Articles | Volume 15, issue 5
https://doi.org/10.5194/gmd-15-1899-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1899-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Building a machine learning surrogate model for wildfire activities within a global Earth system model
Qing Zhu
CORRESPONDING AUTHOR
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Fa Li
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
William J. Riley
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Li Xu
Department of Earth System Science, University of California Irvine, Irvine, CA, USA
Department of Civil and Environmental Engineering, University of
Illinois Urbana-Champaign, Champaign, IL, USA
Kunxiaojia Yuan
Climate and Ecosystem Sciences Division, Climate Sciences Department, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
Huayi Wu
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
Jianya Gong
School of Remote Sensing and Information Engineering, Wuhan
University, Wuhan, China
James Randerson
Department of Earth System Science, University of California Irvine, Irvine, CA, USA
Related authors
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Dalei Hao, Ghassem R. Asrar, Yelu Zeng, Qing Zhu, Jianguang Wen, Qing Xiao, and Min Chen
Earth Syst. Sci. Data, 12, 2209–2221, https://doi.org/10.5194/essd-12-2209-2020, https://doi.org/10.5194/essd-12-2209-2020, 2020
Short summary
Short summary
We adopted machine-learning models to generate the first global land products of SW–PAR based on DSCOVR/EPIC data. Our products are consistent with ground-based observations, capture the spatiotemporal patterns well and accurately track substantial diurnal, monthly and seasonal variations in SW–PAR. Our products provide a valuable alternative for solar photovoltaic applications and can be used to improve our understanding of the diurnal cycles of terrestrial water, carbon and energy fluxes.
Alex C. Ruane, Charlotte L. Pascoe, Claas Teichmann, David J. Brayshaw, Carlo Buontempo, Ibrahima Diouf, Jesus Fernandez, Paula L. M. Gonzalez, Birgit Hassler, Vanessa Hernaman, Ulas Im, Doroteaciro Iovino, Martin Juckes, Iréne L. Lake, Timothy Lam, Xiaomao Lin, Jiafu Mao, Negin Nazarian, Sylvie Parey, Indrani Roy, Wan-Ling Tseng, Briony Turner, Andrew Wiebe, Lei Zhao, and Damaris Zurell
EGUsphere, https://doi.org/10.5194/egusphere-2025-3408, https://doi.org/10.5194/egusphere-2025-3408, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This paper describes how the Coupled Model Intercomparison Project organized its 7th phase (CMIP7) to encourage the production of Earth system model outputs relevant for impacts and adaptation. Community engagement identified 13 opportunities for application across human and natural systems, 60 variable groups and 539 unique variables. We also show how simulations can more efficiently meet applications needs by targeting appropriate resolution, time slices, experiments and variable groups.
Yifan Cheng, Lei Zhao, TC Chakraborty, Keith Oleson, Matthias Demuzere, Xiaoping Liu, Yangzi Che, Weilin Liao, Yuyu Zhou, and Xinchang “Cathy” Li
Earth Syst. Sci. Data, 17, 2147–2174, https://doi.org/10.5194/essd-17-2147-2025, https://doi.org/10.5194/essd-17-2147-2025, 2025
Short summary
Short summary
The absence of globally consistent and spatially continuous urban surface input has long hindered large-scale high-resolution urban climate modeling. Using remote sensing, cloud computing, and machine learning, we developed U-Surf, a 1 km dataset providing key urban surface properties worldwide. U-Surf enhances urban representation across scales and supports kilometer-scale urban-resolving Earth system modeling unprecedentedly, with broader applications in urban studies and beyond.
Marielle Saunois, Adrien Martinez, Benjamin Poulter, Zhen Zhang, Peter A. Raymond, Pierre Regnier, Josep G. Canadell, Robert B. Jackson, Prabir K. Patra, Philippe Bousquet, Philippe Ciais, Edward J. Dlugokencky, Xin Lan, George H. Allen, David Bastviken, David J. Beerling, Dmitry A. Belikov, Donald R. Blake, Simona Castaldi, Monica Crippa, Bridget R. Deemer, Fraser Dennison, Giuseppe Etiope, Nicola Gedney, Lena Höglund-Isaksson, Meredith A. Holgerson, Peter O. Hopcroft, Gustaf Hugelius, Akihiko Ito, Atul K. Jain, Rajesh Janardanan, Matthew S. Johnson, Thomas Kleinen, Paul B. Krummel, Ronny Lauerwald, Tingting Li, Xiangyu Liu, Kyle C. McDonald, Joe R. Melton, Jens Mühle, Jurek Müller, Fabiola Murguia-Flores, Yosuke Niwa, Sergio Noce, Shufen Pan, Robert J. Parker, Changhui Peng, Michel Ramonet, William J. Riley, Gerard Rocher-Ros, Judith A. Rosentreter, Motoki Sasakawa, Arjo Segers, Steven J. Smith, Emily H. Stanley, Joël Thanwerdas, Hanqin Tian, Aki Tsuruta, Francesco N. Tubiello, Thomas S. Weber, Guido R. van der Werf, Douglas E. J. Worthy, Yi Xi, Yukio Yoshida, Wenxin Zhang, Bo Zheng, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Earth Syst. Sci. Data, 17, 1873–1958, https://doi.org/10.5194/essd-17-1873-2025, https://doi.org/10.5194/essd-17-1873-2025, 2025
Short summary
Short summary
Methane (CH4) is the second most important human-influenced greenhouse gas in terms of climate forcing after carbon dioxide (CO2). A consortium of multi-disciplinary scientists synthesise and update the budget of the sources and sinks of CH4. This edition benefits from important progress in estimating emissions from lakes and ponds, reservoirs, and streams and rivers. For the 2010s decade, global CH4 emissions are estimated at 575 Tg CH4 yr-1, including ~65 % from anthropogenic sources.
Elsa Abs, Christoph Keuschnig, Pierre Amato, Chris Bowler, Eric Capo, Alexander Chase, Luciana Chavez Rodriguez, Abraham Dabengwa, Thomas Dussarrat, Thomas Guzman, Linnea Honeker, Jenni Hultman, Kirsten Küsel, Zhen Li, Anna Mankowski, William Riley, Scott Saleska, and Lisa Wingate
EGUsphere, https://doi.org/10.5194/egusphere-2025-1716, https://doi.org/10.5194/egusphere-2025-1716, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Meta-omics technologies offer new tools to understand how microbial and plant functional diversity shape biogeochemical cycles across ecosystems. This perspective explores how integrating omics data with ecological and modeling approaches can improve our understanding of greenhouse gas fluxes and nutrient dynamics, from soils to clouds, and from the past to the future. We highlight challenges and opportunities for scaling omics insights from local processes to Earth system models.
