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Abstract. Wildfire is an important ecosystem process, in-
fluencing land biogeophysical and biogeochemical dynam-
ics and atmospheric composition. Fire-driven loss of vege-
tation cover, for example, directly modifies the surface en-
ergy budget as a consequence of changing albedo, surface
roughness, and partitioning of sensible and latent heat fluxes.
Carbon dioxide and methane emitted by fires contribute to a
positive atmospheric forcing, whereas emissions of carbona-
ceous aerosols may contribute to surface cooling. Process-
based modeling of wildfires in Earth system land models is
challenging due to limited understanding of human, climate,
and ecosystem controls on fire counts, fire size, and burned
area. Integration of mechanistic wildfire models within Earth
system models requires careful parameter calibration, which
is computationally expensive and subject to equifinality. To
explore alternative approaches, we present a deep neural net-
work (DNN) scheme that surrogates the process-based wild-
fire model with the Energy Exascale Earth System Model
(E3SM) interface. The DNN wildfire model accurately sim-
ulates observed burned area with over 90 % higher accuracy
with a large reduction in parameterization time compared
with the current process-based wildfire model. The surrogate
wildfire model successfully captured the observed monthly
regional burned area during validation period 2011 to 2015
(coefficient of determination, R2 = 0.93). Since the DNN
wildfire model has the same input and output requirements as

the E3SM process-based wildfire model, our results demon-
strate the applicability of machine learning for high accuracy
and efficient large-scale land model development and predic-
tions.

1 Introduction

Wildfires burn ~ 500 million hectares of vegetated land sur-
face each year, which significantly modifies the physical
properties and biogeochemical cycles of terrestrial ecosys-
tems (Bond-Lamberty et al., 2007; Randerson et al., 2006;
Pellegrini et al., 2018; Andela et al., 2017). Living veg-
etation biomass, surface litter, and coarse woody debris
are directly combusted and removed by wildfire (Walker
et al., 2019; Harden et al., 2006). It has been suggested
that global forest cover would double if fire were elimi-
nated (Bond et al., 2005). Fire has multiple important conse-
quences for the climate system, including directly releasing
greenhouse gases (e.g., CO2, CHy) (Ross et al., 2013; Kasis-
chke and Bruhwiler, 2002) and aerosols (Jiang et al., 2020);
changing land surface albedo and energy budgets (French et
al., 2016; Rother and De Sales, 2020) and land—atmosphere
exchanges of heat, mass, and momentum (Chambers and
Chapin, 2002); limiting plant transpiration and regional wa-
ter recycling (Holden et al., 2018; Brando et al., 2020); and
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reshaping forest composition (Mekonnen et al., 2019). In ad-
dition, biomass burning emits a large amount of fine particu-
late matter that contributes to about 30 % of cloud condensa-
tion nuclei globally (Day, 2004). Soil organic matter decom-
position, nitrogen mineralization, and the richness and diver-
sity of soil fungal communities (Oliver et al., 2015) could
also be influenced by wildfire through modifying litter sub-
strate supply and degraded enzymatic activities (Pellegrini et
al., 2020; 2018; Bowd et al., 2019; Holden et al., 2018).

Climate change and land use activities have jointly af-
fected fire spatial distribution, frequency, and intensity (Xu
et al., 2020; Kelley et al., 2019; Andela et al., 2017) since
the pre-industrial era. For example, warmer and drier climate
conditions enhance fuel aridity and favor fire occurrence in
forest ecosystems where fuels have built up over a period
of decades and centuries (Abatzoglou and Williams, 2016;
Williams et al., 2019). Even if annual precipitation does not
decline, redistribution of precipitation towards extreme wet
season rainfall events could contribute to longer dry periods
and thus more severe fire activity (Xu et al., 2020). Human
activities often shape wildfire activity through regulating pat-
terns of ignition and fire occurrence (e.g., power line igni-
tion) (Keeley and Syphard, 2018) and suppressing wildfire
activity by means of land fragmentation, fire management,
and livestock grazing (Andela et al., 2017). In California, fire
density is highly associated with population density and the
distance to the wildland—urban interface (WUI) (Syphard et
al., 2007). At the global scale, along gradients of increasing
population density, fire frequency initially increases by up to
20 % and then gradually declines in more densely populated
areas (Knorr et al., 2014).

