Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-2035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-2035-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
IBI-CCS: a regional high-resolution model to simulate sea level in western Europe
Alisée A. Chaigneau
CORRESPONDING AUTHOR
CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
Mercator Ocean International, Research and development department, Toulouse, France
Guillaume Reffray
Mercator Ocean International, Research and development department, Toulouse, France
Aurore Voldoire
CNRM UMR 3589, Météo-France/CNRS, Toulouse, France
Angélique Melet
Mercator Ocean International, Research and development department, Toulouse, France
Related authors
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Maialen Irazoqui Apecechea, Angélique Melet, Melisa Menendez, Hector Lobeto, and Jonathan B. Valle-Rodriguez
EGUsphere, https://doi.org/10.5194/egusphere-2025-3558, https://doi.org/10.5194/egusphere-2025-3558, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We applied a fast statistical model to estimate future extreme storm surges in Europe using data from 17 climate models – about twice as many as in past studies. Results show robust regional patterns – decreases in the Mediterranean and Moroccan coast, increases in the Irish Sea and Gulf of Finland – with high uncertainty in other areas. Out results increase our knowledge on future storm surge uncertainties, needed for informed coastal planning.
Angelique Melet, Begoña Pérez Gómez, and Pascal Matte
State Planet, 5-opsr, 11, https://doi.org/10.5194/sp-5-opsr-11-2025, https://doi.org/10.5194/sp-5-opsr-11-2025, 2025
Short summary
Short summary
Forecasting the sea level is crucial for supporting coastal management through early warning systems and for adopting adaptation strategies to mitigate climate change impacts. We provide here an overview on models commonly used for sea level forecasting, which can be based on storm surge models or ocean circulation ones, integrated on structured or unstructured grids, including an outlook on new approaches based on ensemble methods.
Fabrice Hernandez, Marcos Garcia Sotillo, and Angélique Melet
State Planet, 5-opsr, 17, https://doi.org/10.5194/sp-5-opsr-17-2025, https://doi.org/10.5194/sp-5-opsr-17-2025, 2025
Short summary
Short summary
An historical review over the last 3 decades on intercomparison projects of ocean numerical reanalysis or forecast is first proposed. From this, main issues and lessons learned are discussed in order to propose an overview of best practices and key considerations to facilitate intercomparison activities in operational oceanography.
Joanna Staneva, Angelique Melet, Jennifer Veitch, and Pascal Matte
State Planet, 5-opsr, 4, https://doi.org/10.5194/sp-5-opsr-4-2025, https://doi.org/10.5194/sp-5-opsr-4-2025, 2025
Short summary
Short summary
Coastal services are essential to society, requiring accurate prediction of ocean variables in complex, high-resolution environments. This paper outlines key aspects of coastal modelling and emphasizes the importance of capturing nonlinear interactions and feedbacks. Advances in coastal modelling, observational integration, and predictive skills are highlighted as being vital for supporting sustainability and strengthening climate resilience.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée B. A. Slangen
State Planet, 3-slre1, 4, https://doi.org/10.5194/sp-3-slre1-4-2024, https://doi.org/10.5194/sp-3-slre1-4-2024, 2024
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scales to support evidence-based policy and decision-making, primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024, https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary
Short summary
The Summary for Policymakers compiles findings from “Sea Level Rise in Europe: 1st Assessment Report of the Knowledge Hub on Sea Level Rise”. It covers knowledge gaps, observations, projections, impacts, adaptation measures, decision-making principles, and governance challenges. It provides information for each European basin (Mediterranean, Black Sea, North Sea, Baltic Sea, Atlantic, and Arctic) and aims to assist policymakers in enhancing the preparedness of European coasts for sea level rise.
Sylvain Cailleau, Laurent Bessières, Léonel Chiendje, Flavie Dubost, Guillaume Reffray, Jean-Michel Lellouche, Simon van Gennip, Charly Régnier, Marie Drevillon, Marc Tressol, Matthieu Clavier, Julien Temple-Boyer, and Léo Berline
Geosci. Model Dev., 17, 3157–3173, https://doi.org/10.5194/gmd-17-3157-2024, https://doi.org/10.5194/gmd-17-3157-2024, 2024
Short summary
Short summary
In order to improve Sargassum drift forecasting in the Caribbean area, drift models can be forced by higher-resolution ocean currents. To this goal a 3 km resolution regional ocean model has been developed. Its assessment is presented with a particular focus on the reproduction of fine structures representing key features of the Caribbean region dynamics and Sargassum transport. The simulated propagation of a North Brazil Current eddy and its dissipation was found to be quite realistic.
