Articles | Volume 15, issue 6
https://doi.org/10.5194/gmd-15-2653-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2653-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Added value of EURO-CORDEX high-resolution downscaling over the Iberian Peninsula revisited – Part 2: Max and min temperature
João António Martins Careto
CORRESPONDING AUTHOR
Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal
Pedro Miguel Matos Soares
Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal
Rita Margarida Cardoso
Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Ed. C8, 1749-016 Lisbon, Portugal
Sixto Herrera
Meteorology Group, Dept. of Applied Mathematics and Computer Science,
Universidad de Cantabria, Santander, Spain
José Manuel Gutiérrez
Meteorology Group, Instituto de Física de Cantabria,
CSIC-University of Cantabria, Santander, Spain
Related authors
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with a recent observational gridded dataset as a reference, covering the entire Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional climate models encouraged this study. For precipitation, most models reveal added value. The gains are even more evident for precipitation extremes, particularly at a more local scale.
Óscar Mirones, Joaquín Bedia, Sixto Herrera, Maialen Iturbide, and Jorge Baño Medina
Hydrol. Earth Syst. Sci., 29, 799–822, https://doi.org/10.5194/hess-29-799-2025, https://doi.org/10.5194/hess-29-799-2025, 2025
Short summary
Short summary
We devised an adaptive method for calibrating remote sensing precipitation in the South Pacific. By classifying data into weather types and applying varied techniques, we achieve improved calibration. Results showed enhanced accuracy in mean and extreme precipitation indices across locations. The method offers customization options and effectively addresses intense rainfall events. Its versatility allows for application in diverse scenarios, supporting a better understanding of climate impacts.
Colin G. Jones, Fanny Adloff, Ben B. B. Booth, Peter M. Cox, Veronika Eyring, Pierre Friedlingstein, Katja Frieler, Helene T. Hewitt, Hazel A. Jeffery, Sylvie Joussaume, Torben Koenigk, Bryan N. Lawrence, Eleanor O'Rourke, Malcolm J. Roberts, Benjamin M. Sanderson, Roland Séférian, Samuel Somot, Pier Luigi Vidale, Detlef van Vuuren, Mario Acosta, Mats Bentsen, Raffaele Bernardello, Richard Betts, Ed Blockley, Julien Boé, Tom Bracegirdle, Pascale Braconnot, Victor Brovkin, Carlo Buontempo, Francisco Doblas-Reyes, Markus Donat, Italo Epicoco, Pete Falloon, Sandro Fiore, Thomas Frölicher, Neven S. Fučkar, Matthew J. Gidden, Helge F. Goessling, Rune Grand Graversen, Silvio Gualdi, José M. Gutiérrez, Tatiana Ilyina, Daniela Jacob, Chris D. Jones, Martin Juckes, Elizabeth Kendon, Erik Kjellström, Reto Knutti, Jason Lowe, Matthew Mizielinski, Paola Nassisi, Michael Obersteiner, Pierre Regnier, Romain Roehrig, David Salas y Mélia, Carl-Friedrich Schleussner, Michael Schulz, Enrico Scoccimarro, Laurent Terray, Hannes Thiemann, Richard A. Wood, Shuting Yang, and Sönke Zaehle
Earth Syst. Dynam., 15, 1319–1351, https://doi.org/10.5194/esd-15-1319-2024, https://doi.org/10.5194/esd-15-1319-2024, 2024
Short summary
Short summary
We propose a number of priority areas for the international climate research community to address over the coming decade. Advances in these areas will both increase our understanding of past and future Earth system change, including the societal and environmental impacts of this change, and deliver significantly improved scientific support to international climate policy, such as future IPCC assessments and the UNFCCC Global Stocktake.