Although global wildfire burned area has declined over
the recent two decades (Andela et al., 2017), many vul-
nerable ecosystems and geographic regions have experi-
enced significant increases in wildfire activity (Abatzoglou
and Williams, 2016; Walker et al., 2019) resulting in large
losses of natural resources and economic assets (Stephen-
son et al., 2013; Papakosta et al., 2017). In western US
forests, wildfire has dramatically increased, costing billions
of dollars each year and gaining widespread public atten-
tion. This regional wildfire increase is mainly driven by con-
current increases in spring temperature and declining snow-
packs (Westerling et al., 2006), mid-summer increases in va-
por pressure deficit (Williams et al., 2019), and increases
in drought stress during fall (Goss et al., 2020). The en-
hancement of wet and dry oscillations favors initial vegeta-
tion growth and subsequent wildfire activity (Heyerdahl et
al., 2002; Saha et al., 2019).

Wildfire models have played an important role in many as-
pects of wildfire research, including monitoring fire spread
(Finney, 1998; Radke et al., 2019), analyzing controllers
of wildfire short-term and long-term variability (Kelley et
al., 2019), predicting severity of the upcoming fire seasons
(Preisler and Westerling, 2007) and climate-scale fire vari-
ability (Girardin and Mudelsee, 2008; Yue et al., 2013),
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and understanding the complex climate—wildfire—ecosystem
feedbacks (Clark et al., 2004; Zou et al., 2020; Mekon-
nen et al., 2019). Two types of wildfire models are widely
used: process-based models and data-driven statistical mod-
els (Hantson et al., 2016). Process-based wildfire mod-
els consider detailed processes related to natural fire igni-
tion (Prentice and Mackerras, 1977), anthropogenic ignition
(Venevsky et al., 2002), fire spread and duration (Thonicke
et al., 2010), fire suppression (Lenihan and Bachelet, 2015),
and fire mass and heat fluxes (Li et al., 2012). Process-based
wildfire models have been widely used in dynamic vegeta-
tion models and coupled Earth system models (ESMs) with
various complexities of parameterization (Li et al., 2019; Ra-
bin et al., 2017). As more and more detailed fire processes
are considered and parameterized, structural and parametric
uncertainties may increase due to incomplete representation
of individual processes and imperfect mathematical formu-
lation (Riley and Thompson, 2017). Historically, data-driven
models were often used for fire behavior modeling and aim to
track the ignition, spread, duration, and extinction of individ-
ual fires (Finney, 1998; Radke et al., 2019) at fine spatial and
temporal scales. This group of models are more relevant to
operational fire research. While process-based wildfire mod-
els in the context of global vegetation models or Earth system
land models focuses on the grid-cell aggregated fire burned
area dynamics that are more relevant to researches on large-
scale patterns and climate scale predictions (Li et al., 2019;
Rabin et al., 2017). This study particularly focuses on the
second category of wildfire models.

Although explicit processes are simulated, the accuracy of
process-based wildfire models are highly dependent on pa-
rameterization, which is computationally expensive (Zhu and
Zhuang, 2014; Teckentrup et al., 2018; Xu et al., 2021). Data-
driven models, however, directly link the driving variables
(e.g., climate factors) to the fire activity using simple sta-
tistical models or more sophisticated machine learning tech-
niques, ignoring the explicit processes and feedbacks asso-
ciated with wildfire (Radke et al., 2019; Tonini et al., 2020;
Ganapathi Subramanian and Crowley, 2018). Through train-
ing and validation, statistical representations of wildfire dy-
namics are learned by models using principles from machine
learning. Data-driven wildfire models are diverse in terms of
driving variables and model structure. For example, many
current machine learning wildfire models rely on remote
oceanic dynamics (e.g., sea surface temperature variability)
and atmospheric teleconnections to simulate land surface fire
activities (Yu et al., 2020; Chen et al., 2011, 2020). Another
group of data-driven wildfire models draws more heavily
upon regional climate, plant functional type, and human in-
frastructure driver variables (Coffield et al., 2019; Sayad et
al., 2019).