Jinyun Tang and William J. Riley
Biogeosciences, 22, 1809–1819, https://doi.org/10.5194/bg-22-1809-2025, https://doi.org/10.5194/bg-22-1809-2025, 2025
Short summary
Short summary
A new mathematical formulation of the dynamic energy budget model is presented for the growth of biological organisms. This new formulation combines mass conservation law and chemical kinetics theory and is computationally faster than the standard formulation of dynamic energy budget models. In simulating the growth of Thalassiosira weissflogii in a nitrogen-limiting chemostat, the new model is as good as the standard dynamic energy budget model using almost the same parameter values.
Ashley Brereton, Zelalem Mekonnen, Bhavna Arora, William Riley, Kunxiaojia Yuan, Yi Xu, Yu Zhang, Qing Zhu, Tyler Anthony, and Adina Paytan
EGUsphere, https://doi.org/10.5194/egusphere-2025-361, https://doi.org/10.5194/egusphere-2025-361, 2025
Short summary
Short summary
Wetlands absorb carbon dioxide (CO2), helping slow climate change, but they also release methane, a potent warming gas. We developed a collection of AI-based models to estimate magnitudes of CO2 and methane exchanged between the land and the atmosphere, for wetlands on a regional scale. This approach helps to inform land-use planning, restoration, and greenhouse gas accounting, while also creating a foundation for future advancements in prediction accuracy.
Zhen Zhang, Benjamin Poulter, Joe R. Melton, William J. Riley, George H. Allen, David J. Beerling, Philippe Bousquet, Josep G. Canadell, Etienne Fluet-Chouinard, Philippe Ciais, Nicola Gedney, Peter O. Hopcroft, Akihiko Ito, Robert B. Jackson, Atul K. Jain, Katherine Jensen, Fortunat Joos, Thomas Kleinen, Sara H. Knox, Tingting Li, Xin Li, Xiangyu Liu, Kyle McDonald, Gavin McNicol, Paul A. Miller, Jurek Müller, Prabir K. Patra, Changhui Peng, Shushi Peng, Zhangcai Qin, Ryan M. Riggs, Marielle Saunois, Qing Sun, Hanqin Tian, Xiaoming Xu, Yuanzhi Yao, Yi Xi, Wenxin Zhang, Qing Zhu, Qiuan Zhu, and Qianlai Zhuang
Biogeosciences, 22, 305–321, https://doi.org/10.5194/bg-22-305-2025, https://doi.org/10.5194/bg-22-305-2025, 2025
Short summary
Short summary
This study assesses global methane emissions from wetlands between 2000 and 2020 using multiple models. We found that wetland emissions increased by 6–7 Tg CH4 yr-1 in the 2010s compared to the 2000s. Rising temperatures primarily drove this increase, while changes in precipitation and CO2 levels also played roles. Our findings highlight the importance of wetlands in the global methane budget and the need for continuous monitoring to understand their impact on climate change.
Kamal Nyaupane, Umakant Mishra, Feng Tao, Kyongmin Yeo, William J. Riley, Forrest M. Hoffman, and Sagar Gautam
Biogeosciences, 21, 5173–5183, https://doi.org/10.5194/bg-21-5173-2024, https://doi.org/10.5194/bg-21-5173-2024, 2024
Short summary
Short summary
Representing soil organic carbon (SOC) dynamics in Earth system models (ESMs) is a key source of uncertainty in predicting carbon–climate feedbacks. Using machine learning, we develop and compare predictive relationships in observations (Obs) and ESMs. We find different relationships between environmental factors and SOC stocks in Obs and ESMs. SOC prediction in ESMs may be improved by representing the functional relationships of environmental controllers in a way consistent with observations.
Xinlian Liang, Yinrui Wang, Jun Pan, Mi Wang, Jiansi Yang, and Jianya Gong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-3-2024, 637–641, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-637-2024, https://doi.org/10.5194/isprs-archives-XLVIII-3-2024-637-2024, 2024
Mi Zhang, Bingnan Yang, Jianya Gong, and Xiangyun Hu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-3-2024, 445–452, https://doi.org/10.5194/isprs-annals-X-3-2024-445-2024, https://doi.org/10.5194/isprs-annals-X-3-2024-445-2024, 2024
Peng Yue, Kaixuan Wang, Hanwen Xu, Jianya Gong, and Longgang Xiang
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 441–446, https://doi.org/10.5194/isprs-annals-X-4-2024-441-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-441-2024, 2024
Xianyuan Zhang, Longgang Xiang, Peng Yue, Jianya Gong, and Huayi Wu
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4-2024, 453–459, https://doi.org/10.5194/isprs-annals-X-4-2024-453-2024, https://doi.org/10.5194/isprs-annals-X-4-2024-453-2024, 2024
Hanqin Tian, Naiqing Pan, Rona L. Thompson, Josep G. Canadell, Parvadha Suntharalingam, Pierre Regnier, Eric A. Davidson, Michael Prather, Philippe Ciais, Marilena Muntean, Shufen Pan, Wilfried Winiwarter, Sönke Zaehle, Feng Zhou, Robert B. Jackson, Hermann W. Bange, Sarah Berthet, Zihao Bian, Daniele Bianchi, Alexander F. Bouwman, Erik T. Buitenhuis, Geoffrey Dutton, Minpeng Hu, Akihiko Ito, Atul K. Jain, Aurich Jeltsch-Thömmes, Fortunat Joos, Sian Kou-Giesbrecht, Paul B. Krummel, Xin Lan, Angela Landolfi, Ronny Lauerwald, Ya Li, Chaoqun Lu, Taylor Maavara, Manfredi Manizza, Dylan B. Millet, Jens Mühle, Prabir K. Patra, Glen P. Peters, Xiaoyu Qin, Peter Raymond, Laure Resplandy, Judith A. Rosentreter, Hao Shi, Qing Sun, Daniele Tonina, Francesco N. Tubiello, Guido R. van der Werf, Nicolas Vuichard, Junjie Wang, Kelley C. Wells, Luke M. Western, Chris Wilson, Jia Yang, Yuanzhi Yao, Yongfa You, and Qing Zhu
Earth Syst. Sci. Data, 16, 2543–2604, https://doi.org/10.5194/essd-16-2543-2024, https://doi.org/10.5194/essd-16-2543-2024, 2024
Short summary
Short summary
Atmospheric concentrations of nitrous oxide (N2O), a greenhouse gas 273 times more potent than carbon dioxide, have increased by 25 % since the preindustrial period, with the highest observed growth rate in 2020 and 2021. This rapid growth rate has primarily been due to a 40 % increase in anthropogenic emissions since 1980. Observed atmospheric N2O concentrations in recent years have exceeded the worst-case climate scenario, underscoring the importance of reducing anthropogenic N2O emissions.
