosphere. The UTHR
is dependent on the land cover, soil type, and soil mois-
ture. The SoilGrids™ 250 m high-resolution dataset (https:
//www.isric.org/explore/soilgrids, last access: 5 April 2022)
provides the necessary clay, silt, and sand fractions used to
calculate the SSM.

2.3 Updated dynamic aerosol boundary conditions

The chemical lateral boundary conditions (CLBCs) are
critical to the prediction accuracy of regional chemical
transport models, particularly during intrusion events (Tang

et al., 2009, 2021). The CLBCs represent the spatiotemporal
distribution of chemical species along the lateral boundaries
of the domain of a regional model. NACC-CMAQ uses
methods described in Tang et al. (2021) and implements
dynamic CLBCs (updated every 6 h) for dust and smoke
aerosol data that are extracted (and mapped to CMAQ
CB6-Aero7 species) from the NOAA operational global
atmospheric aerosol model, known as the Global Ensemble
Forecast-Aerosols (GEFS-Aerosols) member (Fig. 2).
GEFS-Aerosols is also based on the FV3GFS dynamical
core, which uses the Goddard Chemistry Aerosol Radiation
and Transport (GOCART) model for its sulfate, dust,
BC, OC, and sea salt aerosol predictions (Chin et al.,
2000, 2002; Ginoux et al., 2001). GEFS-Aerosols uses
the same wildfire smoke and windblown dust dataset and
algorithms as in NACC-CMAQ. The operational version of
GEFS-Aerosols is run by the NWS as a special unperturbed
forecast of the Global Ensemble Forecast System version
12 (https://www.ncdc.noaa.gov/data-access/model-data/
model-datasets/global-ensemble-forecast-system-gefs, last
access: 5 April 2022), which provides an ensemble forecast
product four times per day. Dynamic CLBCs capture the
signals of aerosol intrusion events such as biomass burning
or windblown dust plumes from outside the domain, which
can improve the prediction accuracy of downstream O3 and
PM2.5 concentrations at the surface (Tang et al., 2021).

3 Simulation design and evaluation protocol

Table 1 summarizes the GFSv16 and NACC-CMAQv5.3.1
model configuration described in Sect. 2, as well as some
additional model details. The model components and con-
figurations used in prior NAQFC system are summarized in
Table S2 (based on Lee et al., 2017) for comparison.

The simulation design consists of evaluations of contin-
uous 1-month NACC-CMAQ (72 h, 3 d forecast) and prior
NAQFC (48 h, 2 d forecast) simulations for September 2020
(late summer–fall period) and January 2021 (winter period)
(with a previous 1-month spin-up and training data period)
over the CONUS at a horizontal grid spacing of 12 km (Ta-
ble 1). September 2020 is used for the warm season because
it is the closest month to summer when both the NACC-
CMAQ and prior operational NAQFC systems were simul-
taneously run. The prior operational NAQFC was discon-
tinued on 20 July 2021 due to computational constraints at
NWS/NOAA.

The Surface Weather Observations and Reports for Avi-
ation Routine Weather Reports (METAR), collected by
NCEP’s Meteorological Assimilation Data Ingest System
(MADIS) (https://madis.ncep.noaa.gov/madis_metar.shtml,
last access: 5 April 2022), provide observations of TEMP2,
2 m specific humidity (Q2), and 10 m wind speed (WSPD10).
The World Radiation Monitoring Center’s (WRMC’s) Base-
line Solar Radiation Network (BSRN) (https://bsrn.awi.de/,
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Table 1. GFSv16 and NACC-CMAQv5.3.1 model components and configurations. The abbreviation n/a stands for not applicable in this
table.

Model attribute Configuration Reference

Domain Conterminous US; n/a
Centered on 40◦ N, 97◦W

Horizontal resolution 12 km n/a

Vertical resolution 35 Layers from near the surface n/a
to about 14 km (∼ 60 hPa)

Meteorological initial FV3GFSv 16 https://nws.weather.gov/ (last access: 5 April 2022)
and boundary conditions

Chemical ICs and BCs 2006 GEOS-Chem simulation http://acmg.seas.harvard.edu/geos/ (last access: 5 April 2022)
& GEFS-Aerosol dynamic smoke Tang et al. (2021)
and dust aerosol CLBCs

Anthropogenic emissions NEIC 2016v1 platform NEIC (2019)

Biogenic emissions Inline BEISv3.6.1 & BELD5 Vukovich and Pierce (2002); Schwede et al. (2005)

Wildfire emissions and GBBEPxv3/ https://www.ospo.noaa.gov/Products/land/gbbepx
plume rise inline Briggs (last access: 5 April 2022); Briggs (1965)

Microphysics GFDL six-category cloud Lin et al. (1983); Lord et al. (1984); Krueger et al. (1995);
microphysics scheme Chen and Lin (2011, 2013)

PBL physics scheme sa-TKE-EDMF Han and Bretherton (2019)

Shallow and deep cumulus SAS scheme Han and Pan (2011); Han et al. (2017)
parameterization

Shortwave and longwave RRTMg Mlawer et al. (1997); Clough et al. (2005);
Radiation Iacono et al. (2008)

Land surface model Noah land surface model Chen and Dudhia (2001); Ek et al. (2003);
Tewari et al. (2004)

Surface layer Monin–Obukhov Monin and Obukhov (1954); Grell et al. (1994);
Jimenez et al. (2012)

Gas-phase chemistry CB6 Yarwood et al., 2010

Aqueous-phase chemistry CMAQ AQCHem updates Martin and Good (1991); Alexander et al. (2009);
Sarwar et al. (2011)

Aerosol module and size AERO7 Appel et al. (2021)

Other model attributes – Inline photolysis Binkowski et al. (2007)
– Inline bi-directional NH3 Nemitz et al. (2000); Cooter et al. (2010); Massad
exchange et al. (2010); Pleim and Ran (2011); Bash et al. (2010,

2013); Pleim et al. (2013, 2019)
– Inline FENGSHA windblown Fu et al. (2014); Huang et al. (2015);
dust emissions Dong et al. (2016)
– Inline sea salt emissions Kelly et al. (2010); Gantt et al. (2015)

last access: 5 April 2022; Driemel et al., 2018) and US
Surface Radiation Network (SURFRAD; https://gml.noaa.
gov/grad/surfrad/, last access: 5 April 2022) provide short-
wave radiation observations at the ground (SWDOWN). The
PRISM Climate Group, Northwest Alliance for Computa-
tional Science and Engineering, at Oregon State University
(https://prism.oregonstate.edu/l, last access: 5 May 2021)
provide gridded total precipitation observations (PRECIP).
The National Oceanic and Atmospheric Administration