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio A. Bento, and Angelina Bushenkova
Geosci. Model Dev., 17, 229–259, https://doi.org/10.5194/gmd-17-229-2024, https://doi.org/10.5194/gmd-17-229-2024, 2024
Short summary
Short summary
This study uses deep learning (DL) to downscale global climate models for the Iberian Peninsula. Four DL architectures were evaluated and trained using historical climate data and then used to downscale future projections from the global models. These show agreement with the original models and reveal a warming of 2 ºC to 6 ºC, along with decreasing precipitation in western Iberia after 2040. This approach offers key regional climate change information for adaptation strategies in the region.
Miguel Nogueira, Alexandra Hurduc, Sofia Ermida, Daniela C. A. Lima, Pedro M. M. Soares, Frederico Johannsen, and Emanuel Dutra
Geosci. Model Dev., 15, 5949–5965, https://doi.org/10.5194/gmd-15-5949-2022, https://doi.org/10.5194/gmd-15-5949-2022, 2022
Short summary
Short summary
We evaluated the quality of the ERA5 reanalysis representation of the urban heat island (UHI) over the city of Paris and performed a set of offline runs using the SURFEX land surface model. They were compared with observations (satellite and in situ). The SURFEX-TEB runs showed the best performance in representing the UHI, reducing its bias significantly. We demonstrate the ability of the SURFEX-TEB framework to simulate urban climate, which is crucial for studying climate change in cities.
Anne Sophie Daloz, Clemens Schwingshackl, Priscilla Mooney, Susanna Strada, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Nathalie de Noblet-Ducoudré, Michal Belda, Tomas Halenka, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 2403–2419, https://doi.org/10.5194/tc-16-2403-2022, https://doi.org/10.5194/tc-16-2403-2022, 2022
Short summary
Short summary
Snow plays a major role in the regulation of the Earth's surface temperature. Together with climate change, rising temperatures are already altering snow in many ways. In this context, it is crucial to better understand the ability of climate models to represent snow and snow processes. This work focuses on Europe and shows that the melting season in spring still represents a challenge for climate models and that more work is needed to accurately simulate snow–atmosphere interactions.
Priscilla A. Mooney, Diana Rechid, Edouard L. Davin, Eleni Katragkou, Natalie de Noblet-Ducoudré, Marcus Breil, Rita M. Cardoso, Anne Sophie Daloz, Peter Hoffmann, Daniela C. A. Lima, Ronny Meier, Pedro M. M. Soares, Giannis Sofiadis, Susanna Strada, Gustav Strandberg, Merja H. Toelle, and Marianne T. Lund
The Cryosphere, 16, 1383–1397, https://doi.org/10.5194/tc-16-1383-2022, https://doi.org/10.5194/tc-16-1383-2022, 2022
Short summary
Short summary
We use multiple regional climate models to show that afforestation in sub-polar and alpine regions reduces the radiative impact of snow albedo on the atmosphere, reduces snow cover, and delays the start of the snowmelt season. This is important for local communities that are highly reliant on snowpack for water resources and winter tourism. However, models disagree on the amount of change particularly when snow is melting. This shows that more research is needed on snow–vegetation interactions.
João António Martins Careto, Pedro Miguel Matos Soares, Rita Margarida Cardoso, Sixto Herrera, and José Manuel Gutiérrez
Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, https://doi.org/10.5194/gmd-15-2635-2022, 2022
Short summary
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with a recent observational gridded dataset as a reference, covering the entire Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional climate models encouraged this study. For precipitation, most models reveal added value. The gains are even more evident for precipitation extremes, particularly at a more local scale.
Giannis Sofiadis, Eleni Katragkou, Edouard L. Davin, Diana Rechid, Nathalie de Noblet-Ducoudre, Marcus Breil, Rita M. Cardoso, Peter Hoffmann, Lisa Jach, Ronny Meier, Priscilla A. Mooney, Pedro M. M. Soares, Susanna Strada, Merja H. Tölle, and Kirsten Warrach Sagi
Geosci. Model Dev., 15, 595–616, https://doi.org/10.5194/gmd-15-595-2022, https://doi.org/10.5194/gmd-15-595-2022, 2022
Short summary
Short summary
Afforestation is currently promoted as a greenhouse gas mitigation strategy. In our study, we examine the differences in soil temperature and moisture between grounds covered either by forests or grass. The main conclusion emerged is that forest-covered grounds are cooler but drier than open lands in summer. Therefore, afforestation disrupts the seasonal cycle of soil temperature, which in turn could trigger changes in crucial chemical processes such as soil carbon sequestration.