Jiageng Zhong, Ming Li, Armin Gruen, Jianya Gong, Deren Li, Mingjie Li, and Jiangying Qin
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-2-2024, 247–254, https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024, https://doi.org/10.5194/isprs-annals-X-2-2024-247-2024, 2024
Tianjia Liu, James T. Randerson, Yang Chen, Douglas C. Morton, Elizabeth B. Wiggins, Padhraic Smyth, Efi Foufoula-Georgiou, Roy Nadler, and Omer Nevo
Earth Syst. Sci. Data, 16, 1395–1424, https://doi.org/10.5194/essd-16-1395-2024, https://doi.org/10.5194/essd-16-1395-2024, 2024
Short summary
Short summary
To improve our understanding of extreme wildfire behavior, we use geostationary satellite data to develop the GOFER algorithm and track the hourly fire progression of large wildfires. GOFER fills a key temporal gap present in other fire tracking products that rely on low-Earth-orbit imagery and reveals considerable variability in fire spread rates on diurnal timescales. We create a product of hourly fire perimeters, active-fire lines, and fire spread rates for 28 fires in California.
Jinyun Tang and William J. Riley
Biogeosciences, 21, 1061–1070, https://doi.org/10.5194/bg-21-1061-2024, https://doi.org/10.5194/bg-21-1061-2024, 2024
Short summary
Short summary
A chemical kinetics theory is proposed to explain the non-monotonic relationship between temperature and biochemical rates. It incorporates the observed thermally reversible enzyme denaturation that is ensured by the ceaseless thermal motion of molecules and ions in an enzyme solution and three well-established theories: (1) law of mass action, (2) diffusion-limited chemical reaction theory, and (3) transition state theory.
Joanne V. Hall, Fernanda Argueta, Maria Zubkova, Yang Chen, James T. Randerson, and Louis Giglio
Earth Syst. Sci. Data, 16, 867–885, https://doi.org/10.5194/essd-16-867-2024, https://doi.org/10.5194/essd-16-867-2024, 2024
Short summary
Short summary
Crop-residue burning is a widespread practice often occurring close to population centers. Its recurrent nature requires accurate mapping of the area burned – a key input into air quality models. Unlike larger fires, crop fires require a specific burned area (BA) methodology, which to date has been ignored in global BA datasets. Our global cropland-focused BA product found a significant increase in global cropland BA (81 Mha annual average) compared to the widely used MCD64A1 (32 Mha).
Yang Chen, Joanne Hall, Dave van Wees, Niels Andela, Stijn Hantson, Louis Giglio, Guido R. van der Werf, Douglas C. Morton, and James T. Randerson
Earth Syst. Sci. Data, 15, 5227–5259, https://doi.org/10.5194/essd-15-5227-2023, https://doi.org/10.5194/essd-15-5227-2023, 2023
Short summary
Short summary
Using multiple sets of remotely sensed data, we created a dataset of monthly global burned area from 1997 to 2020. The estimated annual global burned area is 774 million hectares, significantly higher than previous estimates. Burned area declined by 1.21% per year due to extensive fire loss in savanna, grassland, and cropland ecosystems. This study enhances our understanding of the impact of fire on the carbon cycle and climate system, and may improve the predictions of future fire changes.
Stefano Potter, Sol Cooperdock, Sander Veraverbeke, Xanthe Walker, Michelle C. Mack, Scott J. Goetz, Jennifer Baltzer, Laura Bourgeau-Chavez, Arden Burrell, Catherine Dieleman, Nancy French, Stijn Hantson, Elizabeth E. Hoy, Liza Jenkins, Jill F. Johnstone, Evan S. Kane, Susan M. Natali, James T. Randerson, Merritt R. Turetsky, Ellen Whitman, Elizabeth Wiggins, and Brendan M. Rogers
Biogeosciences, 20, 2785–2804, https://doi.org/10.5194/bg-20-2785-2023, https://doi.org/10.5194/bg-20-2785-2023, 2023
Short summary
Short summary
Here we developed a new burned-area detection algorithm between 2001–2019 across Alaska and Canada at 500 m resolution. We estimate 2.37 Mha burned annually between 2001–2019 over the domain, emitting 79.3 Tg C per year, with a mean combustion rate of 3.13 kg C m−2. We found larger-fire years were generally associated with greater mean combustion. The burned-area and combustion datasets described here can be used for local- to continental-scale applications of boreal fire science.
Fa Li, Qing Zhu, William J. Riley, Lei Zhao, Li Xu, Kunxiaojia Yuan, Min Chen, Huayi Wu, Zhipeng Gui, Jianya Gong, and James T. Randerson
Geosci. Model Dev., 16, 869–884, https://doi.org/10.5194/gmd-16-869-2023, https://doi.org/10.5194/gmd-16-869-2023, 2023
Short summary
Short summary
We developed an interpretable machine learning model to predict sub-seasonal and near-future wildfire-burned area over African and South American regions. We found strong time-lagged controls (up to 6–8 months) of local climate wetness on burned areas. A skillful use of such time-lagged controls in machine learning models results in highly accurate predictions of wildfire-burned areas; this will also help develop relevant early-warning and management systems for tropical wildfires.
Dave van Wees, Guido R. van der Werf, James T. Randerson, Brendan M. Rogers, Yang Chen, Sander Veraverbeke, Louis Giglio, and Douglas C. Morton
Geosci. Model Dev., 15, 8411–8437, https://doi.org/10.5194/gmd-15-8411-2022, https://doi.org/10.5194/gmd-15-8411-2022, 2022
Short summary
Short summary
We present a global fire emission model based on the GFED model framework with a spatial resolution of 500 m. The higher resolution allowed for a more detailed representation of spatial heterogeneity in fuels and emissions. Specific modules were developed to model, for example, emissions from fire-related forest loss and belowground burning. Results from the 500 m model were compared to GFED4s, showing that global emissions were relatively similar but that spatial differences were substantial.
Y. Xu, X. Hu, J. Gong, X. Huang, and J. Li
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 223–228, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-223-2022, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-223-2022, 2022
Jinyun Tang, William J. Riley, and Qing Zhu
Geosci. Model Dev., 15, 1619–1632, https://doi.org/10.5194/gmd-15-1619-2022, https://doi.org/10.5194/gmd-15-1619-2022, 2022
Short summary
Short summary
We here describe version 2 of BeTR, a reactive transport model created to help ease the development of biogeochemical capability in Earth system models that are used for quantifying ecosystem–climate feedbacks. We then coupled BeTR-v2 to the Energy Exascale Earth System Model to quantify how different numerical couplings of plants and soils affect simulated ecosystem biogeochemistry. We found that different couplings lead to significant uncertainty that is not correctable by tuning parameters.
Zhonghua Zheng, Matthew West, Lei Zhao, Po-Lun Ma, Xiaohong Liu, and Nicole Riemer
Atmos. Chem. Phys., 21, 17727–17741, https://doi.org/10.5194/acp-21-17727-2021, https://doi.org/10.5194/acp-21-17727-2021, 2021
Short summary
Short summary
Aerosol mixing state is an important emergent property that affects aerosol radiative forcing and aerosol–cloud interactions, but it has not been easy to constrain this property globally. We present a framework for evaluating the error in aerosol mixing state induced by aerosol representation assumptions, which is one of the important contributors to structural uncertainty in aerosol models. Our study provides insights into potential improvements to model process representation for aerosols.