(NOAA) Earth System Research Laboratory’s (ESRL’s) Ra-
diosonde Database (RAOB) (https://ruc.noaa.gov/raobs/, last
access: 5 April 2022) provides vertical profile observations
of temperature, relative humidity, and wind speed. The US
EPA Air Quality System (AQS; https://www.epa.gov/aqs,
last access: 5 April 2022) and near-real-time AirNow ob-
servational networks (https://www.airnow.gov/, last access:
5 April 2022) provide near-surface O3 and PM2.5 measure-
ments.
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The statistical measures used to evaluate the
meteorological–chemical coupling and air quality pre-
dictions include the mean bias (MB), normalized mean bias
(NMB), normalized mean error (NME), root-mean-square
error (RMSE), anomaly correlation coefficient (ACC), Pear-
son’s correlation coefficient (R), and index of agreement
(IOA). Statistical measures such as R, NMB, and NME
provide measures of the associativity (i.e., correlation),
bias, and accuracy, respectively, of specific modeled surface
and vertical meteorology and surface O3 and PM2.5. The
meteorological and chemical evaluations use the publicly
available US EPA Atmospheric Model Evaluation Tool
(AMET; Appel et al., 2011) and NOAA/ARL Model and
Observation Evaluation Toolkit (MONET; Baker et al.,
2017).

4 Results

4.1 Meteorological analysis

Compared to NMMB used in the prior NAQFC, the GFSv16
model has lower actual TEMP2 in the east and southeast and
parts of the northwest (Fig. 4a–d) but has higher TEMP2 in
the central Great Plains, northern Great Plains, and parts of
the western and southwestern US, with higher 10 m wind
speeds (WSPD10) in these regions (Fig. 4i–l). GFSv16 is
drier with widespread lower 2 m specific humidity (Q2;
Fig. 4e–h) and lower cloud fractions (CFRAC) (Fig. 4m–p),
higher solar radiation absorbed at the ground (GSW; Fig. 5a–
d), lower longwave radiation absorbed at the ground (GLW;
Fig. 5e–h), deeper planetary boundary layer height (PBLH;
Fig. 5i–l), and generally more regions of increased precipi-
tation (PRECIP; Fig. 5m–p). Differences in the CFRAC are
(in part) impacted by differences in the model definition of
cloud cover; NMMB uses a binary cloud cover definition at
each grid point, while GFSv16 uses fractional cloud cover
to calculate CFRAC. For stable conditions, the PBLH in
the prior NAQFC is re-diagnosed based on the Troen and
Mahrt (1986) incremental calculation of the bulk Richard-
son number (Rib) from the surface up to a height above the
neutral buoyancy level (i.e., approaching the critical Richard-
son number, Ricrit) in the Asymmetric Convective Model v2
(ACM2) PBL scheme in CMAQ (Pleim 2007a, b). For unsta-
ble conditions, the re-diagnosed ACM2 uses a slightly dif-
ferent PBLH formulation based on first finding the convec-
tively unstable mixing layer (zmix) and then defining the point
where Rib = Ricrit for the entrainment layer above zmix.
For both stable and unstable conditions, however, NACC-
CMAQ directly uses the diagnosed PBLH from the turbulent
kinetic energy (TKE)-based PBL scheme in GFSv16 (Ta-
ble 1; Han and Bretherton, 2019), which is also based on
the Troen and Mahrt (1986) incremental Rib formulation.
Thus, NACC/GFSv16-CMAQ calculation is similar to the
re-diagnosed ACM2 PBLH for nighttime-stable conditions

(with slight differences in Ricrit values), while there exists
some distinct differences in their daytime-unstable PBLH
formulations and Ricrit calculations.

Consequently, the GFSv16 (NACC) and re-diagnosed
ACM2 (prior NAQFC) diurnal PBLH patterns are similar
at night; however, the GFSv16 PBLH is considerably higher
than the prior NAQFC during the daytime for all regions in
September and January (Figs. S4–S5).

The meteorological differences between GFSv16 and
NMMB (Figs. 4–5) influence chemical predictions in
CMAQ, which include a deeper daytime PBL and more pre-
cipitation that can effectively dilute the gaseous and aerosol
concentrations for NACC-CMAQ in some regions across
the CONUS. Areas of lower CFRAC and higher TEMP2 in
GFSv16, however, will increase photolysis and daytime O3
formation in NACC-CMAQ in certain regions including the
southern US and upper Great Plains. We note that although
there are differences in the PBLH calculation methodolo-
gies between the prior NAQFC and NACC-CMAQ (partic-
ularly for the unstable daytime PBLH), the differences in
near-surface meteorology (i.e., generally warmer and drier)
conditions in the GFSv16 (Tables 2 and S2) also in part af-
fect the differences in PBLH (Fig. 5i–l). These differences
affect the pollutant mixing and dilution, and in part the re-
sulting air quality predictions between the prior NAQFC and
NACC-CMAQ (see Sect. 4.4 below).

4.2 Meteorological evaluation and metrics

Evaluation of the simulated day 1 (0–24 h) forecasted meteo-
rology against the METAR network shows that GFSv16 gen-
erally has a higher positive TEMP2 (warmer) bias (Fig. 6) in
the west and a CONUS-wide higher negative Q2 (dry) bias
(Fig. 7) compared to prior NMMB (i.e., prior NAQFC) in
both September and January.

There are regions of higher RMSE for T2 and Q2, and
lower and degraded ACC (Figs. S7–S8) for GFSv16 com-
pared to NMMB, especially in the southern and western
CONUS regions during September. The spatial patterns and
magnitudes of WSPD10 bias and error are similar between
GFSv16 and NMMB (Fig. 8); however, the higher WSPD10
for GFSv16 in the southern and central CONUS leads to
a shift from negative to positive biases from Texas north-
ward to North Dakota, especially during September. The
WSPD10 RMSE is higher (Fig. 8) and the ACC is also low-
er/degraded (Fig. S9) for GFSv16 in those regions, but oth-
erwise the GFSv16 and NMMB have similar performance
for WSPD10. The day 1 forecast model performance (MB,
RMSE, and ACC) for 10 m wind direction (WDIR10) is sim-
ilar between NMMB and GFSv16 in both September and
January (Figs. S6 and S10).