In this study, we develop a machine learning wild-
fire model using the process representation of wildfire in
the Energy Exascale Earth System Model (E3SM) land
model (ELMvl) (Zhu et al., 2019), five observationally in-

https://doi.org/10.5194/gmd-15-1899-2022



Q. Zhu et al.: Building a machine learning surrogate model for wildfire activities 1901

ferred burned area products (Andela et al., 2019; Giglio et
al., 2018; Lizundia-Loiola et al., 2020, 2018; Van Der Werf
et al., 2017), and a deep neural network approach (Goodfel-
low et al., 2016). We implemented a deep learning model that
can better capture the complex and non-linear interactions
between controlling factors and wildfire activity. The objec-
tives of this study are to surrogate the wildfire parameteri-
zation in ELMv1 with the deep neural network and improve
the model-simulated wildfire burned area across various fire
regions (Giglio et al., 2013).

2 Methodology
2.1 ELMyvl wildfire model

The process-based wildfire model in ELMv1 originates from
the Community Land Model (CLM4.5) (Li et al., 2012); we
take this wildfire model as the baseline (hereafter referred
to as BASE-Fire) without modification on process represen-
tation. BASE-Fire combines information regarding ignition,
fuel conditions, surface climate, and anthropogenic suppres-
sion to simulate total burned area based on the fire counts and
spread area of each fire (Fig. 1). The fire count in BASE-Fire
is modeled as the sum of anthropogenic ignition and natural
ignition, where the latter is proportional to lightning density
(Prentice and Mackerras, 1977) and the former is determined
by population density (Venevsky et al., 2002). Human activ-
ity may also intentionally suppress wildfire occurrence if the
fire is detected at an early stage. For example, developed re-
gions with high population density and gross domestic prod-
uct are less likely to use fire to remove surface biomass. On
the other hand, developed regions are more likely to sup-
press fire given more effective fire management policy and
suppression capability. Fire count is also affected by sur-
face fuel availability (aboveground biomass) and fuel com-
bustibility (relative humidity, topsoil temperature, and mois-
ture). The fire spread area in BASE-Fire is modeled as an
elliptical-shaped region controlled by wind speed and fuel
wetness (Rothermel, 1972) (using topsoil (0-15cm) mois-
ture as a proxy). The fire duration is set to be one day based
on a study that reported the mean global fire persistence of
years 2001-2004 (Giglio et al., 2006a). BASE-Fire also does
not explicitly consider roads, rivers, and firefighting activity
(Arora and Boer, 2005).

2.2 Deep neural network wildfire surrogate model

We developed the new fire model in two steps: (Eq. 1) sur-
rogating BASE-Fire with a deep neural network (DNN) ap-
proach and (Eq. 2) improving that surrogate model using
five observationally inferred burned area products (Table S1
in the Supplement). First, we surrogated BASE-Fire with
a DNN approach (hereafter referred to as DNN-Fire) that
uses the same input and output variables as BASE-Fire but
treats the explicit intermediate processes (e.g., ignition, fire

https://doi.org/10.5194/gmd-15-1899-2022

spread) as latent variables coded by hidden layers in the DNN
(Fig. 1). DNN-Fire was developed with five hidden layers
and five neurons in each layer for burned area simulation.
The DNN approach uses a fully connected feed-forward neu-
ral network (Schmidhuber, 2015) that comprises input, hid-
den, and output layers:

hi = fi(Wil+b1), ()
hy = fo(Wahy +b2), 2
hs = f3(W3hy +b3), (3)
hy = f4(Wah3+bs), 4)
hs = fs(Wshy +bs), &)
O = fo (Wehs +be), (6)

where / denotes the input layer (e.g., climate factors) with
11 neurons, each corresponding to an input variable listed in
Table 1. hy, hy, h3, hy, and hs are five hidden vectors that
are calculated with two steps. First is a linear combination
of previous layers’ input vector (k) and the trainable weight
parameter matrix [W1, Wa, W3, W4, W5, W], considering
biases by, by, b3, bs, bs, and bg. Then, nonlinear activation
functions fi, f2, f3, fa, f5, and fe. are applied to the out-
put from the previous step. In this study we used softplus
as the activation function (Zheng et al., 2015) that is a non-
linear transformation of input signals. O denotes the output
layer that summarizes the latent variables from the last hid-
den layer (h5) and calculates burned area.