Jing Tao, Qing Zhu, William J. Riley, and Rebecca B. Neumann
The Cryosphere, 15, 5281–5307, https://doi.org/10.5194/tc-15-5281-2021, https://doi.org/10.5194/tc-15-5281-2021, 2021
Short summary
Short summary
We improved the DOE's E3SM land model (ELMv1-ECA) simulations of soil temperature, zero-curtain period durations, cold-season CH4, and CO2 emissions at several Alaskan Arctic tundra sites. We demonstrated that simulated CH4 emissions during zero-curtain periods accounted for more than 50 % of total emissions throughout the entire cold season (Sep to May). We also found that cold-season CO2 emissions largely offset warm-season net uptake currently and showed increasing trends from 1950 to 2017.
Kyle B. Delwiche, Sara Helen Knox, Avni Malhotra, Etienne Fluet-Chouinard, Gavin McNicol, Sarah Feron, Zutao Ouyang, Dario Papale, Carlo Trotta, Eleonora Canfora, You-Wei Cheah, Danielle Christianson, Ma. Carmelita R. Alberto, Pavel Alekseychik, Mika Aurela, Dennis Baldocchi, Sheel Bansal, David P. Billesbach, Gil Bohrer, Rosvel Bracho, Nina Buchmann, David I. Campbell, Gerardo Celis, Jiquan Chen, Weinan Chen, Housen Chu, Higo J. Dalmagro, Sigrid Dengel, Ankur R. Desai, Matteo Detto, Han Dolman, Elke Eichelmann, Eugenie Euskirchen, Daniela Famulari, Kathrin Fuchs, Mathias Goeckede, Sébastien Gogo, Mangaliso J. Gondwe, Jordan P. Goodrich, Pia Gottschalk, Scott L. Graham, Martin Heimann, Manuel Helbig, Carole Helfter, Kyle S. Hemes, Takashi Hirano, David Hollinger, Lukas Hörtnagl, Hiroki Iwata, Adrien Jacotot, Gerald Jurasinski, Minseok Kang, Kuno Kasak, John King, Janina Klatt, Franziska Koebsch, Ken W. Krauss, Derrick Y. F. Lai, Annalea Lohila, Ivan Mammarella, Luca Belelli Marchesini, Giovanni Manca, Jaclyn Hatala Matthes, Trofim Maximov, Lutz Merbold, Bhaskar Mitra, Timothy H. Morin, Eiko Nemitz, Mats B. Nilsson, Shuli Niu, Walter C. Oechel, Patricia Y. Oikawa, Keisuke Ono, Matthias Peichl, Olli Peltola, Michele L. Reba, Andrew D. Richardson, William Riley, Benjamin R. K. Runkle, Youngryel Ryu, Torsten Sachs, Ayaka Sakabe, Camilo Rey Sanchez, Edward A. Schuur, Karina V. R. Schäfer, Oliver Sonnentag, Jed P. Sparks, Ellen Stuart-Haëntjens, Cove Sturtevant, Ryan C. Sullivan, Daphne J. Szutu, Jonathan E. Thom, Margaret S. Torn, Eeva-Stiina Tuittila, Jessica Turner, Masahito Ueyama, Alex C. Valach, Rodrigo Vargas, Andrej Varlagin, Alma Vazquez-Lule, Joseph G. Verfaillie, Timo Vesala, George L. Vourlitis, Eric J. Ward, Christian Wille, Georg Wohlfahrt, Guan Xhuan Wong, Zhen Zhang, Donatella Zona, Lisamarie Windham-Myers, Benjamin Poulter, and Robert B. Jackson
Earth Syst. Sci. Data, 13, 3607–3689, https://doi.org/10.5194/essd-13-3607-2021, https://doi.org/10.5194/essd-13-3607-2021, 2021
Short summary
Short summary
Methane is an important greenhouse gas, yet we lack knowledge about its global emissions and drivers. We present FLUXNET-CH4, a new global collection of methane measurements and a critical resource for the research community. We use FLUXNET-CH4 data to quantify the seasonality of methane emissions from freshwater wetlands, finding that methane seasonality varies strongly with latitude. Our new database and analysis will improve wetland model accuracy and inform greenhouse gas budgets.
Elizabeth B. Wiggins, Arlyn Andrews, Colm Sweeney, John B. Miller, Charles E. Miller, Sander Veraverbeke, Roisin Commane, Steven Wofsy, John M. Henderson, and James T. Randerson
Atmos. Chem. Phys., 21, 8557–8574, https://doi.org/10.5194/acp-21-8557-2021, https://doi.org/10.5194/acp-21-8557-2021, 2021
Short summary
Short summary
We analyzed high-resolution trace gas measurements collected from a tower in Alaska during a very active fire season to improve our understanding of trace gas emissions from boreal forest fires. Our results suggest previous studies may have underestimated emissions from smoldering combustion in boreal forest fires.
Xiongxin Xiao, Shunlin Liang, Tao He, Daiqiang Wu, Congyuan Pei, and Jianya Gong
The Cryosphere, 15, 835–861, https://doi.org/10.5194/tc-15-835-2021, https://doi.org/10.5194/tc-15-835-2021, 2021
Short summary
Short summary
Daily time series and full space-covered sub-pixel snow cover area data are urgently needed for climate and reanalysis studies. Due to the fact that observations from optical satellite sensors are affected by clouds, this study attempts to capture dynamic characteristics of snow cover at a fine spatiotemporal resolution (daily; 6.25 km) accurately by using passive microwave data. We demonstrate the potential to use the passive microwave and the MODIS data to map the fractional snow cover area.
Robinson I. Negrón-Juárez, Jennifer A. Holm, Boris Faybishenko, Daniel Magnabosco-Marra, Rosie A. Fisher, Jacquelyn K. Shuman, Alessandro C. de Araujo, William J. Riley, and Jeffrey Q. Chambers
Biogeosciences, 17, 6185–6205, https://doi.org/10.5194/bg-17-6185-2020, https://doi.org/10.5194/bg-17-6185-2020, 2020
Short summary
Short summary
The temporal variability in the Landsat satellite near-infrared (NIR) band captured the dynamics of forest regrowth after disturbances in Central Amazon. This variability was represented by the dynamics of forest regrowth after disturbances were properly represented by the ELM-FATES model (Functionally Assembled Terrestrial Ecosystem Simulator (FATES) in the Energy Exascale Earth System Model (E3SM) Land Model (ELM)).
Kuang-Yu Chang, William J. Riley, Patrick M. Crill, Robert F. Grant, and Scott R. Saleska
Biogeosciences, 17, 5849–5860, https://doi.org/10.5194/bg-17-5849-2020, https://doi.org/10.5194/bg-17-5849-2020, 2020
Short summary
Short summary
Methane (CH4) is a strong greenhouse gas that can accelerate climate change and offset mitigation efforts. A key assumption embedded in many large-scale climate models is that ecosystem CH4 emissions can be estimated by fixed temperature relations. Here, we demonstrate that CH4 emissions cannot be parameterized by emergent temperature response alone due to variability driven by microbial and abiotic interactions. We also provide mechanistic understanding for observed CH4 emission hysteresis.