Overall, the GFSv16 results are favorable for driving the
advanced NACC-CMAQ system, with some areas of con-
cern in the degraded TEMP2 and Q2 in the warmer and drier
regions, particularly in the south and west CONUS during
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Figure 4. September 2020 and January 2021 spatial average plots for NMMB (prior NAQFC) and the absolute differences for GFSv16
(NACC) – NMMB for TEMP2, Q2, WSPD10 and CFRAC.

September. This roughly correlates with warmer/drier top-
layer soil conditions in GFSv16 in these regions (Fig. S11),
and thus land surface and soil data assimilation and model
improvement in GFSv16 is an active area of focus at NOAA.
The widespread dry bias in GFSv16 appears to be persistent,
as an independent evaluation of August 2019 demonstrated
a very similar spatial pattern and magnitude of Q2 under-
predictions in the eastern half of CONUS compared to the
METAR network (not shown).

The GFSv16-driven NACC-CMAQ system extends out to
a 72 h forecast. Hence, there is a question of how the day
1 and 2 forecasts perform for NMMB vs. GFSv16 in the
eastern (< 100◦W) and western (> 100◦W) US and how a
day 3 forecast extension also affects the GFSv16 diurnal and
statistical model performance. The GFSv16/NACC diurnal
patterns of standard deviation, error, and bias for TEMP2,
Q2, and WSPD10 are very similar to each other for days 1–
3 (Figs. S12–S14). While there is a slight increase in error
and decreased correlation (R), the relevant statistical metrics
(e.g., MB, NMB, RMSE, and R) do not change appreciably
from day 1 to 3 for both September and January (Tables S3–
S4). This lends confidence in the utility of using the updated

GFSv16 meteorology to drive a 72 h air quality forecast in
NACC-CMAQ.

The day 1 diurnal statistics highlight both similar and con-
trasting TEMP2 and Q2 patterns for NMMB vs. GFSv16
in the eastern and western CONUS (Figs. S12–S13). In
September (Fig. S12a), NMMB has higher error and positive
TEMP2 (i.e., warm) bias in eastern CONUS during morning
hours and lower error with a slight cool bias in the afternoon
and evening, while GFSv16 shows slightly overpredicted
TEMP2 during most hours of the day in the east. Over the
western CONUS, there are larger diurnal TEMP2 differences
that include small oscillating TEMP2 biases (about zero) for
NMMB, along with distinctly large warm biases during all
daytime hours for GFSv16 in the west. There are larger er-
ror and negative Q2 (i.e., drier) biases for GFVSv16 com-
pared to NMMB in eastern and western CONUS (Fig. S13a).
In January, the TEMP2 and Q2 diurnal statistical patterns
are similar for NMMB and GFSv16 in both the eastern and
western CONUS; however, the GFSv16 daytime hours have
slightly higher error and warmer and drier biases compared
to NMMB (Figs. S12b and S13b).

The total PRECIP is generally higher in GFSv16 com-
pared to NMMB toward the east (Fig. 5), which leads to
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Figure 5. The same as Fig. 4 but for GSW, GLW, PBLH, and PRECIP.

larger overpredictions on average in the CONUS compared
to PRISM (Fig. 9). GFSv16 has a positive PRECIP bias on
average in the CONUS, NMMB has a negative bias, and
there is a relatively large difference in the spatial patterns be-
tween NMMB and GFSv16 for September compared to Jan-
uary. The difference is impacted by higher convective activ-
ity during late summer and early fall in September compared
to winter in January (not shown). Further analysis indicated
that generally heavier PRECIP in GFSv16 reduces the pre-
dicted PM2.5 concentrations via wet deposition (not shown)
in the east and southeast and in parts of the west and north-
west compared to NMMB.

Comparisons of the model vertical profile statistics (i.e.,
MB, RMSE, and IOA) for TEMP, RH, and WSPD against
an average of select RAOB observations across the CONUS
indicate that the GFSv16 (NACC) performs consistently
with the operational NMMB (NAQFC) column (Fig. 10;
IOA nearly identical at ∼ 0.8–0.9). GFSv16 is warmer and
drier than NMMB in the model layers near the surface (>
850 mb), especially in September; however, GFSv16 has a
moister atmospheric column with higher wind speeds com-
pared to NMMB above the surface and in the free tropo-
sphere (< 850 mb). Figures S15–S17 show the spatial vari-
ability across the different RAOB sites used in the average
for Fig. 10. Analysis of the column (1000–250 hPa) aver-

age for all CONUS RAOB sites across CONUS indicate that
GFSv16 has a predominantly cooler and moister atmospheric
column in September, despite being strongly warmer and
drier near the surface (Figs. S18–S19).

4.3 Emissions analysis

The updated NEIC2016v1 emissions in NACC-CMAQ are
lower compared to the NEI2014v2 emissions used in the op-
erational NAQFC for all major species, except for NH3 (Ta-
ble 2), as the NEIC2016v1 includes updated data sources and
model projections that have generally decreasing emissions
compared to the NEI2014v2 (NEIC, 2019).

The spatial emission changes show widespread decreases
in the 2-D area and mobile emissions near the major urban
cities for CO and NOx and across the major interstates and
railways for NOx (Fig. 11a–b).

The spatial variability in NOx emission changes, however,
are impacted by changes in a number of on-road inputs in-
cluding vehicles miles traveled, age distribution, and speeds,
which caused some emissions to go up or go down depend-
ing on the specific counties. The NOx emissions variabil-
ity is also impacted by national increases in railway lev-
els and fuel use, while at the same time being impacted by
changes to fuel efficiency and cleaner engines for both pas-
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Figure 6. Average day 1 (0–24 h) forecasted TEMP2 MB (◦C) and RMSE (◦C) for NMMB and GFSv16 during (a)–(d) September 2020 and
(e)–(h) January 2021 compared to METAR observations.
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Figure 7. The same as Fig. 6 but for Q2 (g kg−1).
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Figure 8. The same as in Fig. 6 but for WSPD10 (m s−1).
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Figure 9. Average day 1 (0–24 h) forecasted total PRECIP (cm) biases (Predicted-PRISM) for NMMB (a, c) and GFSv16 (b, d) during
(a)–(b) September 2020 and (c)–(d) January 2021.

Table 2. September and January emissions totals (Tg) for the
NAQFC CONUS domain.