Marie-Noëlle Bouin, Cindy Lebeaupin Brossier, Sylvie Malardel, Aurore Voldoire, and César Sauvage
Geosci. Model Dev., 17, 117–141, https://doi.org/10.5194/gmd-17-117-2024, https://doi.org/10.5194/gmd-17-117-2024, 2024
Short summary
Short summary
In numerical models, the turbulent exchanges of heat and momentum at the air–sea interface are not represented explicitly but with parameterisations depending on the surface parameters. A new parameterisation of turbulent fluxes (WASP) has been implemented in the surface model SURFEX v8.1 and validated on four case studies. It combines a close fit to observations including cyclonic winds, a dependency on the wave growth rate, and the possibility of being used in atmosphere–wave coupled models.
Stefania A. Ciliberti, Enrique Alvarez Fanjul, Jay Pearlman, Kirsten Wilmer-Becker, Pierre Bahurel, Fabrice Ardhuin, Alain Arnaud, Mike Bell, Segolene Berthou, Laurent Bertino, Arthur Capet, Eric Chassignet, Stefano Ciavatta, Mauro Cirano, Emanuela Clementi, Gianpiero Cossarini, Gianpaolo Coro, Stuart Corney, Fraser Davidson, Marie Drevillon, Yann Drillet, Renaud Dussurget, Ghada El Serafy, Katja Fennel, Marcos Garcia Sotillo, Patrick Heimbach, Fabrice Hernandez, Patrick Hogan, Ibrahim Hoteit, Sudheer Joseph, Simon Josey, Pierre-Yves Le Traon, Simone Libralato, Marco Mancini, Pascal Matte, Angelique Melet, Yasumasa Miyazawa, Andrew M. Moore, Antonio Novellino, Andrew Porter, Heather Regan, Laia Romero, Andreas Schiller, John Siddorn, Joanna Staneva, Cecile Thomas-Courcoux, Marina Tonani, Jose Maria Garcia-Valdecasas, Jennifer Veitch, Karina von Schuckmann, Liying Wan, John Wilkin, and Romane Zufic
State Planet, 1-osr7, 2, https://doi.org/10.5194/sp-1-osr7-2-2023, https://doi.org/10.5194/sp-1-osr7-2-2023, 2023
Alisée A. Chaigneau, Stéphane Law-Chune, Angélique Melet, Aurore Voldoire, Guillaume Reffray, and Lotfi Aouf
Ocean Sci., 19, 1123–1143, https://doi.org/10.5194/os-19-1123-2023, https://doi.org/10.5194/os-19-1123-2023, 2023
Short summary
Short summary
Wind waves and swells are major drivers of coastal environment changes and can drive coastal marine hazards such as coastal flooding. In this paper, by using numerical modeling along the European Atlantic coastline, we assess how present and future wave characteristics are impacted by sea level changes. For example, at the end of the century under the SSP5-8.5 climate change scenario, extreme significant wave heights are higher by up to +40 % due to the effect of tides and mean sea level rise.
Thibault Guinaldo, Aurore Voldoire, Robin Waldman, Stéphane Saux Picart, and Hervé Roquet
Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, https://doi.org/10.5194/os-19-629-2023, 2023
Short summary
Short summary
In the summer of 2022, France experienced a series of unprecedented heatwaves. This study is the first to examine the response of sea surface temperatures to these events, using spatial operational data and attributing the observed abnormally warm SSTs to atmospheric forcings. The findings of this study underscore the critical need for an efficient and sustainable operational system to monitor alterations that threaten the oceans in the context of climate change.
Aurore Voldoire, Romain Roehrig, Hervé Giordani, Robin Waldman, Yunyan Zhang, Shaocheng Xie, and Marie-Nöelle Bouin
Geosci. Model Dev., 15, 3347–3370, https://doi.org/10.5194/gmd-15-3347-2022, https://doi.org/10.5194/gmd-15-3347-2022, 2022
Short summary
Short summary
A single-column version of the global climate model CNRM-CM6-1 has been designed to ease development and validation of the model physics at the air–sea interface in a simplified environment. This model is then used to assess the ability to represent the sea surface temperature diurnal cycle. We conclude that the sea surface temperature diurnal variability is reasonably well represented in CNRM-CM6-1 with a 1 h coupling time step and the upper-ocean model resolution of 1 m.