Haifan Liu, Heng Dai, Jie Niu, Bill X. Hu, Dongwei Gui, Han Qiu, Ming Ye, Xingyuan Chen, Chuanhao Wu, Jin Zhang, and William Riley
Hydrol. Earth Syst. Sci., 24, 4971–4996, https://doi.org/10.5194/hess-24-4971-2020, https://doi.org/10.5194/hess-24-4971-2020, 2020
Short summary
Short summary
It is still challenging to apply the quantitative and comprehensive global sensitivity analysis method to complex large-scale process-based hydrological models because of variant uncertainty sources and high computational cost. This work developed a new tool and demonstrate its implementation to a pilot example for comprehensive global sensitivity analysis of large-scale hydrological modelling. This method is mathematically rigorous and can be applied to other large-scale hydrological models.
Dalei Hao, Ghassem R. Asrar, Yelu Zeng, Qing Zhu, Jianguang Wen, Qing Xiao, and Min Chen
Earth Syst. Sci. Data, 12, 2209–2221, https://doi.org/10.5194/essd-12-2209-2020, https://doi.org/10.5194/essd-12-2209-2020, 2020
Short summary
Short summary
We adopted machine-learning models to generate the first global land products of SW–PAR based on DSCOVR/EPIC data. Our products are consistent with ground-based observations, capture the spatiotemporal patterns well and accurately track substantial diurnal, monthly and seasonal variations in SW–PAR. Our products provide a valuable alternative for solar photovoltaic applications and can be used to improve our understanding of the diurnal cycles of terrestrial water, carbon and energy fluxes.
Z. Gui, Y. Wang, Z. Cui, D. Peng, J. Wu, Z. Ma, S. Luo, and H. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 545–552, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-545-2020, 2020
K. Hu, Z. Dai, J. Zheng, and H. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 47–53, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-47-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-47-2020, 2020
J. Yan, L. Xiang, C. Wu, and H. Wu
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020, 213–220, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-213-2020, https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-213-2020, 2020
Cited articles
Abatzoglou, J. T. and Williams, A. P.: Impact of anthropogenic climate
change on wildfire across western US forests, P. Natl. Acad. Sci., 113, 11770–11775, 2016.
Andela, N., Morton, D., Giglio, L., Chen, Y., Van Der Werf, G., Kasibhatla,
P., DeFries, R., Collatz, G., Hantson, S., and Kloster, S.: A human-driven
decline in global burned area, Science, 356, 1356–1362, 2017.
Andela, N., Morton, D. C., Giglio, L., Paugam, R., Chen, Y., Hantson, S., van der Werf, G. R., and Randerson, J. T.: The Global Fire Atlas of individual fire size, duration, speed and direction, Earth Syst. Sci. Data, 11, 529–552, https://doi.org/10.5194/essd-11-529-2019, 2019.
Arora, V. K. and Boer, G. J.: Fire as an interactive component of dynamic
vegetation models, J. Geophys. Res.-Biogeo., 110, G02008, https://doi.org/10.1029/2005JG000042, 2005.
Bond, W. J., Woodward, F. I., and Midgley, G. F.: The global distribution of
ecosystems in a world without fire, New Phytol., 165, 525–538, 2005.
Bond-Lamberty, B., Peckham, S. D., Ahl, D. E., and Gower, S. T.: Fire as the
dominant driver of central Canadian boreal forest carbon balance, Nature,
450, 89–92, 2007.
Bowd, E. J., Banks, S. C., Strong, C. L., and Lindenmayer, D. B.: Long-term
impacts of wildfire and logging on forest soils, Nat. Geosci., 12, 113–118, 2019.
Brando, P., Soares-Filho, B., Rodrigues, L., Assunção, A., Morton,
D., Tuchschneider, D., Fernandes, E., Macedo, M., Oliveira, U., and Coe, M.:
The gathering firestorm in southern Amazonia, Sci. Adv., 6, eaay1632, https://doi.org/10.1126/sciadv.aay1632, 2020.
Cecil, D. J., Buechler, D. E., and Blakeslee, R. J.: Gridded lightning
climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res., 135, 404–414, 2014.
Chambers, S. and Chapin, F.: Fire effects on surface-atmosphere energy
exchange in Alaskan black spruce ecosystems: Implications for feedbacks to
regional climate, J. Geophys. Res.-Atmos., 107, 148–227, 2002.
Chen, Y., Randerson, J. T., Morton, D. C., DeFries, R. S., Collatz, G. J.,
Kasibhatla, P. S., Giglio, L., Jin, Y., and Marlier, M. E.: Forecasting fire
season severity in South America using sea surface temperature anomalies,
Science, 334, 787–791, 2011.
Chen, Y., Randerson, J. T., Coffield, S. R., Foufoula-Georgiou, E., Smyth,
P., Graff, C. A., Morton, D. C., Andela, N., van der Werf, G. R., and
Giglio, L.: Forecasting global fire emissions on subseasonal to seasonal
(S2S) time scales, J. Adv. Model. Earth Sy., 12, e2019MS001955, https://doi.org/10.1029/2019MS001955, 2020.
Clark, T. L., Coen, J., and Latham, D.: Description of a coupled
atmosphere-fire model, Int. J. Wildland Fire, 13, 49–63,
2004.
Coffield, S. R., Graff, C. A., Chen, Y., Smyth, P., Foufoula-Georgiou, E.,
and Randerson, J. T.: Machine learning to predict final fire size at the
time of ignition, Int. J. Wildland Fire, 28, 861–873, https://doi.org/10.1071/WF19023, 2019.
Day, C.: Smoke from burning vegetation changes the coverage and behavior of
clouds, Phys. Today, 57, 24, https://doi.org/10.1063/1.1768664, 2004.
Dirmeyer, P. A., Gao, X., Zhao, M., Guo, Z., Oki, T., and Hanasaki, N.:
GSWP-2: Multimodel analysis and implications for our perception of the land
surface, Bull. Am. Meteorol. Soc., 87, 1381–1398, 2006.
Dobson, J. E., Bright, E. A., Coleman, P. R., Durfee, R. C., and Worley, B.
A.: LandScan: a global population database for estimating populations at
risk, Photogram. Eng. Rem. S., 66, 849–857, 2000.
ESA: Fire_cci Burned Area dataset, Fire_CCI51, ESA [data set], https://geogra.uah.es/fire_cci/firecci51.php, last access: 15 September 2021a.
ESA: Fire_cci long-term Burned Area dataset, Fire_CCILT11, ESA [data set], https://geogra.uah.es/fire_cci/fireccilt11.php, last access: 15 September 2021b.
Finney, M. A.: FARSITE, Fire Area Simulator – model development and
evaluation, Res. Pap. RMRS-RP-4, Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 47 p., 1998.
FireAtlas: Global Fire Atlas, FireAtlas [data set], https://www.globalfiredata.org/fireatlas.html (last access: 15 September 2021), 2019.