Second, we improved the surrogate DNN-Fire by fine-
tuning the weight parameters using observations (here-
after referred to as DNN-Fire-OBS). Between 2001 and
2010, we initialized DNN-Fire-OBS’s weight parameters
(W1, Wy, W3, Wy, W5, and Wg) using results from DNN-
Fire; replaced the BASE-Fire burned area by the ensemble
mean of five observationally inferred burned area products
including GFEDv4s (Van Der Werf et al., 2017), Fire_CCI51
(Lizundia-Loiola et al., 2020), Fire_CCILT11 (Lizundia-
Loiola et al., 2018), MODIS MCD64 (Giglio et al., 2018),
and Fire_Atlas (Andela et al., 2019) (Table S1 in the Sup-
plement); and adjusted weight parameters until the model
best reproduced the observed burned area. This two-step ap-
proach will also allow rapid parameterization of the Fire
model as new fire data and baseline fire model results be-
come available. DNN-Fire-OBS can be more easily gener-
alized since BASE-Fire provides explicit physical guidance
and a larger-than-observation input and output feature space
for development of the machine learning fire model. One
limitation is the large discrepancy among five burned area
products. Tuning DNN-Fire towards the ensemble mean of
the five products will potentially compromise the data differ-
ence; however, future work is needed to improve the burned
area data quality and consistency.
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Figure 1. Schematic representation of the ELMv1 process-based BASE-Fire model and the components to be surrogated with the deep neural

network (DNN) model (dark grey).

Table 1. Input and output variables of ELMv1 BASE-Fire and surrogate DNN-Fire models.

Variable category

Variable name

Data source and reference

Input variables

Tree coverage

LUH2 (Hurtt et al., 2020)

Fuel conditions

Fuel load

ELMv1 total biomass
(Zhu et al., 2019; Zhu and Riley, 2015)

Fuel wetness

ELMv1 topsoil moisture
(Zhu et al., 2019; Zhu and Riley, 2015)

Fuel temperature

ELMv1 topsoil temperature
(Zhu et al., 2019; Zhu and Riley, 2015)

Climate factors

Precipitation

Near surface temperature
Wind speed

Relative humidity

GSWP3 (Dirmeyer et al., 2006)
GSWP3 (Dirmeyer et al., 2006)
GSWP3 (Dirmeyer et al., 2006)
GSWP3 (Dirmeyer et al., 2006)

Ignition

Population density

(Dobson et al., 2000)

Lightning frequency NASA-LIS/OTD (Cecil et al., 2014)
Anthropogenic suppression GDP . . (Van Vuuren et al., 2007)
Population density (Dobson et al., 2000)
Output variable
Burned area ELMvl1 percentage burned area

(Zhu et al., 2019; Zhu and Riley, 2015)
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2.3 Model setup and simulation protocol

We ran ELMv1 with BASE-Fire at 1.9° by 2.5° spatial reso-
lution (Zhu et al., 2016, 2020) to generate training and test-
ing datasets for the DNN wildfire model. BASE-Fire was
first spun up for 600 years with accelerated soil decompo-
sition followed by 200 years regular spinup with regular
soil decomposition (Koven et al., 2013). The spinup simu-
lations were forced with constant atmospheric CO; concen-
tration (285 ppmv) and 1901-1920 repeated climate forcing
from GSWP3 (Global Soil Wetness Project) (Dirmeyer et
al., 2006). The purpose of the spinup was to initialize ecosys-
tem carbon pools and stabilize plant and soil carbon and wa-
ter fluxes. Restarting from the “spun-up” conditions, a tran-
sient simulation was then conducted from 1901 to 2015 with
GSWP3 transient climate forcing, atmospheric CO, concen-
trations, and nitrogen and phosphorus deposition (Lamarque
et al., 2005; Mahowald et al., 2008). Wildfire associated vari-
ables were selected for output with a monthly temporal reso-
lution (Table 1).

BASE-Fire output from years 1981 to 2010 were used to
train, test, and fine-tune DNN-Fire. We developed 14 region-
specific models, corresponding to 14 widely used GFED re-
gions. For each region, all land grid cells (comprising no fire
history, infrequent fire, and repeated fire) were concatenated
into one data matrix (where rows consist of the number of
samples and columns of the number of variables). A total of
80 % of the data matrix was randomly sampled for the train-
ing dataset, and the remaining 20 % of the data were reserved
for testing. Furthermore, the random sampling was stratified
in order to reduce the risk of sampling, e.g., adjacent high fire
grid cells. All grid cells were first divided into three “strata”:
low burn (0 %—-33 % percentile), median burn (33 %—66 %
percentile), and high burn (67 %—100 % percentile) grid cells
based on the magnitude of the burn. The stratified random
sample assured the sampled grid cells for training and test-
ing had the same ratios of low, medium and high burn, thus
eliminating the sampling bias from spatial autocorrelation
(Wang et al., 2012). In addition to random sampling, we also
investigated the impacts of data choice on the model per-
formance, by sampling the testing datasets within specific
years (e.g., 2001-2002, 2003-2004, 2005-2006, 2007-2008,
2009-2010), and used the rest of the years for training. We
found neglected differences among the models (Fig. S1 in
the Supplement) indicating the choice of training/testing data
years were not impactful. Therefore, we will discuss the re-
sults of the stratified random sampling approach as the major
results throughout the paper.