Claudia Tebaldi, Kevin Debeire, Veronika Eyring, Erich Fischer, John Fyfe, Pierre Friedlingstein, Reto Knutti, Jason Lowe, Brian O'Neill, Benjamin Sanderson, Detlef van Vuuren, Keywan Riahi, Malte Meinshausen, Zebedee Nicholls, Katarzyna B. Tokarska, George Hurtt, Elmar Kriegler, Jean-Francois Lamarque, Gerald Meehl, Richard Moss, Susanne E. Bauer, Olivier Boucher, Victor Brovkin, Young-Hwa Byun, Martin Dix, Silvio Gualdi, Huan Guo, Jasmin G. John, Slava Kharin, YoungHo Kim, Tsuyoshi Koshiro, Libin Ma, Dirk Olivié, Swapna Panickal, Fangli Qiao, Xinyao Rong, Nan Rosenbloom, Martin Schupfner, Roland Séférian, Alistair Sellar, Tido Semmler, Xiaoying Shi, Zhenya Song, Christian Steger, Ronald Stouffer, Neil Swart, Kaoru Tachiiri, Qi Tang, Hiroaki Tatebe, Aurore Voldoire, Evgeny Volodin, Klaus Wyser, Xiaoge Xin, Shuting Yang, Yongqiang Yu, and Tilo Ziehn
Earth Syst. Dynam., 12, 253–293, https://doi.org/10.5194/esd-12-253-2021, https://doi.org/10.5194/esd-12-253-2021, 2021
Short summary
Short summary
We present an overview of CMIP6 ScenarioMIP outcomes from up to 38 participating ESMs according to the new SSP-based scenarios. Average temperature and precipitation projections according to a wide range of forcings, spanning a wider range than the CMIP5 projections, are documented as global averages and geographic patterns. Times of crossing various warming levels are computed, together with benefits of mitigation for selected pairs of scenarios. Comparisons with CMIP5 are also discussed.
Cited articles
Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué,
M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E.,
and Gomis, D.: Mediterranean Sea response to climate change in an ensemble
of twenty first century scenarios, Clim. Dynam., 45, 2775–2802,
https://doi.org/10.1007/s00382-015-2507-3, 2015.
Adloff, F., Jordà, G., Somot, S., Sevault, F., Arsouze, T., Meyssignac,
B., Li, L., and Planton, S.: Improving sea level simulation in Mediterranean
regional climate models, Clim. Dynam., 51, 1167–1178,
https://doi.org/10.1007/s00382-017-3842-3, 2018.
Aviso+: MDT data, https://www.aviso.altimetry.fr/en/data/products/auxiliary-products/mdt/mdt-global-cnes-cls18.html, last access: 8 March 2022.
Baladrón, A. A., Levier, B., and Sotillo, M. G.: Product User Manual (CMEMS-IBI-PUM-005-002), https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-IBI-PUM-005-002.pdf (last access: 7 March 2022), 2020.
Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le
Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567,
https://doi.org/10.1007/s10236-006-0082-1, 2006.
Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi,
S., and Uppala, S.: The ERA-Interim Archive, ERA report series, European
Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, 16 pp., https://www.ecmwf.int/node/8173 (last access: 7 March 2022), 2009.
Blanke, B. and Delecluse, P.: Variability of the Tropical Atlantic Ocean
Simulated by a General Circulation Model with Two Different Mixed-Layer
Physics, J. Phys. Oceanogr., 23, 1363–1388,
https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2, 1993.
Bozec, A., Lozier, M. S., Chassignet, E. P., and Halliwell, G. R.: On the
variability of the Mediterranean Outflow Water in the North Atlantic from
1948 to 2006, J. Geophys. Res.-Oceans, 116,
https://doi.org/10.1029/2011JC007191, 2011.
Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically
Significant Effects of Some Approximations in the Bulk Parameterizations of
Turbulent Air–Sea Fluxes, J. Phys. Oceanogr., 47, 5–28,
https://doi.org/10.1175/JPO-D-16-0169.1, 2017.
Chen, X., Zhou, T., Wu, P., Guo, Z., and Wang, M.: Emergent constraints on
future projections of the western North Pacific Subtropical High, Nat.
Commun., 11, 2802, https://doi.org/10.1038/s41467-020-16631-9, 2020.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level
change, in: Climate
change 2013: The physical science basis, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., et al., Contribution of Working Group I to
the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, Cambridge University Press, Cambridge, New York, 1137–1216,
2013.
Copernicus: Reanalysis data, https://doi.org/10.48670/moi-00029, last access: 8 March 2022a.
Copernicus: Observational data, https://doi.org/10.48670/moi-00148, last access: 8 March 2022b.