Emission NEI2014v2 NEIC2016v1 Percentage
species difference

September total (Tg)

CO 4.69 4.27 −8.9
NOx 0.92 0.75 −18.1
SO2 0.54 0.37 −31.2
NH3 0.48 0.59 23.9
AVOC 215.58 195.60 −9.3
POC 0.07 0.05 −26.8
PEC 0.03 0.02 −23.9
PMC 2.03 0.82 −59.3

January total (Tg)

CO 3.70 3.28 −11.2
NOx 0.78 0.64 −18.5
SO2 0.58 0.38 −34.7
NH3 0.10 0.12 18.4
AVOC 182.02 174.05 −4.4
POC 0.08 0.07 −10.8
PEC 0.02 0.02 −16.7
PMC 1.27 0.24 −80.8

senger and commuter trains. There are relatively minor area
and mobile changes in SO2 (Fig. 11c), with some excep-
tions in the east-northeast; however, there are widespread in-
creases in NH3 emissions driven by changes to the livestock
counts and updated fertilization methods and inputs found
in the NEIC2016v1 (Fig. 11d). Changes in non-point oil
and gas production, exploration, and emission factors gener-
ation, as well as changes to updated activity and data sources
for commercial cooking, residential fuel combustion, and in-
dustrial/commercial/institutional (ICI) fuel combustion im-
pact the anthropogenic VOC (AVOC) area emission changes
(Fig. 11e). The widespread and spatially consistent decreases
in particulate organic carbon (carbon only) ≤ 2.5µg (POC)
and PMC (defined as coarse PM > 2.5µg and ≤ 10µg) are
due to decreasing fugitive dust sources (Fig. 11f and h), with
the exception of the St. Lawrence River valley, that has both
increases in POC and AVOC (e.g., formaldehyde; not shown)
emissions in the NEIC2016v1. Updated appliance counts and
residential wood combustion estimates affect the particulate
elemental carbon ≤ 2.5µg (PEC) area emission decreases
(Fig. 11g).

There are also biogenic emissions differences due to the
updated inline BEISv3.6.1 and BELD5 in NACC-CMAQ
(Table 2) and due to the impacts of NMMB (prior NAQFC)
vs. GFSv16 (NACC) meteorology on BEIS calculations
(Fig. 12).
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Figure 10. September 2020 (a, b, c) and January 2021 (d, e, f) vertical (1000–250 mb) temperature (TEMP), relative humidity (RH), and
wind speed (WSPD) statistics (MB, RMSE, and IOA) for NMMB (black) and GFSv16 (red) against an average for select RAOB sites in the
CONUS. Figure S15a shows the specific RAOB site profiles, and Figs. S18–S19 provide their relative locations.

The lower GFSv16 temperatures near many of the highly
vegetated regions of the CONUS in September (Fig. 4b) de-
crease the isoprene (ISOP) and terpene (TERP) emissions,
with some notable localized ISOP emission increases due
to larger relative increases in downward solar radiation at
the surface (GSW; Fig. 5b) and resulting photosynthetic ac-
tive radiation (PAR; not shown). The differences are also
impacted by the derivations of leaf temperatures in the up-
dated BEISv3.6.1 and BELD5 in NACC-CMAQ compared
to the BEISv3.14 and BELD3 in the prior NAQFC (see dis-
cussion in Sect. 2.2). Hence, the differences in spatial vari-

ability between ISOP and TERP emission changes stem from
both differences in the locations of their relative maxima and
from the different algorithms for temperature and light de-
pendencies in BEIS. The GFSv16 (NACC) performs very
similarly to NMMB (prior NAQFC) for GSW at the sur-
face compared against BSRN-SURFRAD observations in the
CONUS, with a slightly larger overprediction in the late af-
ternoon at some sites (Figs. S21 and S22). The relatively low
ISOP and TERP emissions in NACC-CMAQ will effectively
lower the ground-level O3 and contribution of secondary or-
ganic aerosol (SOA) formation to PM2.5 compared to the
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Figure 11. September 2020 average spatial difference plots for NEIC2016v1–NEI2014v2 combined 2-D area and mobile emissions. Fig-
ure S20 shows very similar emission changes for January 2021.

prior NAQFC, particularly in the southeast and parts of the
western CONUS in the late summer and early fall.

4.4 Air quality analysis

Here we focus on analysis of NACC-CMAQ predictions of
gaseous O3 for the late summer and early fall (Septem-
ber 2020) and PM2.5 concentrations during the winter (Jan-
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Figure 12. September 2020 average isoprene (ISOP) and terpene (TERP) emissions (a, b) in the prior NAQFC with BEISv3.1.4 and the
absolute differences (c, d) between NACC-CMAQ (with BEISv3.6.1) and NAQFC.

uary 2021) as concentrations are relatively high for the pol-
lutant’s respective seasons. During the late US ozone season
in September 2020, a large majority of the local NOx con-
centration increases in NACC-CMAQ (Fig. 13a–b) correlate
with areas of NOx emissions increases in the NEIC2016v1
compared to the NEI2014v2 (Fig. 11b). An exception is the
large NOx increases in the far west (e.g., California and Ore-
gon) that stem from gaseous NOx emissions from strong
wildfires that are captured by the GBBEPx in NACC-CMAQ
(Table 1) but are excluded from the prior NAQFC wildfire
emissions system (Table S2).

The increases in NOx concentrations and enhanced night-
time O3 titration, widespread decreases in total VOC concen-
trations due to both anthropogenic and biogenic VOC emis-
sion decreases in NACC-CMAQ, GFSv16-meteorology im-
pacts (e.g., higher PBLH), and updated CMAQv5.3.1 chem-
istry and transport lead to widespread decreases in hourly
O3 when averaged over all hours (Fig. 13e–f). Regions of
higher NOx emissions, overall drier (i.e., widespread lower
Q2) conditions, and stronger mid- to late-afternoon solar ra-
diation reaching the surface (i.e., widespread lower CFRAC)
(see Figs. 4–5 and S21–22) lead to enhanced daytime O3
formation, which is shown in the widespread increases in
the maximum daily 8 h average (MDA8) O3 for NACC-
CMAQ (Fig. 13g–h). This is particularly true for the strongly
NOx-limited conditions across much of the western CONUS,

where the MDA8 O3 increases are impacted by large in-
creases in wildfire NOx emissions in GBBEPx and VOC de-
creases (anthropogenic+biogenic but no wildfire VOC emis-
sion impacts) in NACC-CMAQ. These effects subsequently
impact the ozone NOx-VOC sensitivity regime that enhances
the NOx-saturated (i.e., VOC-limited) conditions in this case
(Fig. S24). There are exceptions, with MDA8 O3 decreases
in the west, including western Oregon, the San Joaquin Val-
ley in California, and regions of the southwestern CONUS,
all of which are strongly VOC-limited (Fig. S24). These re-
gions are further impacted by the VOC decreases and fur-
ther NOx saturation from wildfire emissions in some loca-
tions of the west. Although outside the scope of this work,
we also found that the NACC/GFSv16-CMAQ system yields
reasonable results when comparing fire-enhanced O3 and
PM2.5 concentrations to aircraft measurements during the
2019 Fire Influence on Regional to Global Environments and
Air Quality (FIREX-AQ) field campaign (https://csl.noaa.
gov/projects/firex-aq/, last access: 5 April 2022) (not shown).
The widespread decreases in both the hourly and MDA8 O3
over all oceanic regions in the domain are driven by the up-
dated halogen (e.g., bromine and iodine chemistry) mediated
O3 loss in NACC-CMAQ, which can reduce annual mean
surface ozone over seawater by 25 % (Sarwar et al., 2019).