Manuel C. Almeida, Yurii Shevchuk, Georgiy Kirillin, Pedro M. M. Soares, Rita M. Cardoso, José P. Matos, Ricardo M. Rebelo, António C. Rodrigues, and Pedro S. Coelho
Geosci. Model Dev., 15, 173–197, https://doi.org/10.5194/gmd-15-173-2022, https://doi.org/10.5194/gmd-15-173-2022, 2022
Short summary
Short summary
In this study, we have evaluated the importance of the input of energy conveyed by river inflows into lakes and reservoirs when modeling surface water energy fluxes. Our results suggest that there is a strong correlation between water residence time and the surface water temperature prediction error and that the combined use of process-based physical models and machine-learning models will considerably improve the modeling of air–lake heat and moisture fluxes.
Cited articles
Azorin-Molina, C., Tijm, S., Ebert, E. E., Vicente-Serrano, S. M., and Estrela,
M. J.: Sea breeze thunderstorms in the eastern Iberian Peninsula.
Neighborhood verification of HIRLAM and HARMONIE precipitation forecasts,
Atmos. Res., 139, 101–115,
https://doi.org/10.1016/j.atmosres.2014.01.010, 2014.
Ban, N., Caillaud, C., Coppola, E., Pichelli, E., Sobolowski, S., Adinolfi,
M., Ahrens, B., Alias, A., Anders, I., Bastin, S., and Belušić, D.:
The first multi-model ensemble of regional climate simulations at
kilometer-scale resolution, Part I: Evaluation of precipitation, Clim.
Dynam., 57, 275–302, https://doi.org/10.1007/s00382-021-05708-w, 2021.
Brands, S., Herrera, S., Fernández, J., and Gutiérrez, J. M.: How well
do CMIP5 Earth System Models simulate present climate conditions in Europe
and Africa?, Clim. Dynam., 41, 803–817, https://doi.org/10.1007/s00382-013-1742-8, 2013.
Cardoso, R. M., and Soares, P. M. M.: Is there added value in the EURO-CORDEX hindcast temperature simulations? Assessing the added value using climate distributions in Europe, Int. J. Climatol., 1–16, https://doi.org/10.1002/joc.7472, 2022.
Cardoso, R. M., Soares, P. M. M., Miranda, P. M. A., and Belo-Pereira, M.: WRF
high resolution simulation of Iberian mean and extreme precipitation
climate, Int. J. Climatol., 33, 2591–2608, https://doi.org/10.1002/joc.3616, 2013.
Cardoso, R. M., Soares, P. M., Lima, D. C., and Miranda, P. M.: Mean and extreme
temperatures in a warming climate: EURO CORDEX and WRF regional climate
high-resolution projections for Portugal, Clim. Dynam., 52, 129–157,
https://doi.org/10.1007/s00382-018-4124-4, 2019.
Careto, J. A. M., Soares, P. M. M., Cardoso, R. M., Herrera, S., and Guttiérrez, J. M.: Added value of EURO-CORDEX high-resolution downscaling over the Iberian
Peninsula revisited – Part 1: Precipitation, Geosci. Model Dev., 15, 2635–2652, https://doi.org/10.5194/gmd-15-2635-2022, 2022.
Christensen, J. H. and Christensen, O. B.: A summary of the PRUDENCE model
projections of changes in European climate by the end of this century,
Climatic Change, 81, 7–30, https://doi.org/10.1007/s10584-006-9210-7, 2007.