French, N. H., Whitley, M. A., and Jenkins, L. K.: Fire disturbance effects
on land surface albedo in Alaskan tundra, J. Geophys. Res.-Biogeo., 121, 841–854, 2016.
Ganapathi Subramanian, S. and Crowley, M.: Using spatial reinforcement
learning to build forest wildfire dynamics models from satellite images,
Front. ICT, 5, 6, https://doi.org/10.3389/fict.2018.00006, 2018.
Giglio, L., Csiszar, I., and Justice, C. O.: Global distribution and
seasonality of active fires as observed with the Terra and Aqua Moderate
Resolution Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res.-Biogeo., 111, G02016, https://doi.org/10.1029/2005JG000142, 2006a.
Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., and Kasibhatla, P.: Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys., 6, 957–974, https://doi.org/10.5194/acp-6-957-2006, 2006b.
Giglio, L., Randerson, J. T., and Van Der Werf, G. R.: Analysis of daily,
monthly, and annual burned area using the fourth-generation global fire
emissions database (GFED4), J. Geophys. Res.-Biogeo.,
118, 317–328, 2013.
Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., and Justice, C. O.:
The Collection 6 MODIS burned area mapping algorithm and product, Remote
Sens. Environ., 217, 72–85, 2018.
Giglio, L., Schroeder, W., Hall, J. V., and Justice, C. O.: MODIS Collection 6 Active Fire Product User’s Guide Revision C, NASA [data set], https://modis-fire.umd.edu/files/MODIS_C6_Fire_User_Guide_C.pdf (last access: 15 September 2021), 2020.
Girardin, M. P. and Mudelsee, M.: Past and future changes in Canadian boreal
wildfire activity, Ecol. Appl., 18, 391–406, 2008.
Goodfellow, I., Bengio, Y., and Courville, A.: Deep learning, MIT Press,
Cambridge, http://www.deeplearningbook.org (last access: 15 September 2021), 2016.
Goss, M., Swain, D. L., Abatzoglou, J. T., Sarhadi, A., Kolden, C. A.,
Williams, A. P., and Diffenbaugh, N. S.: Climate change is increasing the
likelihood of extreme autumn wildfire conditions across California,
Environ. Res. Lett., 15, 094016, https://doi.org/10.1088/1748-9326/ab83a7, 2020.
Hantson, S., Arneth, A., Harrison, S. P., Kelley, D. I., Prentice, I. C., Rabin, S. S., Archibald, S., Mouillot, F., Arnold, S. R., Artaxo, P., Bachelet, D., Ciais, P., Forrest, M., Friedlingstein, P., Hickler, T., Kaplan, J. O., Kloster, S., Knorr, W., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Meyn, A., Sitch, S., Spessa, A., van der Werf, G. R., Voulgarakis, A., and Yue, C.: The status and challenge of global fire modelling, Biogeosciences, 13, 3359–3375, https://doi.org/10.5194/bg-13-3359-2016, 2016.
Hantson, S., Rabin, S., Kelley, D. I., Arneth, A., Harrison, S. P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T., Kloster, S., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Nieradzik, L., Prentice, I. C., Sheehan, T., Sitch, S., Teckentrup, L., Voulgarakis, A., Yue, C.: Model outputs: Quantitative assessment of fire and vegetation properties in historical simulations with fire-enabled vegetation models from the Fire Model Intercomparison Project, Zenodo [data set], https://doi.org/10.5281/zenodo.3555562, 2019.
Harden, J. W., Manies, K. L., Turetsky, M. R., and Neff, J. C.: Effects of
wildfire and permafrost on soil organic matter and soil climate in interior
Alaska, Glob. Change Biol., 12, 2391–2403, 2006.
Heyerdahl, E. K., Brubaker, L. B., and Agee, J. K.: Annual and decadal
climate forcing of historical fire regimes in the interior Pacific
Northwest, USA, The Holocene, 12, 597–604, 2002.
Holden, Z. A., Swanson, A., Luce, C. H., Jolly, W. M., Maneta, M., Oyler, J.
W., Warren, D. A., Parsons, R., and Affleck, D.: Decreasing fire season
precipitation increased recent western US forest wildfire activity,
Proc. Natl. A. Sci., 115, E8349–E8357, 2018.
Hurtt, G. C., Chini, L., Sahajpal, R., Frolking, S., Bodirsky, B. L., Calvin, K., Doelman, J. C., Fisk, J., Fujimori, S., Klein Goldewijk, K., Hasegawa, T., Havlik, P., Heinimann, A., Humpenöder, F., Jungclaus, J., Kaplan, J. O., Kennedy, J., Krisztin, T., Lawrence, D., Lawrence, P., Ma, L., Mertz, O., Pongratz, J., Popp, A., Poulter, B., Riahi, K., Shevliakova, E., Stehfest, E., Thornton, P., Tubiello, F. N., van Vuuren, D. P., and Zhang, X.: Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6, Geosci. Model Dev., 13, 5425–5464, https://doi.org/10.5194/gmd-13-5425-2020, 2020.
Jiang, Y., Yang, X.-Q., Liu, X., Qian, Y., Zhang, K., Wang, M., Li, F.,
Wang, Y., and Lu, Z.: Impacts of wildfire aerosols on global energy budget
and climate: The role of climate feedbacks, J. Climate, 33, 3351–3366, 2020.
Kasischke, E. S. and Bruhwiler, L. P.: Emissions of carbon dioxide, carbon
monoxide, and methane from boreal forest fires in 1998, J. Geophys. Res.-Atmos., 107, 148–227, https://doi.org/10.1029/2001JD000461, 2002.
Kelley, D. I., Bistinas, I., Whitley, R., Burton, C., Marthews, T. R., and
Dong, N.: How contemporary bioclimatic and human controls change global fire
regimes, Nat. Clim. Change, 9, 690–696, 2019.
Kelley, D. I., Burton, C., Huntingford, C., Brown, M. A. J., Whitley, R., and Dong, N.: Technical note: Low meteorological influence found in 2019 Amazonia fires, Biogeosciences, 18, 787–804, https://doi.org/10.5194/bg-18-787-2021, 2021.
Keeley, J. E. and Syphard, A. D.: Historical patterns of wildfire ignition
sources in California ecosystems, Int. J. Wildland Fire, 27, 781–799, 2018.
Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimization, arXiv:1412.6980, 2014.
Knorr, W., Kaminski, T., Arneth, A., and Weber, U.: Impact of human
population density on fire frequency at the global scale, Biogeosciences,
11, 1085–1102, 2014.
Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, W. D., Bonan, G. B., Lawrence, D. M., and Swenson, S. C.: The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4, Biogeosciences, 10, 7109–7131, https://doi.org/10.5194/bg-10-7109-2013, 2013.