There are both relatively large increases (north, northeast,
and west) and decreases (south, southeast, and parts of the
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Figure 13. Average September 2020 NOx , total VOCs, hourly O3, and MDA8 O3 and January 2021 PM2.5_TOT, PM2.5_SO4, PM2.5_NO3,
and PM2.5_NH4 for the prior NAQFC and the absolute differences for NACC-CMAQ–NAQFC.

west) for winter (January 2021) total PM2.5 (PM25_TOT)
in the CONUS for NACC-CMAQ compared to NAQFC
(Fig. 13i–j). The decreases in inorganic PM25_TOT in the
east and southeast are dominated by decreases in particulate
sulfate (PM25_SO4) and ammonium (PM25_NH4), while
the increases in the northern central and eastern CONUS are
driven by increases in particulate nitrate (PM25_NO3) and
PM25_NH4. Further analysis indicates that the widespread
decreases in PM25_SO4 (strongest in the east) are driven
strongly by widespread lower CFRAC in GFSv16 (Fig. 4o–
p) and lower aqueous-phase oxidation in CMAQ (not
shown). There are also contributions from decreased SO2
emissions found in some CONUS regions for NACC-CMAQ
(e.g., the northeast; Fig. 11c). Additional consumption of in-
organic sulfate as secondary isoprene epoxydiol (IEPOX)
organosulfates are formed in the updated AERO7 aerosol
mechanism in NACC-CMAQ (Table 1; Pye et al., 2013,
2017), and these further contribute to the PM25_SO4 de-
creases. The higher total PRECIP for NACC-CMAQ (Fig. 5)
also leads to lower PM25_TOT in the eastern and southeast-
ern regions.

The largest PM25_TOT increases in the northern central
CONUS are primarily driven by enhanced ammonium nitrate
formation, PM25_NO3, and PM25_NH4, which are influ-
enced by increases in NH3 emissions (Fig. 11) and the inclu-
sion of BIDI-NH3 fluxes in NACC-CMAQ (Table 1). BIDI-
NH3 in NACC-CMAQ allows for inline calculation of the
diurnal pattern of both NH3 evasion (emission) and deposi-
tion, while the prior NAQFC only includes deposition. Con-
sequently, BIDI-NH3 in NACC-CMAQ generally increases
ambient NH+4 and NO−3 aerosol concentrations (Bash et al.,
2013; Pleim et al., 2019) compared to the prior NAQFC.

There are also contributions to the increased PM25_TOT
from organic carbon sources (Fig. S25; PM25_OC), espe-
cially in the northeastern portion of the domain that include
the St. Lawrence River valley region. This is in part due
to enhanced anthropogenic VOC emissions in NEIC2016v1
(Fig. 11e, e.g., formaldehyde; not shown) and enhanced
AERO7 secondary organic aerosol formation in this re-
gion for NACC-CMAQ (not shown). There are also small
PM25_EC contributions to the PM25_TOT decreases in the
east and increases in the west for NACC-CMAQ (Fig. S25),
which are mainly due to decreases in anthropogenic PEC
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Table 3. Average September 2020 hourly O3 evaluation of the operational NAQFC and NACC-CMAQ day 1 forecasts against the AirNow
network in different CONUS regions (based on https://www.epa.gov/aboutepa/regional-and-geographic-offices, last access: 5 April 2022).
Statistical benchmark values based on Emery et al. (2017) are also shown for comparison. Following Emery et al. (2017), a > 40 ppb (i.e.,
daytime) cutoff for hourly O3 is applied for the mean observations, mean models, mean bias, and the calculated values of NMB and NME
but not for the correlation value (r) or index of agreement (IOA). The total number of observation–model pairs is based on all values (i.e.,
no cutoff). Bold font indicates statistical values outside of the Emery et al. (2017) criteria. Italic font indicates improved NACC-CMAQ
performance. Tables S5–S10 provide day 2 and day 3 (NACC-CMAQ only) forecast evaluations.

Day 1 Total Mean Mean Mean NMB NME Corr IOA
Forecasts no. of obs mod bias (%) (%) (r)

pairs (ppb) (ppb) (ppb)

Benchmark: – – – – Goal: Goal: Goal: –
Emery et al. <±5%; < 15%; > 0.75;
(2017) criteria: criteria: criteria:

<±15% < 25% > 0.50

Region 1 (northeast)

NAQFC 35 983 46.85 43.55 −3.31 −7.06 15.04 0.61 0.71
NACC-CMAQ 43.44 −3.42 −7.29 15.14 0.70 0.81

Region 2 (NY–NJ)

NAQFC 22 944 46.68 42.90 −3.77 −8.09 17.88 0.59 0.72
NACC-CMAQ 45.18 −1.50 −3.21 14.27 0.72 0.81

Region 3 (mid-Atlantic)

NAQFC 89 069 46.66 44.29 −2.37 −5.09 12.84 0.65 0.73
NACC-CMAQ 45.81 −0.85 −1.83 13.48 0.74 0.82

Region 4 (southeast)

NAQFC 105 858 44.62 45.93 1.31 2.93 13.37 0.61 0.65
NACC-CMAQ 47.99 3.37 7.55 14.91 0.74 0.75

Region 5 (upper Midwest)

NAQFC 109 744 46.61 43.84 −2.77 −5.94 13.28 0.69 0.77
NACC-CMAQ 46.59 −0.03 −0.05 10.69 0.77 0.83

Region 6 (south)

NAQFC 84 005 48.17 47.18 −0.99 −2.06 13.17 0.68 0.75
NACC-CMAQ 47.81 −0.36 −0.75 12.80 0.75 0.81

Region 7 (central Great Plains)