All training and testing datasets were normalized to the
range [0, 1] with the following scaler:

X = X — Xmin ’ 7)
Xmax — Xmin

where X is the variable vector of interest, and X i and X pax

are minimum and maximum values of X, respectively. Dur-
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ing the training stage, we randomly initialized the weighting
parameters (Eq. 1-6) and optimized them using the adaptive
moment estimation method (Kingma and Ba, 2014), which
is a variant of the gradient descent optimization method
but considers adaptive learning rate and momentum-like ex-
ponentially decaying gradients. The parameter optimization
aimed to minimize a mean squared error cost function:

1 n
=Y
i=1

where leNN and yiBASE are DNN-Fire- and BASE-Fire-
generated burned area, respectively. i represents a different
grid cell. Cost function J summarizes the overall magnitude
of the error between the surrogate DNN-Fire and BASE-Fire.
We then evaluated model performance using metrics of mean
absolute error (Eq. 9), Pearson correlation (Eq. 10), and co-
efficient of determination (Eq. 11).

1 n
MAE:;Z

i=1

yPASE)2, (8)

leNN _ yIBASE‘ )

covariance(yPNN| yBASE)

- 10
P= Sariance (yPNN) variance (yBASE) (10)

n
. (leNN _ leASE)Z
R:=1-=! (11)

n

BASE BASE\2
'Zl (yi ~ Ymean )
=

3 Results and discussion
3.1 Evaluation of wildfire surrogate model

BASE-Fire performed reasonably well for total global
burned area (508 &53Mhayr~! (millions of hectares per
year) between years 2001 and 2010 compared with the obser-
vational long-term average of 424484 Mha yr~'; Fig. 2, Ta-
ble S1). BASE-Fire also captured the global declining trend
of wildfire burned area over this time period, attributed to
a decrease in tropical fires (Andela et al., 2017). At the
regional scale, however, BASE-Fire underestimated tropi-
cal (23.5° S-23.5° N) burned area and overestimated temper-
ate (23.5-67.5° N) and boreal (67.5° N above) burned area
(Fig. 2). Large spatial heterogeneity existed for BASE-Fire
regional bias. For example, over tropical GFED regions,
BASE-Fire overestimated wildfire burned area over South-
ern Hemisphere South America (SHSA) but underestimated
wildfire burned area over both Southern and Northern Hemi-
sphere Africa regions (SHAF and NHAF), despite an over-
all underestimation over the tropical region (Fig. 3). In con-
trast, consistent overestimation occurred over all temperate
GFED regions. For example, wildfire burning was overesti-
mated by about a factor of 16 (~ 1 versus 16 Mhayr—!) over

Geosci. Model Dev., 15, 1899-1911, 2022
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Figure 2. ELMv1 process-based model (BASE-Fire) simulated and five observationally inferred burned area products (Table S1) at (a) global
scale in (b) tropical (23.5° S—-23.5° N), (c) temperate (23.5— 67.5° N), and (d) boreal (north of 67.5° N) regions.
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Figure 3. A comparison of wildfire burned area between estimates from the ELMv1 process-based model (BASE-Fire), deep neural network
wildfire model (DNN-Fire), deep neural network wildfire model fine-tuned with observed burned area (DNN-Fire-OBS), and observations

over 14 GFED fire regions.

the Europe GFED region (EURO) (Fig. 3). Although there is
room to improve BASE-Fire performance, the parameteriza-
tion would involve large ensemble simulations and computa-
tional resources. Instead, we first used BASE-Fire-generated
data as training and testing datasets to parameterize DNN-
Fire, and then we fine-tuned the DNN-Fire model against
observed burned area.