Lamarque, J. F., Kiehl, J. T., Brasseur, G. P., Butler, T., Cameron-Smith,
P., Collins, W. D., Collins, W. J., Granier, C., Hauglustaine, D., and Hess,
P. G.: Assessing future nitrogen deposition and carbon cycle feedback using
a multimodel approach: Analysis of nitrogen deposition, J. Geophys. Res.-Atmos., 110, D19303, https://doi.org/10.1029/2005JD005825, 2005.
Lenihan, J. M. and Bachelet, D.: Historical climate and suppression effects
on simulated fire and carbon dynamics in the conterminous United States,
Global Vegetation Dynamics: Concepts and Applications in the MC1 Model,
edited by: Bachelet, D. and Turner, D., AGU Geophys. Monog., 214,
17–30, 2015.
Li, F., Zeng, X. D., and Levis, S.: A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model, Biogeosciences, 9, 2761–2780, https://doi.org/10.5194/bg-9-2761-2012, 2012.
Li, F., Val Martin, M., Andreae, M. O., Arneth, A., Hantson, S., Kaiser, J. W., Lasslop, G., Yue, C., Bachelet, D., Forrest, M., Kluzek, E., Liu, X., Mangeon, S., Melton, J. R., Ward, D. S., Darmenov, A., Hickler, T., Ichoku, C., Magi, B. I., Sitch, S., van der Werf, G. R., Wiedinmyer, C., and Rabin, S. S.: Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP), Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, 2019.
Lizundia-Loiola, J., Pettinari, M., Chuvieco, E., Storm, T., and
Gómez-Dans, J.: ESA CCI ECV Fire Disturbance: Algorithm Theoretical
Basis Document-MODIS, version 2.0, https://climate.esa.int/media/documents/Fire_cci_D2.1.3_ATBD-MODIS_v2.0.pdf (last access: 15 September 2021), 2018.
Lizundia-Loiola, J., Otón, G., Ramo, R., and Chuvieco, E.: A
spatio-temporal active-fire clustering approach for global burned area
mapping at 250 m from MODIS data, Remote Sens. Environ., 236,
111493, https://doi.org/10.1016/j.rse.2019.111493, 2020.
Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C.
R., Bergametti, G., Bond, T. C., Chen, Y., Cohen, D. D., and Herut, B.:
Global distribution of atmospheric phosphorus sources, concentrations and
deposition rates, and anthropogenic impacts, Global Biogeochem. Cy.,
22, GB4026, https://doi.org/10.1029/2008GB003240, 2008.
Mekonnen, Z. A., Riley, W. J., Randerson, J. T., Grant, R. F., and Rogers,
B. M.: Expansion of high-latitude deciduous forests driven by interactions
between climate warming and fire, Nat. Plants, 5, 952–958, 2019.
Oliver, A. K., Callaham Jr., M. A., and Jumpponen, A.: Soil fungal
communities respond compositionally to recurring frequent prescribed burning
in a managed southeastern US forest ecosystem, Forest Ecol. Manag.t, 345, 1–9, 2015.
Papakosta, P., Xanthopoulos, G., and Straub, D.: Probabilistic prediction of
wildfire economic losses to housing in Cyprus using Bayesian network
analysis, Int. J. Wildland Fire, 26, 10–23, 2017.
Pellegrini, A. F., Ahlström, A., Hobbie, S. E., Reich, P. B., Nieradzik,
L. P., Staver, A. C., Scharenbroch, B. C., Jumpponen, A., Anderegg, W. R.,
and Randerson, J. T.: Fire frequency drives decadal changes in soil carbon
and nitrogen and ecosystem productivity, Nature, 553, 194–198, 2018.
Pellegrini, A. F., Hobbie, S. E., Reich, P. B., Jumpponen, A., Brookshire,
E. J., Caprio, A. C., Coetsee, C., and Jackson, R. B.: Repeated fire shifts
carbon and nitrogen cycling by changing plant inputs and soil decomposition
across ecosystems, Ecol. Monogr., 90, e01409, https://doi.org/10.1002/ecm.1409, 2020.
Preisler, H. K. and Westerling, A. L.: Statistical model for forecasting
monthly large wildfire events in western United States, J. Appl. Meteorol. Clim., 46, 1020–1030, 2007.
Prentice, S. and Mackerras, D.: The ratio of cloud to cloud-ground lightning
flashes in thunderstorms, J. Appl. Meteorol., 16, 545–550, 1977.
Rabin, S. S., Melton, J. R., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Kaplan, J. O., Li, F., Mangeon, S., Ward, D. S., Yue, C., Arora, V. K., Hickler, T., Kloster, S., Knorr, W., Nieradzik, L., Spessa, A., Folberth, G. A., Sheehan, T., Voulgarakis, A., Kelley, D. I., Prentice, I. C., Sitch, S., Harrison, S., and Arneth, A.: The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions, Geosci. Model Dev., 10, 1175–1197, https://doi.org/10.5194/gmd-10-1175-2017, 2017.
Radke, D., Hessler, A., and Ellsworth, D.: FireCast: Leveraging Deep
Learning to Predict Wildfire Spread, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence
Main track, IJCAI 2019 Macao, Int. Joint Conf. Aartif., 4575–4581, https://doi.org/10.24963/ijcai.2019/636, 2019.
Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., Hess,
P. G., Pfister, G., Mack, M., Treseder, K., and Welp, L.: The impact of
boreal forest fire on climate warming, Science, 314, 1130–1132, 2006.
Randerson, J. T., van der Werf, G. R., Giglio, L., Collatz, G. J., and Kasibhatla, P. S.: Global Fire Emissions Database, Version 4, (GFEDv4), ORNL DAAC, Oak Ridge, Tennessee, USA, https://doi.org/10.3334/ORNLDAAC/1293, data available at: https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html (last access: 15 September 2021), 2018.
Riley, K. and Thompson, M.: An uncertainty analysis of wildfire modeling,
Natural hazard uncertainty assessment: modeling and decision support,
Monograph, 223, 193–213, 2017.
Ross, A. N., Wooster, M. J., Boesch, H., and Parker, R.: First satellite
measurements of carbon dioxide and methane emission ratios in wildfire
plumes, Geophys. Res. Lett., 40, 4098–4102, 2013.
Rother, D. and De Sales, F.: Impact of Wildfire on the Surface Energy
Balance in Six California Case Studies, Bound.-Lay. Meteorol., 178, 143–166, 2020.
Rothermel, R. C.: A mathematical model for predicting fire spread in
wildland fuels, Intermountain Forest & Range Experiment Station, Forest
Service, US Department of Agriculture, Ogden, UT, USA, Res. Pap. INT-115, 40p., 1972.
Saha, M. V., Scanlon, T. M., and D'Odorico, P.: Climate seasonality as an
essential predictor of global fire activity, Global Ecol. Biogeogr., 28, 198–210, 2019.
Sayad, Y. O., Mousannif, H., and Al Moatassime, H.: Predictive modeling of
wildfires: A new dataset and machine learning approach, Fire Safety J.,
104, 130–146, 2019.
Schmidhuber, J.: Deep learning in neural networks: An overview, Neural
Networks, 61, 85–117, 2015.