NAQFC 27 139 44.98 44.84 −0.14 −0.31 10.45 0.76 0.81
NACC-CMAQ 47.18 2.20 4.90 9.54 0.82 0.86

Region 8 (northern Great Plains)

NAQFC 51 759 48.97 44.64 −4.32 −8.83 13.89 0.71 0.82
NACC-CMAQ 45.08 −3.89 −7.95 14.00 0.72 0.85

Region 9 (west)

NAQFC 124 051 55.44 50.29 −5.15 −9.29 18.37 0.69 0.79
NACC-CMAQ 46.37 −9.07 −16.37 21.78 0.71 0.83

Region 10 (northwest)

NAQFC 14 139 48.41 39.37 −9.03 −18.66 21.59 0.61 0.72
NACC-CMAQ 41.70 −6.71 −13.86 19.91 0.66 0.81
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Figure 14. Day 1 forecast mean bias plots (model-AirNow) for the current operational NAQFC (a, c) and NACC-CMAQ (b, d) hourly O3 (a,
b) and PM2.5 (c, d) in (a)–(b) September 2020 and (c)–(d) January 2021. Average domain-wide statistics are shown in the tables on the
bottom right of each panel.

emissions in the east (Fig. 11g) but also stem from contribu-
tions of relatively small GBBEPx PM emissions in the west
(not shown). The prior NAQFC does not include biomass
burning smoke emissions during the month of January.

4.5 Air quality evaluations and metrics

Evaluation of NACC-CMAQ shows overall improvement in
the spatial MB of hourly O3 (September) and PM2.5 (Jan-
uary) against the AirNow network across CONUS (Fig. 14).
There are clear reductions in the NAQFC overpredictions of
O3 and PM2.5 in the east, and overall reduction in NME,
and overall improved correlation (R) and IOA for NACC-
CMAQ. There are also reduced overpredictions in the west
for O3 in September. The shifts to lower concentrations re-
sult in larger domain-wide average PM2.5 underpredictions
for NACC-CMAQ compared to the prior NAQFC (cf. Fig. 13
above); however, the improvements inR and IOA for NACC-
CMAQ are substantial. The MDA8 O3 spatial MB evaluation
against AirNow behaves similarly to NAQFC, with slight
degradation in the model performance statistics because of
areas of higher overpredictions in the eastern US due to rea-
sons discussed above for enhanced daytime O3 formation in
NACC-CMAQ (Fig. S26).

The day 2 forecasts have similar spatial model perfor-
mance and statistics, with improved hourly O3 and PM2.5
model performance (Fig. S27) and slightly higher MDA8

O3 overpredictions in the east for NACC-CMAQ (Fig. S28).
The consistent model performance for day 3 also shows util-
ity in extending to 72 h air quality forecasts in the advanced
NACC-CMAQ system (Figs. S29–S30). There is, however,
a more notable degradation in skill for the day 3 forecast of
PM2.5 compared to O3 in NACC-CMAQ (compare Figs. 14
and S29).

There is significant improvement in the average O3 and
PM2.5 diurnal patterns for each CONUS region other than
higher daytime O3 peaks for NACC-CMAQ compared to
prior NAQFC (Fig. 15a–i). This is reflected in the improved
R and IOA over the CONUS on average for NACC-CMAQ
(Fig. 14a–b). There is improved day-to-night O3 transition,
i.e., a sharper slope or cutoff of daytime O3 formation, which
leads to lower nighttime O3 mixing ratios in NACC-CMAQ
that agree better with AirNow observations for all CONUS
regions.

The NACC-CMAQ PM2.5 diurnal pattern is also more
consistent with AirNow for most CONUS regions (Fig. 15k–
t), which is supported by improved R and IOA (Fig. 14c–d).
There are, however, some regions (e.g., the northeast, south,
and northwest) that the prior NAQFC shows better diurnal
performance in this case.

Overall performance evaluations of hourly O3 in each
CONUS region show predominantly improved statistics for
NACC-CMAQ, with increasedR and IOA for all regions (Ta-
ble 3). Comparisons of the NMB, NME, and R against statis-
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Figure 15. Average September 2020 O3 (top) and January 2021 PM2.5 (bottom) diurnal patterns for NAQFC (blue), NACC-CMAQ
(red), and AirNow observations (green) for different regions in the CONUS. The regions are based on https://www.epa.gov/aboutepa/
regional-and-geographic-offices (last access: 5 April 2022).

tical benchmark values for photochemical models based on
Emery et al. (2017) indicate that both the prior NAQFC and
NACC-CMAQ are within specified criteria for hourly O3 in
most regions, except for relatively large NMB values in the
west and northwest regions. The increased hourly O3 under-
predictions in NACC-CMAQ degrades the NMB to fail to
meet the benchmark in the west but improves the NMB to
fall within criteria in the northwest region.

The higher MDA8 O3 in NACC-CMAQ degrades its re-
gional NMB, NME, and R performance slightly compared
to the prior NAQFC (Table 4), but R and IOA illustrate im-
provements for most regions, in some cases substantially for
R (e.g., northeast, southeast, the upper Midwest, and the cen-
tral Great Plains). The higher daytime O3 overpredictions by
NACC-CMAQ in much of CONUS result in higher NMB
and NME values that fall outside of the Emery et al. (2017)
benchmark criteria. These remain a concern for both the prior
NAQFC and NACC-CMAQ, and efforts are underway to ad-
dress the persistent daytime O3 overprediction in the sum-
mer, particularly in the eastern US (see Fig. 14a–b and fur-
ther discussion in Sect. 5).

There are substantial improvements in the overall statisti-
cal PM2.5 performance for NACC-CMAQ, especially for R
and IOA in most CONUS regions. In many regions where the
prior NAQFC falls outside of photochemical criteria values
(Emery et al., 2017), NACC-CMAQ shows significant im-
provement to fall within the criteria. This demonstrates a sub-
stantial improvement in the accuracy of the NACC-CMAQ
system for PM2.5 predictions (outside of major wildfires), at-
tributed to the scientific advancements described above.

The day 2 forecast comparisons of the prior NAQFC and
NACC-CMAQ regional statistics are similar to day 1, and
the day 3 forecast extension for NACC-CMAQ has utility
as its O3 and PM2.5 statistics predominantly fall within the
benchmark criteria in most regions (Tables S5–S10).

5 Conclusions and path forward

An advanced National Air Quality Forecasting Capability
(NAQFC) was developed and evaluated using NOAA’s FV3-
based Global Forecast System version 16 (GFSv16) as the
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Table 4. The same as in Table 3 but for MDA8 O3. Note that, as discussed in Emery et al. (2017), cutoff values are not applied for MDA8
O3.