Next we parameterized and compared DNN-Fire with
BASE-Fire outputs. Using BASE-Fire-generated 1.9° x 2.5°
resolution datasets of surface fuel conditions (fuel load (veg-
etation biomass), fuel temperature (topsoil temperature), and
fuel wetness (topsoil moisture)) with gridded climate forcing
(GSWP3) (Dirmeyer et al., 2006), land use (LUH2 dataset)
(Hurtt et al., 2020), and socio-economic (Van Vuuren et
al., 2007; Dobson et al., 2000) factors, DNN-Fire captured
the spatial pattern of BASE-Fire-predicted wildfire activity
(Fig. 4, S2). Across all GFED regions, mean absolute error of
DNN-Fire was 4.4 Mhayr~! (<1 % of total burn area), with

Geosci. Model Dev., 15, 1899-1911, 2022

median and maximum errors of 1.8 and 13.0Mhayr~!, re-

spectively (Fig. 3). Equatorial Asia (EQAS), Northern Hemi-
sphere South America (NHSA), Central America (CEAS),
and Europe (EURO) regions had the lowest DNN-Fire er-
rors (<1.0 Mha yr_l), while Southern Hemisphere Africa
(SHAF), and Boreal Asia (BOAS) had the largest errors (10—
13 Mhayr‘l). Overall, the correlation coefficient between
BASE-Fire and DNN-Fire simulated burned area was 0.91
(p value <0.01), and the coefficient of determination (R?)
was 0.79. Across seasons, DNN-Fire also reasonably cap-
tured the BASE-Fire peak fire months (June to October),
which were dominated by Southern Hemisphere Africa and
Southern Hemisphere South America (Fig. 5).

By surrogating BASE-Fire, DNN-Fire is expected to have
similar biases and uncertainties. The deficiency of the BASE-
Fire model will propagate to DNN-Fire. In our future work
we will overcome such limitations by training multiple
DNN-Fire models with ensemble simulations of BASE-Fire

https://doi.org/10.5194/gmd-15-1899-2022
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Figure 4. The performance of the deep neural network wildfire
model (DNN-Fire), compared with the original ELMv1 process-
based wildfire model (BASE-Fire) over 14 GFED regions between
years 2001 and 2010.

models that differ in critical parameters and vary in model
structures.

3.2 Calibrating the wildfire surrogate model using
observations

Although the global pattern was reasonably captured, BASE-
Fire had relatively large biases in several GFED regions, as
discussed above. Since DNN-Fire was trained and validated
only with BASE-Fire-generated inputs (e.g., fuel conditions)
and outputs (burned area), we expect that, at best, DNN-Fire
would have comparable biases as BASE-Fire. Starting from
DNN-Fire, we further calibrated the model weighting param-
eters to create DNN-Fire-OBS and validated DNN-Fire-OBS
performance using observed burned area from five existing
burned area products (Table S1) between years 2001 and
2010. The calibration time cost several minutes with an Intel
Xeon Phi Processor 7250.

Dramatic improvements were found in most of the 14 re-
gions simulated by DNN-Fire-OBS (Fig. 3). Overall, DNN-
Fire-OBS simulated global long-term average burned area
was 458 Mhayr~—! (compared with observational average
467 Mhayr~!). Averaged across 14 regions, 73 % reduction
of mean absolute error was achieved by DNN-Fire-OBS,
compared with the BASE-Fire model. The Pearson correla-
tion coefficient between the DNN-Fire-OBS simulated and
observational burned area was 0.98 (p value <0.001) with
an R? of 0.97. Bias reduction was disproportionally dis-
tributed across the GFED regions (Fig. 3). For example,
severely burned regions, including Southern and Northern
Hemisphere Africa (SHAF and NHAF) and Southern Hemi-
sphere South America (SHSA) greatly benefited from the
tuning, and their regional biases were reduced by 88, 65,
and 51 Mhayr‘1 (or 88 %, 89 %, 98 % reduction), respec-
tively. Although Temperate North America (TENA) and Eu-
rope (EURO) wildfire burned area is relatively small (1-
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3Mhayr~!), the impacts of wildfire activity were significant
due to their high population densities. DNN-Fire tended to
overestimate the burned area in TENA and EURO by 47 and
13Mhayr~!, while DNN-Fire-OBS significantly reduced bi-
ases in both regions to less than 0.3 Mhayr~! (a 97 %-98 %
reduction).