Christensen, J. H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I.,
Jones, R., Kolli, R. K., Kwon, W.-T., Laprise, R., Magaña Rueda, V.,
Mearns, L., Menéndez, C. G., Räisänen, J., Rinke, A., Sarr, A., and
Whetton, P.: Regional climate projections, in: Climate Change 2007: The
Physical Science Basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK and New
York, NY, TRN: GB07CC205, 2007.
Christensen, O. B., Drews, M., Christensen, J. H., Dethloff, K., Ketelsen, K.,
Hebestadt, I., and Rinke, A.: The HIRHAM regional climate model, Version 5
(beta), https://www.dmi.dk/fileadmin/Rapporter/TR/tr06-17.pdf (last access: 29
April 2021), 2007.
Ciarlo, J. M., Coppola, E., Fantini, A., Giorgi, F., Gao, X., Tong, Y.,
Glazer, R. H., Alavez, J. A. T., Sines, T., Pichelli, E., and Raffaele, F.: A
new spatially distributed added value index for regional climate models: the
EURO-CORDEX and the CORDEX-CORE highest resolution ensembles, Clim. Dynam., 57, 1403–1424, https://doi.org/10.1007/s00382-020-05400-5,
2020.
Coppola, E., Sobolowski, S., Pichelli, E., Raffaele, F., Ahrens, B., Anders,
I., Ban, N., Bastin, S., Belda, M., Belusic, D., and Caldas-Alvarez, A.: A
first-of-its-kind multi-model convection permitting ensemble for
investigating convective phenomena over Europe and the Mediterranean, Clim. Dynam., 55, 3–34, https://doi.org/10.1007/s00382-018-4521-8, 2020.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., and Bechtold, P.:
The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Di Luca, A., de Elía, R., and Laprise, R.: Potential for added value in
precipitation simulated by high-resolution nested regional climate models
and observations, Clim. Dynam., 38, 1229–1247, https://doi.org/10.1007/s00382-011-1068-3, 2012.
Di Luca, A., de Elía, R., and Laprise, R.: Potential for small scale
added value of RCM's downscaled climate change signal, Clim. Dynam., 40,
601–618, https://doi.org/10.1007/s00382-012-1415-z, 2013.
Froidevaux, P., Schlemmer, L., Schmidli, J., Langhans, W., and Schär, C.:
Influence of the background wind on the local soil moisture–precipitation
feedback, J. Atmos. Sci., 71, 782–799, https://doi.org/10.1175/JAS-D-13-0180.1, 2014.
García-Díez, M., Fernández, J., and Vautard, R.: An RCM
multi-physics ensemble over Europe: multi-variable evaluation to avoid error
compensation, Clim. Dynam., 45, 3141–3156,
https://doi.org/10.1007/2Fs00382-015-2529-x, 2015.
Giorgi, F. and Bates, G. T.: The climatological skill of a regional model
over complex terrain, Mon. Weather Rev., 117, 2325–2347, https://doi.org/10.1175/1520-0493(1989)117<2325:TCSOAR>2.0.CO;2, 1989.
Giorgi, F. and Mearns, L. O.: Approaches to the simulation of regional
climate change: a review, Rev. Geophys., 29, 191–216, https://doi.org/10.1029/90RG02636, 1991.
Giorgi, F. and Mearns, L. O.: Introduction to special section: Regional
climate modeling revisited, J. Geophys. Res.-Atmos.,
104, 6335–6352, https://doi.org/10.1029/98JD02072, 1999.
Giorgi, F., Jones, C. and Asrar, G. R.: Addressing climate information needs
at the regional level: the CORDEX framework, World Meteorological
Organization (WMO) Bulletin, 58, 175–183, 2009.
Gutowski Jr., W. J., Takle, E. S., Kozak, K. A., Patton, J. C., Arritt, R. W., and
Christensen, J. H.: A possible constraint on regional precipitation intensity
changes under global warming, J. Hydrometeorol., 8, 1382–1396,
https://doi.org/10.1175/2007JHM817.1, 2007.