Day 1 Total Mean Mean Mean NMB NME Corr IOA
forecasts no. of obs mod bias (%) (%) (r)

pairs (ppb) (ppb) (ppb)

Benchmark: – – – – Goal: Goal: Goal: –
Emery et al. <±5%; < 15%; > 0.75;
(2017) criteria: criteria: criteria:

<±15% < 25% > 0.50

Region 1 (northeast)

NAQFC 1680 33.05 38.45 5.40 16.35 22.60 0.66 0.73
NACC-CMAQ 38.60 5.55 16.81 21.57 0.73 0.75

Region 2 (NY–NJ)

NAQFC 1158 32.79 37.07 4.29 13.08 21.38 0.66 0.76
NACC-CMAQ 39.22 6.44 19.63 23.65 0.74 0.75

Region 3 (mid-Atlantic)

NAQFC 4243 33.85 39.35 5.50 16.24 20.75 0.74 0.77
NACC-CMAQ 41.31 7.46 22.05 24.54 0.76 0.75

Region 4 (southeast)

NAQFC 5076 31.01 40.30 9.29 29.95 31.83 0.64 0.64
NACC-CMAQ 41.06 10.05 32.41 33.40 0.74 0.67

Region 5 (upper Midwest)

NAQFC 5210 34.08 37.88 3.80 11.16 18.51 0.75 0.82
NACC-CMAQ 39.89 5.81 17.06 19.94 0.82 0.82

Region 6 (south)

NAQFC 3901 35.65 42.37 6.72 18.84 23.91 0.74 0.77
NACC-CMAQ 43.01 7.35 20.63 24.35 0.78 0.78

Region 7 (central Great Plains)

NAQFC 1256 33.37 37.83 4.46 13.36 17.99 0.78 0.82
NACC-CMAQ 39.36 6.00 17.97 19.86 0.85 0.84

Region 8 (northern Great Plains)

NAQFC 2379 44.18 43.51 −0.47 −1.07 12.84 0.74 0.85
NACC-CMAQ 44.95 0.78 1.76 11.78 0.79 0.88

Region 9 (west)

5757 51.03 51.26 0.23 0.44 17.84 0.70 0.82
NACC-CMAQ 48.03 −3.00 −5.88 18.73 0.68 0.79

Region 10 (northwest)

NAQFC 698 33.13 35.46 2.33 7.03 25.11 0.63 0.72
NACC-CMAQ 36.66 3.53 10.67 25.58 0.59 0.74

driving meteorology for a state-of-the-science Community
Multiscale Air Quality (CMAQ) model version 5.3.1. A
key component of this new system is the development of
the NOAA-EPA Atmosphere Chemistry Coupler (NACC),
which forms the bridge between the GFSv16 meteorolog-

ical fields and the CMAQ inputs for improved chemical
predictions (i.e., NACC-CMAQ). Such advancements of the
NACC-CMAQ system include high-resolution satellite veg-
etation inputs, with a rapid-refresh VIIRS greenness veg-
etation fraction and VIIRS climatological leaf area index,
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Table 5. The same as in Table 3 but for 24 h average PM2.5. Note that, as discussed in Emery et al. (2017), cutoff values are not applied for
24 h average PM2.5.

Day 1 Total Mean Mean Mean NMB NME Corr IOA
forecasts no. of obs mod bias (%) (%) (r)

pairs (ppb) (ppb) (ppb)

Benchmark: – – – – Goal: Goal: Goal: –
Emery et al. <±10%; < 35%; > 0.70;
(2017) criteria: criteria: criteria:

<±30% < 50% > 0.40

Region 1 (northeast)

NAQFC 1261 7.43 8.47 1.04 13.98 42.57 0.77 0.85
NACC-CMAQ 9.39 1.95 26.30 46.17 0.75 0.83

Region 2 (NY–NJ)

NAQFC 598 8.54 15.39 6.85 80.25 89.21 0.72 0.55
NACC-CMAQ 10.84 2.30 26.90 47.60 0.77 0.74

Region 3 (mid-Atlantic)

NAQFC 1897 9.16 11.95 2.79 30.43 42.57 0.81 0.84
NACC-CMAQ 10.16 1.00 10.96 33.24 0.83 0.89

Region 4 (southeast)

NAQFC 3621 8.45 9.67 1.23 14.53 40.44 0.41 0.62
NACC-CMAQ 7.86 −0.59 −6.98 37.19 0.48 0.67

Region 5 (upper Midwest)

NAQFC 3270 9.61 9.79 0.19 1.93 38.09 0.58 0.75
NACC-CMAQ 9.65 0.04 0.46 31.42 0.72 0.84

Region 6 (south)

NAQFC 2101 8.39 7.95 −0.44 −5.19 46.68 0.28 0.57
NACC-CMAQ 6.39 −2.00 −23.82 43.30 0.36 0.59

Region 7 (central Great Plains)

NAQFC 926 8.67 9.83 1.16 13.41 49.67 0.32 0.58
NACC-CMAQ 8.79 0.12 1.40 32.13 0.68 0.82

Region 8 (northern Great Plains)

NAQFC 1790 7.66 4.36 −3.30 −43.13 60.51 0.33 0.55
NACC-CMAQ 4.89 −2.77 −36.20 52.68 0.49 0.67

Region 9 (west)

NAQFC 4118 10.09 7.04 −3.05 −30.27 46.97 0.61 0.74
NACC-CMAQ 7.98 −2.11 −20.89 50.69 0.56 0.73

Region 10 (northwest)

NAQFC 3922 7.93 6.86 −1.07 −13.54 78.99 0.20 0.46
NACC-CMAQ 6.33 −1.60 −20.19 71.73 0.23 0.49

as well as additional soil data inputs to an improved wind-
blown dust (FENGSHA) algorithm in CMAQ. The anthro-
pogenic, biogenic, and wildfire emissions in NACC-CMAQ
are also updated compared to the prior NAQFC, and for
the first time the forecasting model calculates inline bidirec-

tional NH3 fluxes. NACC-CMAQ also ingests novel smoke
and dust aerosols at its lateral boundaries dynamically from
the NOAA operational GEFS-Aerosols model. Finally, the
NACC-CMAQ system extends the air quality forecast from
48 to 72 h and provides scientific advances in atmospheric
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chemistry modeling to state and local forecasters out to 3 d.
The additional day of forecast guidance could aid decision
makers to prepare citizens for localized air quality conditions
that could adversely affect public health.