Cordeiro, N. G. F., Dubert, J., Nolasco, R., and Barton, E. D.: Transient
response of the Northwestern Iberian upwelling regime, PLOS ONE, 13,
e0197627, https://doi.org/10.1371/journal.pone.0197627, 2018.
Craig, A., Valcke, S., and Coquart, L.: Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0, Geosci. Model Dev., 10, 3297–3308, https://doi.org/10.5194/gmd-10-3297-2017, 2017.
Dosio, A.: Projections of climate change indices of temperature and
precipitation from an ensemble of bias-adjusted high-resolution EURO-CORDEX
regional climate models, J. Geophys. Res.-Atmos., 121, 5488–5511,
https://doi.org/10.1002/2015JD024411, 2016.
ECMWF: IFS documentation – Cy40r1. Operational implementation 22 November 2013, Part IV: Physical processes, https://www.ecmwf.int/en/elibrary/9204-ifs-documentation-cy40r1-part-iv-physical-processes (last access: 7 March 2022), 2014.
ESGF: Historical data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=CMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=historical, last access: 8 March 2022a.
ESGF: piControl data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=CMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=piControl, last access: 8 March 2022b.
ESGF: ssp126 data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=ScenarioMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=ssp126, last access: 8 March 2022c.
ESGF: ssp585 data, http://esgf-data.dkrz.de/search/cmip6-dkrz/?mip_era=CMIP6&activity_id=ScenarioMIP&institution_id=CNRM-CERFACS&source_id=CNRM-CM6-1-HR&experiment_id=ssp585, last access: 8 March 2022d.
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Technol., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Fasullo, J. T.: Evaluating simulated climate patterns from the CMIP archives
using satellite and reanalysis datasets using the Climate Model Assessment
Tool (CMATv1), Geosci. Model Dev., 13, 3627–3642,
https://doi.org/10.5194/gmd-13-3627-2020, 2020.
Flather, R. A. and Davies, A. M.: Note on a preliminary scheme for storm
surge prediction using numerical models, Q. J. Roy. Meteor. Soc., 102,
123–132, https://doi.org/10.1002/qj.49710243110, 1976.
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins,
W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P.,
Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Evaluation of Climate Models, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner,
G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V.,
and Midgley, P. M., Cambridge University Press, Cambridge, United
Kingdom and New York, NY, USA, 2013
Fofonoff, N. P. and Millard Jr., R. C.: Algorithms for the computation of
fundamental properties of seawater, Unesco techn. pap. mar. sci., 44, 1–53, https://doi.org/10.25607/OBP-1450,
1983.
Forget, G. and Ponte, R. M.: The partition of regional sea level
variability, Prog. Oceanogr., 137, 173–195,
https://doi.org/10.1016/j.pocean.2015.06.002, 2015.
Forster, P., Storelvmo, T., Armour, K., Collins, W., Dufresne, J.-L., Frame,
D., Lunt, D. J., Mauritsen, T., Palmer, M. D., Watanabe, M., Wild, M., and
Zhang, H.: The Earth's Energy Budget, Climate Feedbacks, and Climate
Sensitivity, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P.,
Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, 2021.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G.,
Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L.,
Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea
Level Change, in: Climate Change 2021: The Physical Science Basis,
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P.,
Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y.,
Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews,
J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, in press, 2021.
Garric G. and Parent L.,: Quality Information Document (CMEMS-GLO-QUID-001-025-011-017), https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-025-011-017.pdf (last access: 7 March 2022), 2017.
Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic
energy model for simulations of the oceanic vertical mixing: Tests at
station Papa and long-term upper ocean study site, J. Geophys. Res.-Oceans,
95, 16179–16193, https://doi.org/10.1029/JC095iC09p16179, 1990.
GESLA Version 2: High frequency sea level dataset, https://www.bodc.ac.uk/data/published_data_library/catalogue/10.5285/3b602f74-8374-1e90-e053-6c86abc08d39/, last access: 8 March 2022.
Gomis, D., Álvarez-Fanjul, E., Jordà, G., Marcos, M., Aznar, R.,
Rodríguez-Camino, E., Sánchez-Perrino, J. C.,
Rodríguez-González, J. M., Martínez-Asensio, A., Llasses, J.,
Pérez, B., and Sotillo, M. G.: Regional marine climate scenarios in the
NE Atlantic sector close to the Spanish shores, Sci. Mar., 80, 215–234,
https://doi.org/10.3989/scimar.04328.07A, 2016.