Gutowski Jr., W. J., Giorgi, F., Timbal, B., Frigon, A., Jacob, D., Kang, H.-S., Raghavan, K., Lee, B., Lennard, C., Nikulin, G., O'Rourke, E., Rixen, M., Solman, S., Stephenson, T., and Tangang, F.: WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6, Geosci. Model Dev., 9, 4087–4095, https://doi.org/10.5194/gmd-9-4087-2016, 2016.
Herrera, S., Cardoso, R. M., Soares, P. M. M., Espírio-Santo, F., Viterbo, P., and Gutiérrez, J. M.: “Iberia01: Daily gridded (0.1º resolution) dataset of precipitation and temperatures over the Iberian Peninsula”, DIGITAL.CSIC [data set], https://doi.org/10.20350/digitalCSIC/8641, 2019a.
Herrera, S., Cardoso, R. M., Soares, P. M., Espírito-Santo, F., Viterbo, P., and Gutiérrez, J. M.: Iberia01: a new gridded dataset of daily precipitation and temperatures over Iberia, Earth Syst. Sci. Data, 11, 1947–1956, https://doi.org/10.5194/essd-11-1947-2019, 2019b.
Herrera, S., Soares, P. M., Cardoso, R. M., and Gutiérrez, J. M.: Evaluation
of the EURO-CORDEX Regional Climate Models Over the Iberian Peninsula:
Observational Uncertainty Analysis, J. Geophys. Res.-Atmos., 125, e2020JD032880, https://doi.org/10.1029/2020JD032880, 2020.
Hohenegger, C., Brockhaus, P., Bretherton, C. S., and Schär, C.: The soil
moisture–precipitation feedback in simulations with explicit and
parameterized convection, J. Climate, 22, 5003–5020, https://doi.org/10.1175/2009JCLI2604.1, 2009.
Imamovic, A., Schlemmer, L., and Schär, C.: Collective impacts of
orography and soil moisture on the soil moisture-precipitation feedback,
Geophys. Res. Lett., 44, 11682–11691, https://doi.org/10.1002/2017GL075657, 2017.
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer,
L. M., Braun, A., Colette, A., Déqué, M., Georgievski, G., and
Georgopoulou, E.: EURO-CORDEX: new high-resolution climate change
projections for European impact research, Reg. Environ. Change, 14,
563–578, https://doi.org/10.1007/s10113-013-0499-2,
2014.
Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I., Belda,
M., Benestad, R., Boberg, F., Buonomo, E., Cardoso, R. M., Casanueva, A.,
Christensen, O. B., Christensen, J. H., Coppola, E., De Cruz, L., Davin, E. L.,
Dobler, A., Domínguez, M., Fealy, R., Fernandez, J., Gaertner, M. A.,
García-Díez, M., Giorgi, F., Gobiet, A., Goergen, K.,
Gómez-Navarro, J. J., Alemán, J. J. G., Gutiérrez, C.,
Gutiérrez, J. M., Güttler, I., Haensler, A., Halenka, T., Jerez, S.,
Jiménez-Guerrero, P., Jones, R. G., Keuler, K., Kjellström, E.,
Knist, S., Kotlarski, S., Maraun, D., van Meijgaard, E., Mercogliano, P.,
Montávez, J. P., Navarra, A., Nikulin, G., Noblet-Ducoudré, N.,
Panitz, H. J., Pfeifer, S., Piazza, M., Pichelli, E., Pietikäinen, J. P.,
Prein, A. F., Preuschmann, S., Rechid, D., Rockel, B., Romera, R.,
Sánchez, E., Sieck, K., Soares, P. M. M., Somot, S., Srnec, L.,
Sørland, S. L., Termonia, P., Truhetz, H., Vautard, R., Warrach-Sagi, K.,
and Wulfmeyer, V.: Regional climate downscaling over Europe: perspectives
from the EURO-CORDEX community, Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9, 2020.