Results of the NACC-CMAQ system during recent late
summer (September 2020) and winter (January 2021)
months show significant changes in both meteorological and
chemical predictions compared to the prior NAQFC. The
GFSv16 for NACC-CMAQ has a persistently large dry bias
(lower Q2) and larger RMSE across much of CONUS in late
summer compared to NMMB (i.e., prior NAQFC), which
likely stems from excessively dry soil conditions in GFS.
GFS is generally cooler in the east and warmer in the west
for surface temperature (TEMP2) compared to NMMB, but
the overall MB and RMSE are more similar between the
models compared to that for Q2. The GFS has a relatively
similar planetary boundary layer height (PBLH) at night,
but the PBLH in GFSv16 (NACC-CMAQ) is consistently
deeper during the daytime peak hours compared to the prior
NAQFC.

The differences in surface characteristics, meteorology,
and both anthropogenic and natural emissions are driv-
ing factors for distinct atmospheric composition differ-
ences, where NACC-CMAQ generally outperforms the prior
NAQFC for both hourly O3 and PM2.5, especially with im-
proved correlation (R) and IOA. This agrees well with sig-
nificant improvements in the diurnal O3 and PM2.5 patterns
for NACC-CMAQ, with distinct improvements in the day-
to-night O3 slope and cutoff. While similar overall, the max-
imum daily 8 h average (MDA8) O3 is predominantly higher
for NACC-CMAQ compared to prior NAQFC, which leads
to some forecast degradation due to larger overpredictions of
the daytime max O3.

The NACC-CMAQ model became the next operational
version of the NAQFC at NWS/NOAA on 20 July 2021
and is available on GitHub for continuous integration, fu-
ture code updates, and potential community research ap-
plications. An ongoing comparison and evaluation of the
GFSv16/NACC-CMAQ output with a GFSv16-downscaled
Weather Research and Forecasting (WRF) version 4 (Ska-
marock et al., 2019) and CMAQ application will highlight
the potential of NACC-CMAQ to serve as an additional com-
munity research tool for air quality applications.

While there are substantial advancements in NACC-
CMAQ compared to the prior NAQFC, challenges and lim-
itations remain. One need is to bridge the gap from us-
ing a VIIRS LAI climatology to a rapid-refresh methodol-
ogy, i.e., dynamic methodology (similar to the GVF method
here), in NACC-CMAQ. There is also a need to consider
shifting the paradigm from using “big-leaf” (i.e., homoge-
neous single layer of phytomass) assumptions that strongly
affect the biosphere–atmosphere exchange processes pivotal
to both meteorological and chemical model predictions (re-
fer to Bonan et al., 2021). Simple multilayer canopies have
been shown to reduce overpredictions of ground-level sur-

face O3 in the summer due to photolysis attenuation and
modified vertical turbulence (Makar et al., 2017), which have
significant implications for the daytime O3 overpredictions
in the current and future versions of NAQFC (Figs. 14a–
b and S26). We are currently working on similar canopy
effects in NACC-CMAQ to reduce the summer O3 over-
predictions in the east and southeast and parts of west-
ern CONUS, where there are relatively continuous vegeta-
tion structures and canopies (Fig. 14a–b). Other advance-
ments that are important to improving the future versions
of the NAQFC include dynamically updated (and weather-
dependent) anthropogenic emission sources and improved
treatments of mobile sources (e.g., vehicle-induced turbu-
lence; Makar et al., 2021). Further refinements to the inline
windblown dust emissions, wildfire smoke emissions, and
other process-based natural emissions sources (e.g., lightning
NO) are also needed.

Other future directions include migrating the advanced
science in the offline 12 km resolution NACC-CMAQ model
to a next-generation, high-resolution (e.g., 3 km) inline mod-
eling framework that fits within NOAA’s strategy for the Uni-
fied Forecast System (UFS; https://ufscommunity.org/, last
access: 5 April 2022). This model system aims to improve in-
tegration of atmospheric composition changes with weather
predictions, better resolve finer-scale processes, and advance
the rapid-refresh techniques for emissions and surface–
atmosphere exchange processes. At this time, NACC-CMAQ
also does not use dynamic lateral boundary conditions for
trace gases and only has dynamically ingested smoke and
dust aerosols at its lateral boundaries from the NOAA op-
erational GEFS-Aerosols model. Current work is underway
to use next-generation UFS-based global model systems as
updated lateral boundary conditions for trace gases in the fu-
ture of the NAQFC.

Development and implementation of the NACC-CMAQ
model is an important step to (i) advance the NAQFC closer
to the state of the science for regional air quality forecasting,
(ii) improve community applications of NOAA’s FV3GFS-
driven atmospheric composition models, and (iii) facilitate
the future development of regional high-resolution inline air
quality forecasting systems within the UFS framework at
NOAA.

Code and data availability. The NACC code is publicly available
at https://doi.org/10.5281/zenodo.5507489 (Campbell, 2021a) and
via GitHub at https://github.com/noaa-oar-arl/NACC.git (last ac-
cess: 5 April 2022). The modified version of CMAQv5.3.1 used in
the advanced NACC-CMAQ model for the next operational NAQFC
is available at https://doi.org/10.5281/zenodo.5507511 (Campbell,
2021b) and via GitHub at https://github.com/noaa-oar-arl/NAQFC
(last access: 5 April 2022).

The 0.25◦ FV3-driven Global Forecast System version 16
data (cycled 4× per day) are available in GRIB2 format at
https://www.nco.ncep.noaa.gov/pmb/products/gfs/ (NOAA/NWS,
2022a). The hourly GFSv16 data in gridded NetCDF (∼ 13×
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13 km globally) format and the Gaussian projection that are
directly used to drive NACC-CMAQ are also currently be-
ing migrated to the Amazon Web Services (AWS) Cloud
for improved NOAA community air quality research appli-
cations. The advanced NACC-CMAQ data, i.e., the current
operational NAQFC version as of 20 July 2021, are avail-
able for operational (https://airquality.weather.gov/, NOAA/NWS,
2022b) and interactive (https://digital.mdl.nws.noaa.gov/airquality/
#, NOAA/NWS, 2022c) display from NWS/NOAA. The official
NOAA/EMC verification and diagnostics for the NAQFC system
are found at https://www.emc.ncep.noaa.gov/mmb/aq/verification_
diagnostics/cmaq_verf/ (NOAA/NWS, 2022d).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-3281-2022-supplement.
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