Greatbatch, R. J.: A note on the representation of steric sea level in
models that conserve volume rather than mass, J. Geophys. Res.-Oceans, 99,
12767–12771, https://doi.org/10.1029/94JC00847, 1994.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289,
https://doi.org/10.1007/s10712-019-09525-z, 2019.
Griffies, S. M. and Greatbatch, R. J.: Physical processes that impact the
evolution of global mean sea level in ocean climate models, Ocean Model.,
51, 37–72, https://doi.org/10.1016/j.ocemod.2012.04.003, 2012.
Grinsted, A. and Christensen, J. H.: The transient sensitivity of sea level rise, Ocean Sci., 17, 181–186, https://doi.org/10.5194/os-17-181-2021, 2021.
Grinsted, A., Jevrejeva, S., Riva, R. E. M., and Dahl-Jensen, D.: Sea level
rise projections for northern Europe under RCP8.5, Clim. Res., 64, 15–23,
https://doi.org/10.3354/cr01309, 2015.
Gupta, A. S., Jourdain, N. C., Brown, J. N., and Monselesan, D.: Climate
Drift in the CMIP5 Models, J. Climate, 26, 8597–8615,
https://doi.org/10.1175/JCLI-D-12-00521.1, 2013.
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013.
Hermans, T. H. J., Le Bars, D., Katsman, C. A., Camargo, C. M. L., Gerkema,
T., Calafat, F. M., Tinker, J., and Slangen, A. B. A.: Drivers of
Interannual Sea Level Variability on the Northwestern European Shelf, J.
Geophys. Res.-Oceans, 125, e2020JC016325,
https://doi.org/10.1029/2020JC016325, 2020a.
Hermans, T. H. J., Tinker, J., Palmer, M. D., Katsman, C. A., Vermeersen, B.
L. A., and Slangen, A. B. A.: Improving sea-level projections on the
Northwestern European shelf using dynamical downscaling, Clim. Dynam., 54,
1987–2011, https://doi.org/10.1007/s00382-019-05104-5, 2020b.
Hermans, T. H. J., Gregory, J. M., Palmer, M. D., Ringer, M. A., Katsman, C.
A., and Slangen, A. B. A.: Projecting Global Mean Sea-Level Change Using
CMIP6 Models, Geophys. Res. Lett., 48, e2020GL092064,
https://doi.org/10.1029/2020GL092064, 2021.
Hernández-Díaz, L., Nikiéma, O., Laprise, R., Winger, K., and Dandoy, S.: Effect of empirical correction of sea-surface temperature biases on the CRCM5-simulated climate and projected climate changes over North America, Clim. Dyn., 53, 453–476, https://doi.org/10.1007/s00382-018-4596-2, 2019.
Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M.,
Radić, V., and Slangen, A. B. A.: GlacierMIP – A model intercomparison
of global-scale glacier mass-balance models and projections, J. Glaciol.,
65, 453–467, https://doi.org/10.1017/jog.2019.22, 2019.
Hui, Y., Xu, Y., Chen, J., Xu, C.-Y., and Chen, H.: Impacts of bias
nonstationarity of climate model outputs on hydrological simulations,
Hydrol. Res., 51, 925–941, https://doi.org/10.2166/nh.2020.254, 2020.
Idier, D., Paris, F., Cozannet, G. L., Boulahya, F., and Dumas, F.:
Sea-level rise impacts on the tides of the European Shelf, Cont. Shelf Res.,
137, 56–71, https://doi.org/10.1016/j.csr.2017.01.007, 2017.
Irving, D., Hobbs, W., Church, J., and Zika, J.: A Mass and Energy
Conservation Analysis of Drift in the CMIP6 Ensemble, J. Climate, 34,
3157–3170, https://doi.org/10.1175/JCLI-D-20-0281.1, 2021.
Jin, Y., Zhang, X., Church, J. A., and Bao, X.: Projected Sea Level Changes
in the Marginal Seas near China Based on Dynamical Downscaling, J. Climate,
34, 7037–7055, https://doi.org/10.1175/JCLI-D-20-0796.1, 2021.
Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J.,
Lincke, D., and Hinkel, J.: Projections of global-scale extreme sea levels
and resulting episodic coastal flooding over the 21st Century, Sci. Rep.,
10, 11629, https://doi.org/10.1038/s41598-020-67736-6, 2020.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer,
M., Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st
and 22nd century sea-level projections at a global network of tide-gauge
sites, Earths Future, 2, 383–406, https://doi.org/10.1002/2014EF000239,
2014.