Khan, M. S., Coulibaly, P., and Dibike, Y.: Uncertainty analysis of
statistical downscaling methods, J. Hydrol., 319, 357–382,
https://doi.org/10.1016/j.jhydrol.2005.06.035, 2006.
Kirshbaum, D. J., Adler, B., Kalthoff, N., Barthlott, C., and Serafin, S.:
Moist orographic convection: Physical mechanisms and links to
surface-exchange processes, Atmosphere, 9, 80, https://doi.org/10.3390/atmos9030080, 2018.
Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R.,
Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L.,
Kern-Hansen, C., and Heino, R.: Daily dataset of 20th-century surface air
temperature and precipitation series for the European Climate Assessment,
Int. J. Climatol., 22, 1441–1453, https://doi.org/10.1002/joc.773, 2002.
Klok, E. J. and Klein Tank, A. M. G.: Updated and extended European dataset of
daily climate observations, Int. J. Climatol., 29, 1182–1191, https://doi.org/10.1002/joc.1779, 2009.
Knist, S., Goergen, K., and Simmer, C.: Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe, Clim. Dynam., 55, 325–341, https://doi.org/10.1007/s00382-018-4147-x, 2020.
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014.
Laprise, R.: Regional climate modelling, J. Comput. Phys.,
227, 3641–3666, https://doi.org/10.1016/j.jcp.2006.10.024,
2008.
Leung, L. R., Mearns, L. O., Giorgi, F., and Wilby, R. L.: Regional climate
research: Needs and opportunities, B. Am. Meteorol.
Soc., 84, 89–95, 2003.
Lhotka, O., Kyselý, J., and Plavcová, E.: Evaluation of major heat
waves' mechanisms in EURO-CORDEX RCMs over Central Europe, Clim. Dynam.,
50, 4249–4262, https://doi.org/10.1007/s00382-017-3873-9, 2018.
McGregor, J. L.: Regional climate modelling, Meteorol. Atmos.
Phys., 63, 105–117, https://doi.org/10.1007/BF01025367, 1997.
McSweeney, C. F., Jones, R. G., Lee, R. W., and Rowell, D. P.: Selecting CMIP5
GCMs for downscaling over multiple regions, Clim. Dynam., 44, 3237–3260,
https://doi.org/10.1007/s00382-014-2418-8, 2015.
Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T.,
Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., and Raper,
S. C.: Global climate projections In Climate Change 2007: The Physical
Science Basis, Contribution of Working Group I to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Solomon,
S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M.,
Miller, H. L., Cambridge University Press, Cambridge, UK and New York, NY,
TRN: GB07CC205, 2007.
Minder, J. R., Letcher, T. W., and Skiles, S. M.: An evaluation of
high-resolution regional climate model simulations of snow cover and albedo
over the Rocky Mountains, with implications for the simulated snow-albedo
feedback, J. Geophys. Res.-Atmos., 121, 9069–9088,
https://doi.org/10.1002/2016JD024995, 2016.
Perkins, S. E., Pitman, A. J., Holbrook, N. J., and McAneney, J.: Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions, J. Climate, 20, 4356–4376, https://doi.org/10.1175/JCLI4253.1, 2007.
Pichelli, E., Coppola, E., Sobolowski, S., Ban, N., Giorgi, F., Stocchi, P.,
Alias, A., Belušić, D., Berthou, S., Caillaud, C., and Cardoso, R. M.:
The first multi-model ensemble of regional climate simulations at
kilometer-scale resolution part 2: historical and future simulations of
precipitation, Clim. Dynam., 56, 3581–3602, https://doi.org/10.1007/s00382-021-05657-4, 2021.
Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler, K.,
and Georgievski, G.: Added value of convection permitting seasonal
simulations, Clim. Dynam., 41, 2655–2677, https://doi.org/10.1007/s00382-013-1744-6, 2013.