Stephenson, C., Handmer, J., and Betts, R.: Estimating the economic, social
and environmental impacts of wildfires in Australia, Environ. Hazards,
12, 93–111, 2013.
Syphard, A. D., Radeloff, V. C., Keeley, J. E., Hawbaker, T. J., Clayton, M.
K., Stewart, S. I., and Hammer, R. B.: Human influence on California fire
regimes, Ecol. Appl., 17, 1388–1402, 2007.
Teckentrup, L., Lasslop, G., Bachelet, D., Forrest, M., Hantson, S., Li, F.,
Melton, J. R., Yue, C., Arneth, A., Harrison, S. P., and Sitch, S.: Simulations of
historical burned area: A comparison of global fire models in FireMIP,
EGUGA, 17537, https://ui.adsabs.harvard.edu/abs/2018EGUGA..2017537T, 2018.
Thonicke, K., Spessa, A., Prentice, I. C., Harrison, S. P., Dong, L., and Carmona-Moreno, C.: The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model, Biogeosciences, 7, 1991–2011, https://doi.org/10.5194/bg-7-1991-2010, 2010.
Tonini, M., D'Andrea, M., Biondi, G., Degli Esposti, S., Trucchia, A., and
Fiorucci, P.: A Machine Learning-Based Approach for Wildfire Susceptibility
Mapping, The Case Study of the Liguria Region in Italy, Geosciences, 10,
105, https://doi.org/10.3390/geosciences10030105, 2020.
van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton, D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global fire emissions estimates during 1997–2016, Earth Syst. Sci. Data, 9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.
van Vuuren, D. P., Lucas, P. L., and Hilderink, H.: Downscaling drivers of
global environmental change: Enabling use of global SRES scenarios at the
national and grid levels, Glob. Environ. Change, 17, 114–130, 2007.
Venevsky, S., Thonicke, K., Sitch, S., and Cramer, W.: Simulating fire
regimes in human-dominated ecosystems: Iberian Peninsula case study, Glob.
Change Biol., 8, 984–998, 2002.
Walker, X. J., Baltzer, J. L., Cumming, S. G., Day, N. J., Ebert, C., Goetz,
S., Johnstone, J. F., Potter, S., Rogers, B. M., and Schuur, E. A.:
Increasing wildfires threaten historic carbon sink of boreal forest soils,
Nature, 572, 520–523, 2019.
Wang, J.-F., Stein, A., Gao, B.-B., and Ge, Y.: A review of spatial
sampling, Spat. Stat., 2, 1–14, 2012.
Westerling, A. L., Hidalgo, H. G., Cayan, D. R., and Swetnam, T. W.: Warming
and earlier spring increase western US forest wildfire activity, Science,
313, 940–943, 2006.
Williams, A. P., Abatzoglou, J. T., Gershunov, A., Guzman-Morales, J.,
Bishop, D. A., Balch, J. K., and Lettenmaier, D. P.: Observed impacts of
anthropogenic climate change on wildfire in California, Earths Future, 7,
892–910, 2019.
Xu, L., Qing, Z., William, J. R., Yang, C., Hailong, W., Po-Lun, M., and
James, T. R.: The influence of fire aerosols on surface climate and gross
primary production in the Energy Exascale Earth System Model (E3SM), J. Climate 34, 7219–7238, 2021.
Xu, X., Jia, G., Zhang, X., Riley, W. J., and Xue, Y.: Climate regime shift
and forest loss amplify fire in Amazonian forests, Glob. Change Biol.,
26, 5874–5885, 2020.
Yu, Y., Mao, J., Thornton, P. E., Notaro, M., Wullschleger, S. D., Shi, X.,
Hoffman, F. M., and Wang, Y.: Quantifying the drivers and predictability of
seasonal changes in African fire, Nature Commun., 11, 1–8, 2020.
Yue, X., Mickley, L. J., Logan, J. A., and Kaplan, J. O.: Ensemble
projections of wildfire activity and carbonaceous aerosol concentrations
over the western United States in the mid-21st century, Atmos. Environ., 77, 767–780, 2013.
Zheng, H., Yang, Z., Liu, W., Liang, J., and Li, Y.: Improving deep neural
networks using softplus units, 2015 International Joint Conference on Neural
Networks (IJCNN), 1–4, https://doi.org/10.1109/IJCNN.2015.7280459, 2015.
Zhu, Q.: Building a machine learning surrogate model for wildfire activities within a global earth system model, Zenodo [code], https://doi.org/10.5281/zenodo.5508795, 2021.
Zhu, Q. and Riley, W. J.: Improved modelling of soil nitrogen losses, Nat.
Clim. Change, 5, 705–706, 2015.
Zhu, Q. and Zhuang, Q.: Improving the quantification of terrestrial
ecosystem carbon dynamics over the United States using an adjoint method,
Ecosphere, 4, art118, https://doi.org/10.1890/ES13-00058.1, 2013.
Zhu, Q. and Zhuang, Q.: Parameterization and sensitivity analysis of a
process-based terrestrial ecosystem model using adjoint method, J. Adv. Model. Ea. Sy., 6, 315–331, https://doi.org/10.1002/2013MS000241, 2014.
Zhu, Q., Riley, W. J., Tang, J., and Koven, C. D.: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests, Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016, 2016.
Zhu, Q., Riley, W. J., Tang, J., Collier, N., Hoffman, F. M., Yang, X., and
Bisht, G.: Representing nitrogen, phosphorus, and carbon interactions in the
E3SM Land Model: Development and global benchmarking, J. Adv. Model. Ea. Sy., 11, 2238–2258, https://doi.org/10.1029/2018MS001571, 2019.
Zhu, Q., Riley, W. J., Iversen, C. M., and Kattge, J.: Assessing impacts of
plant stoichiometric traits on terrestrial ecosystem carbon accumulation
using the E3SM land model, J. Adv. Model. Ea. Sy., 12, e2019MS001841, https://doi.org/10.1029/2019MS001841, 2020.
Zou, Y., Wang, Y., Ke, Z., Tian, H., Yang, J., and Liu, Y.: Development of a
REgion-specific ecosystem feedback fire (RESFire) model in the Community
Earth System Model, J. Adv. Model. Ea. Sy., 11, 417–445, 2019.
Zou, Y., Wang, Y., Qian, Y., Tian, H., Yang, J., and Alvarado, E.: Using CESM-RESFire to understand climate-fire-ecosystem interactions and the implications for decadal climate variability, Atmos. Chem. Phys., 20, 995–1020, https://doi.org/10.5194/acp-20-995-2020, 2020.
Short summary
Wildfire is a devastating Earth system process that burns about 500 million hectares of land each year. It wipes out vegetation including trees, shrubs, and grasses and causes large losses of economic assets. However, modeling the spatial distribution and temporal changes of wildfire activities at a global scale is challenging. This study built a machine-learning-based wildfire surrogate model within an existing Earth system model and achieved high accuracy.
Wildfire is a devastating Earth system process that burns about 500 million hectares of land...