Krinner, G. and Flanner, M. G.: Striking stationarity of large-scale climate
model bias patterns under strong climate change, P. Natl. Acad. Sci. USA, 115, 9462–9466, https://doi.org/10.1073/pnas.1807912115, 2018.
Lavergne, C. de, Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen,
C. B., Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T.: A
Parameterization of Local and Remote Tidal Mixing, J. Adv. Model. Earth
Syst., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065, 2020.
Lee, J.-Y., Marotzke, J., Bala, G., Cao, L., Corti, S., Dunne, J. P.,
Engelbrecht, F., Fischer, E., Fyfe, J. C., Jones, C., Maycock, A., Mutemi,
J., Ndiaye, O., Panickal, S., and Zhou, T.: Future Global Climate:
Scenario-Based Projections and Near-Term Information, in: Climate Change
2021: The Physical Science Basis, Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C.,
Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press,
in press, 2021.
Leonard, B. P.: A stable and accurate convective modelling procedure based
on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19,
59–98, https://doi.org/10.1016/0045-7825(79)90034-3, 1979.
Levier, B., Lorente, P., and Reffray, G., Sotillo M.: Quality Information Document (CMEMS-IBI-QUID-005-002), https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-IBI-QUID-005-002.pdf (last access: 7 March 2022), 2020.
Liu, Z.-J., Minobe, S., Sasaki, Y. N., and Terada, M.: Dynamical downscaling
of future sea level change in the western North Pacific using ROMS, J.
Oceanogr., 72, 905–922, https://doi.org/10.1007/s10872-016-0390-0, 2016.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean. Dynam., 56, 394–415,
https://doi.org/10.1007/s10236-006-0086-x, 2006.
Macias, D., Garcia-Gorriz, E., Dosio, A., Stips, A., and Keuler, K.:
Obtaining the correct sea surface temperature: bias correction of regional
climate model data for the Mediterranean Sea, Clim. Dynam., 51, 1095–1117,
https://doi.org/10.1007/s00382-016-3049-z, 2018.
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C.,
Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A.,
Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D.,
Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S.,
Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO
ocean engine, Zenodo [code], https://doi.org/10.5281/zenodo.3248739, 2017.
Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., Sotillo, M. G., Marsaleix, P., and the Mercator Research and Development Team: NEMO on the shelf: assessment of the Iberia–Biscay–Ireland configuration, Ocean Sci., 9, 745–771, https://doi.org/10.5194/os-9-745-2013, 2013.
Maraun, D.: Nonstationarities of regional climate model biases in European
seasonal mean temperature and precipitation sums, Geophys. Res. Lett., 39, L06706, https://doi.org/10.1029/2012GL051210, 2012.
Mathis, M., Mayer, B., and Pohlmann, T.: An uncoupled dynamical downscaling
for the North Sea: Method and evaluation, Ocean Model., 72, 153–166,
https://doi.org/10.1016/j.ocemod.2013.09.004, 2013.
McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the
risks of climate change and human settlements in low elevation coastal
zones, Environ. Urban., 19, 17–37,
https://doi.org/10.1177/0956247807076960, 2007.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated
wave contribution to coastal sea-level rise, Nat. Clim. Change, 8, 234–239,
https://doi.org/10.1038/s41558-018-0088-y, 2018.
Melet, A., Almar, R., Hemer, M., Cozannet, G. L., Meyssignac, B., and
Ruggiero, P.: Contribution of Wave Setup to Projected Coastal Sea Level
Changes, J. Geophys. Res.-Oceans, 125, e2020JC016078,
https://doi.org/10.1029/2020JC016078, 2020.
Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels
based on a quasi-global tide-gauge data set, J. Geophys. Res., 115, C10011, https://doi.org/10.1029/2009JC005997, 2010.
Meyssignac, B., Piecuch, C. G., Merchant, C. J., Racault, M.-F., Palanisamy,
H., MacIntosh, C., Sathyendranath, S., and Brewin, R.: Causes of the
Regional Variability in Observed Sea Level, Sea Surface Temperature and
Ocean Colour Over the Period 1993–2011, Surv. Geophys., 38, 187–215,
https://doi.org/10.1007/s10712-016-9383-1, 2017a.
Meyssignac, B., Slangen, A. B. A., Melet, A., Church, J. A., Fettweis, X.,
Marzeion, B., Agosta, C., Ligtenberg, S. R. M., Spada, G., Richter, K.,
Palmer, M. D., Roberts, C. D., and Champollion, N.: Evaluating Model
Simulations of Twentieth-Century Sea-Level Rise. Part II: Regional Sea-Level
Changes, J. Climate, 30, 8565–8593, https://doi.org/10.1175/JCLI-D-17-0112.1,
2017b.
Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S.,
Su, J., Yan, K., and Verlaan, M.: A High-Resolution Global Dataset of
Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections,
Front. Mar. Sci., 7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020.
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021.
Nahar, J., Johnson, F., and Sharma, A.: Assessing the extent of
non-stationary biases in GCMs, J. Hydrol., 549, 148–162,
https://doi.org/10.1016/j.jhydrol.2017.03.045, 2017.
NEMO: code, https://www.nemo-ocean.eu/, last access: 8 March 2022.
Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future
Coastal Population Growth and Exposure to Sea-Level Rise and Coastal
Flooding – A Global Assessment, PLOS ONE, 10, e0118571,
https://doi.org/10.1371/journal.pone.0118571, 2015.
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay,
J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level
Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M.,
Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A.,
Petzold, J., Rama, B., and Weyer, N. M., in press, 2019
Pujol, M. and Mertz, F.: Product User Manual, available at: https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-062.pdf (last access: 7 March 2022), 2020.
Reffray, G., Bourdalle-Badie, R., and Calone, C.: Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO, Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, 2015.
Richter, K., Riva, R. E. M., and Drange, H.: Impact of self-attraction and
loading effects induced by shelf mass loading on projected regional sea
level rise, Geophys. Res. Lett., 40, 1144–1148,
https://doi.org/10.1002/grl.50265, 2013.
Roehrig, R., Beau, I., Saint-Martin, D., Alias, A., Decharme, B.,
Guérémy, J.-F., Voldoire, A., Abdel-Lathif, A. Y., Bazile, E.,
Belamari, S., Blein, S., Bouniol, D., Bouteloup, Y., Cattiaux, J., Chauvin,
F., Chevallier, M., Colin, J., Douville, H., Marquet, P., Michou, M., Nabat,
P., Oudar, T., Peyrillé, P., Piriou, J.-M., Salas y Mélia, D.,
Séférian, R., and Sénési, S.: The CNRM Global Atmosphere
Model ARPEGE-Climat 6.3: Description and Evaluation, J. Adv. Model. Earth
Syst., 12, e2020MS002075, https://doi.org/10.1029/2020MS002075, 2020.
Roquet, F., Madec, G., Brodeau, L., and Nycander, J.: Defining a Simplified
Yet “Realistic” Equation of State for Seawater, J. Phys. Oceanogr., 45,
2564–2579, https://doi.org/10.1175/JPO-D-15-0080.1, 2015.
Shin, S.-I. and Alexander, M. A.: Dynamical Downscaling of Future
Hydrographic Changes over the Northwest Atlantic Ocean, J. Climate, 33,
2871–2890, https://doi.org/10.1175/JCLI-D-19-0483.1, 2020.
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W.,
Köhl, A., Vermeersen, L. L. A., and Stammer, D.: Projecting twenty-first
century regional sea-level changes, Clim. Change, 124, 317–332,
https://doi.org/10.1007/s10584-014-1080-9, 2014.
Slangen, A. B. A., Meyssignac, B., Agosta, C., Champollion, N., Church, J.
A., Fettweis, X., Ligtenberg, S. R. M., Marzeion, B., Melet, A., Palmer, M.
D., Richter, K., Roberts, C. D., and Spada, G.: Evaluating Model Simulations
of Twentieth-Century Sea Level Rise. Part I: Global Mean Sea Level Change,
J. Climate, 30, 8539–8563, https://doi.org/10.1175/JCLI-D-17-0110.1, 2017.
Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray,
G., Amo-Baladrón, A., Chanut, J., Benkiran, M., and Alvarez-Fanjul, E.:
The MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products
and roadmap to the future Copernicus Service, J. Oper. Oceanogr., 8, 63–79,
https://doi.org/10.1080/1755876X.2015.1014663, 2015.
Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., and
Sánchez-Román, A.: Estimation of the Atlantic inflow through the
Strait of Gibraltar from climatological and in situ data, J. Geophys. Res., 115, C10023, https://doi.org/10.1029/2010JC006302, 2010.
Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Criado-Aldeanueva,
F., García-Lafuente, J., and Béranger, K.: Evaluation of regional
ocean circulation models for the Mediterranean Sea at the Strait of
Gibraltar: volume transport and thermohaline properties of the outflow,
Clim. Dynam., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4, 2015.
Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault,
F., Macías, D., Djurdjevic, V., Sannino, G., Li, L., and Sein, D.:
Evolution of Mediterranean Sea water properties under climate change
scenarios in the Med-CORDEX ensemble, Clim. Dynam., 54, 2135–2165,
https://doi.org/10.1007/s00382-019-05105-4, 2020.
Stammer, D. and Hüttemann, S.: Response of Regional Sea Level to
Atmospheric Pressure Loading in a Climate Change Scenario, J. Climate, 21,
2093–2101, https://doi.org/10.1175/2007JCLI1803.1, 2008.
Taburet, G. and Pujol, M.: Quality Information Document (CMEMS-SL-QUID-008-032-062), https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-062.pdf (last access: 7 March 2022), 2021.
Takayabu, I., Kanamaru, H., Dairaku, K., Benestad, R., Storch, H. von, and
Christensen, J. H.: Reconsidering the Quality and Utility of Downscaling, J.
Meteorol. Soc. Jpn. Ser II, 94A, 31–45,
https://doi.org/10.2151/jmsj.2015-042, 2016.
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Mar. Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003.
Voldoire, A.: CMIP6 simulations of the CNRM-CERFACS based on CNRM-CM6-1 model for CMIP experiment historical, Version YYYYMMDD[1], Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4066, 2018.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 CMIP historical, Version YYYYMMDD[1], Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4067, 2019a.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 CMIP piControl, Version YYYYMMDD[1], Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4164, 2019b.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP ssp585, Version YYYYMMDD[1], Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4225, 2019c.
Voldoire, A.: CNRM-CERFACS CNRM-CM6-1-HR model output prepared for CMIP6 ScenarioMIP ssp126, Version YYYYMMDD[1], Earth System Grid Federation [data set], https://doi.org/10.22033/ESGF/CMIP6.4185, 2020a.
Voldoire, A.: River to ocean models interpolation, report, CNRM,
Université de Toulouse, Météo-France, CNRS, https://hal-meteofrance.archives-ouvertes.fr/meteo-02986574/document, (last access: 7 March 2022), 2020.
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P.,
Nabat, P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke,
S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes,
J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O.,
Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A.,
Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK
Experiments With CNRM-CM6-1, J. Adv. Model. Earth Syst., 11, 2177–2213,
https://doi.org/10.1029/2019MS001683, 2019.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F.,
and Feyen, L.: Climatic and socioeconomic controls of future coastal flood
risk in Europe, Nat. Clim. Change, 8, 776–780,
https://doi.org/10.1038/s41558-018-0260-4, 2018a.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva,
S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of
extreme sea levels show intensification of coastal flood hazard, Nat.
Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018b.
van Westen, R. M., Dijkstra, H. A., van der Boog, C. G., Katsman, C. A.,
James, R. K., Bouma, T. J., Kleptsova, O., Klees, R., Riva, R. E. M.,
Slobbe, D. C., Zijlema, M., and Pietrzak, J. D.: Ocean model resolution
dependence of Caribbean sea-level projections, Sci. Rep., 10, 14599,
https://doi.org/10.1038/s41598-020-71563-0, 2020.
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M.,
and Haigh, I.: Towards a global higher-frequency sea level dataset, Geosci.
Data J. [data set], 3, 50–59, https://doi.org/10.1002/gdj3.42, 2017.
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G.,
Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and
Merrifield, M. A.: Forcing Factors Affecting Sea Level Changes at the Coast,
Surv. Geophys., 40, 1351–1397, https://doi.org/10.1007/s10712-019-09531-1,
2019.
Xu, Z., Han, Y., and Yang, Z.: Dynamical downscaling of regional climate: A
review of methods and limitations, Sci. China Earth Sci., 62, 365–375,
https://doi.org/10.1007/s11430-018-9261-5, 2019.
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms
for fluids, J. Comput. Phys., 31, 335–362,
https://doi.org/10.1016/0021-9991(79)90051-2, 1979.
Zhang, X., Church, J. A., Monselesan, D., and McInnes, K. L.: Sea level
projections for the Australian region in the 21st century, Geophys. Res.
Lett., 44, 8481–8491, https://doi.org/10.1002/2017GL074176, 2017.
Short summary
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions. Projections of coastal sea level changes are thus of great interest for coastal risk assessment and have significantly developed in recent years. In this paper, the objective is to provide high-resolution (6 km) projections of sea level changes in the northeastern Atlantic region bordering western Europe. For that purpose, a regional model is used to refine existing coarse global projections.
Climate-change-induced sea level rise is a major threat for coastal and low-lying regions....