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K.,
Keller, M., Tölle, M., Gutjahr, O., Feser, F., and Brisson, E.: A review
on regional convection-permitting climate modeling: Demonstrations,
prospects, and challenges, Rev. Geophys., 53, 323–361, https://doi.org/10.1002/2014RG000475, 2015.
Prein, A. F., Gobiet, A., Truhetz, H., Keuler, K., Goergen, K., Teichmann,
C., Maule, C. F., Van Meijgaard, E., Déqué, M., Nikulin, G., and
Vautard, R.: Precipitation in the EURO-CORDEX 0.11∘ and 0.44∘
simulations: high resolution, high benefits?, Clim. Dynam., 46, 383,
https://doi.org/10.1007/s00382-015-2589-y, 2016.
Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T., Fyfe, J.,
Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., and Stouffer, R. J.:
Climate models and their evaluation. In Climate change 2007: The
physical science basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change, edited
by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.,
Tignor, M., and Miller, H. L., Cambridge University Press: Cambridge, UK and New
York, NY, TRN: GB07CC205, 2007.
Prömmel, K., Geyer, B., Jones, J. M., and Widmann, M.: Evaluation of the
skill and added value of a reanalysis-driven regional simulation for Alpine
temperature, Int. J. Climatol., 30, 760–773, https://doi.org/10.1002/joc.1916, 2010.
Rios-Entenza, A., Soares, P. M. M., Trigo, R. M., Cardoso, R. M., and
Miguez-Macho, G.: Precipitation recycling in the Iberian Peninsula: spatial
patterns and temporal variability, J. Geophys. Res.-Atmos., 119, 5895–5912, https://doi.org/10.1002/2013JD021274, 2014.
Rummukainen, M.: State-of-the-art with regional climate models, Wires Clim. Change, 1, 82–96, https://doi.org/10.1002/wcc.8, 2010.
Rummukainen, M.: Added value in regional climate modeling, Wires Clim. Change, 7, 145–159, https://doi.org/10.1002/wcc.378, 2016.
Schulzweida, U.: Climate Data Operators, User's Guide, Version 1.1.9,
Max-Planck Institute for Meteorology, Hamburg, Germany, https://code.mpimet.mpg.de/projects/cdo/embedded/cdo.pdf, last access: 29
April 2021.
Smiatek, G., Kunstmann, H., and Senatore, A.: EUROCORDEX regional climate model analysis for the Greater Alpine Region: Performance and expected future change, J. Geophys. Res.-Atmos., 121, 7710–7728, https://doi.org/10.1002/2015JD024727, 2016.
Soares, P. M. and Cardoso, R. M.: A simple method to assess the added value
using high-resolution climate distributions: application to the EURO-CORDEX
daily precipitation, Int. J. Climatol., 38, 1484–1498,
https://doi.org/10.1002/joc.5261, 2018.
Soares, P. M., Cardoso, R. M., Miranda, P. M., de Medeiros, J., Belo-Pereira,
M., and Espirito-Santo, F: WRF high resolution dynamical downscaling of
ERA-Interim for Portugal, Clim. Dynam., 39, 2497–2522, https://doi.org/10.1007/s00382-012-1315-2, 2012a.
Soares, P. M., Cardoso, R. M., Miranda, P. M., Viterbo, P., and Belo-Pereira, M.:
Assessment of the ENSEMBLES regional climate models in the representation of
precipitation variability and extremes over Portugal, J. Geophys. Res.-Atmos., 117, D07114, https://doi.org/10.1029/2011JD016768, 2012b.
Soares, P. M., Cardoso, R. M., Semedo, Á., Chinita, M. J., and Ranjha, R.:
Climatology of the Iberia coastal low-level wind jet: weather research
forecasting model high-resolution results, Tellus A, 66, 22377, https://doi.org/10.3402/tellusa.v66.22377, 2014.