BASE-Fire tended to overestimate inter-annual variability
(IAV) and had opposite burned area anomalies between years
2001 and 2005. DNN-Fire dampened BASE-Fire’s IAV but
systematically overestimated burned area. DNN-Fire-OBS
agreed well with the observed IAV between years 2001 and
2010 (Fig. 5a). The seasonal cycle was also improved in
DNN-Fire-OBS in terms of reducing BASE-Fire’s overesti-
mation of burned area during peak fire seasons (Fig. 5b, S3),
although we note that DNN-Fire-OBS is biased high during
low fire seasons (March and April).

3.3 Prognostic simulation and limitations

We next evaluated the DNN-Fire-OBS model against obser-
vations for the period 2011 to 2015, using data which were
not used to train and validate the model. Overall, DNN-Fire-
OBS simulated 469-514 Mha yr~! global burned area, com-
pared with observations of 349-509 Mha yr~!. Note that the
large observational ranges were mainly due to the differences
among the five burned area products rather than the inter-
annual variability (Fig. 6). Regionally, DNN-Fire-OBS over-
estimated NHAF, SHAF, and SHSA annual burned area by
8, 6, and 2Mhayr~!, respectively (Fig. 6) compared with
the observational mean. Averaged latitudinal distribution of
simulated burned area during this period showed that global
wildfire activity peaked around 10-15°S and 5-10° N, to-
gether accounting for burning 12 %—16 % of the land surface
(Fig. 7). These two peaks were dominated by large burned
area over Southern (SHAF) and Northern Hemisphere Africa
(NHAF) fire regions. Compared with observations, DNN-
Fire-OBS simulated reasonable burned area latitudinal dis-
tributions (Fig. 7). We also compared the nine FireMIP mod-
els (Rabin et al., 2017; Teckentrup et al., 2018) and found
diverse latitudinal distribution of burned area. The across-
model differences were much larger than the inter-annual
variation simulated by each individual model, which indi-
cated large model structural uncertainties. Validation was
also conducted for the historical period 1981-2000, when
most of the satellite-based burned area data were not avail-
able. Compared with charcoal-index-inferred burned area
during 1981-2000 (Fig. S4), the DNN-Fire-OBS model rea-
sonably captured the decrease in burned area from ~ 530
to 490 Mha yr—!. In summary, DNN-Fire-OBS simulation is
reasonably accurate: Eq. (1) improved the simulated wildfire
spatial and temporal distributions in ELMv1;Eq. (2) enabled
effective and efficient parameterization of fires at regional
scale.

This study focuses on design, development, and parame-
terization of the DNN fire model within the E3SM model

Geosci. Model Dev., 15, 1899-1911, 2022
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interface. In this way the DNN model can be readily cou-
pled in the future and iteratively simulate climate, ecosystem
fuel conditions, and fire dynamics. Although no feedbacks
exist between biomass and tree cover and burned area under
the current offline mode, this study is an important step to-
wards fully coupling E3SM and the DNN-Fire models in the
future. We acknowledge several challenges and limitations
in our modeling framework. First, the DNN model uncer-
tainty was subject to the accuracy of climate forcings as well
as other physical driving variables simulated by the physi-
cal wildfire model (ELMv1). For example, in this work ELM
simulation of soil temperature, soil moisture, fuel load and
so on is subject to the uncertainty of GSWP3 forcings. Fur-
thermore, those simulated variables served as inputs for the
DNN model and would result in burned area prediction un-
certainty. It was challenging to eliminate the forcing uncer-
tainties in this work, but we could at least evaluate the magni-
tude of these uncertainties. We ran the DNN-Fire-OBS model
with alternative forcings of CRU-JRA, NCEP-DOE2, and
CDAS soil moisture from 2001 to 2010 and compared the re-
sults with DNN-Fire-OBS driven by default inputs (Fig. S5).
The results showed relatively larger uncertainties from cli-
mate forcing than that from soil moisture forcing, particu-
larly over the major fire regions (e.g., SHSA, SHAF, and