Smiatek, G., Kunstmann, H., and Senatore, A.: EURO-CORDEX regional climate
model analysis for the Greater Alpine Region: Performance and expected
future change, J. Geophys. Res.-Atmos., 121, 7710–7728,
https://doi.org/10.1002/2015JD024727, 2016.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M. M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M. (Eds.): Climate Change
2013: The physical science basis. contribution of working group I to the
fifth assessment report of IPCC the intergovernmental panel on climate
change, Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, https://doi.org/10.1017/CBO9781107415324, 2014.
Terzago, S., von Hardenberg, J., Palazzi, E., and Provenzale, A.: Snow water equivalent in the Alps as seen by gridded data sets, CMIP5 and CORDEX climate models, The Cryosphere, 11, 1625–1645, https://doi.org/10.5194/tc-11-1625-2017, 2017.
Torma, C., Giorgi, F., and Coppola, E.: Added value of regional climate
modeling over areas characterized by complex terrain – Precipitation over
the Alps, J. Geophys. Res.-Atmos., 120, 3957–3972,
https://doi.org/10.1002/2014JD022781, 2015.
van der Linden, P. and Mitchell, J. E.: ENSEMBLES: Climate Change and its
Impacts: Summary of research and results from the ENSEMBLES project, Met
Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK, 160 pp., 2009.
Vautard, R., Gobiet, A., Jacob, D., Belda, M., Colette, A., Déqué,
M., Fernández, J., García-Díez, M., Goergen, K., Güttler,
I., and Halenka, T.: The simulation of European heat waves from an ensemble
of regional climate models within the EURO-CORDEX project, Clim. Dynam.,
4, 2555–2575, https://doi.org/10.1007/s00382-013-1714-z, 2013.
Vautard, R., Kadygrov, N., Iles, C., Boberg, F., Buonomo, E., Buelow, K.,
Coppola, E., Corre, L., van Meijgaard, E., Nogherotto, R., Sandstad, M.,
Schwingshakl, C., Somot, S., Aalbers, E. E., Christensen, O., Ciarlo, J.,
Demory, M.-E., Giorgi, F., Jacob, D., Jones, R. G., Keuler, K.,
Kjellström, E., Lenderink, G., Levavasseur, G., Nikulin, G., Sillmann,
J., Solidoro, C., Sørland, S., Steger, C., Teichmann, C., Warrach-Sagi,
K., and Wulfmeyer, V.: Evaluation of the large EURO-CORDEX regional climate
model ensemble, J. Geophys. Res.-Atmos., 126, 1–28, https://doi.org/10.1029/2019JD032344, 2020.
Wilby, R. L., Wigley, T. M. L., Conway, D., Jones, P. D., Hewitson, B. C., Main,
J., and Wilks, D. S.: Statistical downscaling of general circulation model
output: A comparison of methods, Water Resour. Res., 34, 2995–3008,
https://doi.org/10.1029/98WR02577, 1998.
Williams, D. N., Taylor, K. E., Cinquini, L., Evans, B., Kawamiya, M., Lautenschlager, M., Lawrence, B., Middleton, D., and ESGF Contributors: The Earth System Grid Federation: Software framework supporting CMIP5 data analysis and dissemination, ClIVAR Exchanges, 56, 40–42, http://centaur.reading.ac.uk/25732/1/WilEA11_CE.pdf (last access: 29 April
2021), 2011.
Zappa, G., Shaffrey, L. C., and Hodges, K. I.: The ability of CMIP5 models to simulate North Atlantic extratropical cyclones, J. Climate, 26, 5379–5396, https://doi.org/10.1175/JCLI-D-12-00501.1, 2013.
Short summary
This work focuses on the added value of high-resolution models relative to their forcing simulations, with an observational gridded dataset as a reference covering the Iberian Peninsula. The availability of such datasets with a spatial resolution close to that of regional models encouraged this study. For the max and min temperature, although most models reveal added value, some display losses. At more local scales, coastal sites display important gains, contrasting with the interior.
This work focuses on the added value of high-resolution models relative to their forcing...