Geosci. Model Dev., 15, 1899-1911, 2022

NHAF). For fuel load, although no transient dataset of global
living biomass existed yet, we directly compared the ELM
model simulated biomass with the global estimate (GEO-
CARBON ~ 455Pg C). We found that the modeled present-
day biomass continuously increased from 425 to 470 PgC
and compared reasonably well with the global benchmark
(Fig. S6). Future work will focus on evaluating the uncer-
tainties from dead fuel load and fuel temperature variables.
Second, the original ELMv1 wildfire model has a uni-
fied mathematical representation of how fuel, climate, and
socio-economic conditions control wildfire burned area (Li et
al., 2012). However, training one single DNN wildfire model
across the globe will produce a model dominated by grid
cells that have a high burned area (e.g., Africa). The per-
formance of the trained DNN model, therefore, will likely
have larger biases over the low-fire grid cells, although the
globally aggregated burned area could be reasonable. We
partly overcame this challenge by applying the widely used
14 GFED fire regions that assume unique and relatively uni-
form dynamics over each region (Giglio et al., 2006b) and
employed a stratified random sampling method for training
and testing datasets. Although the regionally specific wild-
fire model introduces additional complexity, it better repre-
sents distinct characteristics of wildfire activity over differ-

https://doi.org/10.5194/gmd-15-1899-2022
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ent climate regimes and biomes (Zou et al., 2019; Zhu and
Zhuang, 2013) and allows for future analyses of how the rel-
evant controllers vary across the globe.

Thirdly, the cost function and the training of the DNN
model relied on the normality assumption of burned area
data. Therefore, the DNN model error might be dominated
by highly burned grid cells. A potential solution is to use log
transformation on non-normal data or the resultant cost func-
tion (Kelley et al., 2021). Finally, our GFED region-based pa-
rameterization strategy relied on the combination of climate
and biome types, while an alternative parameterization strat-
egy for the DNN-Fire model could be based on plant func-
tional type distributions. Based on our analysis, the plant-
functional-type-based DNN-Fire model had similar perfor-
mance compared with the GFED-based model (Fig. S7, S8).
Since the GFED regions were defined by present-day cli-
mate and fire regimes, our GFED-based models may not fully
capture the changes of future fire dynamics due to longer-
timescale climate and fire regime changes.

4 Conclusions

In this study, we first surrogated the baseline ELMv1 wildfire
model with a deep neural network (DNN) approach (Pearson
correlation coefficient = 0.91, p value <0.01, R? = 0.79).
The development was based on inputs and outputs from
the baseline ELMv1 wildfire simulation, which is process-
based and reasonably simulates global burned area, although
regional biases existed. We then calibrated the neural net-
work weights using the observationally inferred burned area
from the years 2001-2010. The final calibrated DNN wild-
fire model (DNN-Fire-OBS) was shown to be more accu-
rate over the 14 GFED regions. For example, reductions
in absolute error over Africa, South America, and Europe
were ~ 90 %. More importantly, the DNN-Fire-OBS model
parameters could be calibrated within minutes, compared
with traditional ELMv1 parameterization ensemble simula-
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tions that consume a large amount of computational time.
The improved DNN-Fire-OBS model also accurately prog-
nosed global and regional burned area in the 5-year period
following the training period from 2011 to 2015 (modeled
469-514 Mhayr~!). We conclude that the improved surro-
gate wildfire model (DNN-Fire-OBS) developed in this study
can serve as an effective alternative to the process-based fire
model currently used in ELMv1. More broadly, we conclude
that machine learning techniques can facilitate Earth sys-
tem model development, parameterization, and uncertainty
reduction with high efficiency and accuracy.

Code availability. The code used in this study is available via
Zhu, 2021.

Data availability. GFEDv4s, Fire_CCI51, Fire_CCILT11,
MCD64, and Fire_Atlas are five global wildfire burned area
datasets that are used to train and validate the deep neural network
model in this study.

GFEDv4s data can be accessed at https://daac.ornl.gov/
VEGETATION/guides/fire_emissions_v4.html ~ (Randerson et
al., 2018).

Fire_CCI51 data can be accessed at https://geogra.uah.es/fire_
cci/firecci51.php (ESA, 2021a).

Fire_CCILT11 data can be accessed at https://geogra.uah.es/fire_
cci/fireccilt] 1.php (ESA, 2021b).

MCD64 data can be accessed at https://modis-fire.umd.edu/files/
MODIS_C6_Fire_User_Guide_C.pdf (Giglio et al., 2020).

Fire_Atlas data can be accessed at https://www.globalfiredata.
org/fireatlas.html (FireAtlas, 2019).

FireMIP  model outputs can be  accessed at
https://doi.org/10.5281/zenodo.3555562 (Hantson et al., 2019)
and are used to compare with this study in terms of latitudinal
distribution of burned area.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-1899-2022-supplement.
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