Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1803-2022
https://doi.org/10.5194/gmd-15-1803-2022
Model evaluation paper
 | 
03 Mar 2022
Model evaluation paper |  | 03 Mar 2022

Variability and extremes: statistical validation of the Alfred Wegener Institute Earth System Model (AWI-ESM)

Justus Contzen, Thorsten Dickhaus, and Gerrit Lohmann

Related authors

A comprehensive Earth system model (AWI-ESM2.1) with interactive icebergs: effects on surface and deep-ocean characteristics
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024,https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
Shoaled glacial AMOC despite vigorous tidal Dissipation: Vertical Stratification matters
Yugeng Chen, Pengyang Song, Xianyao Chen, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-23,https://doi.org/10.5194/cp-2024-23, 2024
Revised manuscript under review for CP
Short summary
A past and present perspective on the European summer vapor pressure deficit
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past, 20, 573–595, https://doi.org/10.5194/cp-20-573-2024,https://doi.org/10.5194/cp-20-573-2024, 2024
Short summary
Ice-proximal sea-ice reconstruction in Powell Basin, Antarctica since the Last Interglacial
Wee Wei Khoo, Juliane Müller, Oliver Esper, Wenshen Xiao, Christian Stepanek, Paul Gierz, Gerrit Lohmann, Walter Geibert, Jens Hefter, and Gesine Mollenhauer
EGUsphere, https://doi.org/10.5194/egusphere-2024-246,https://doi.org/10.5194/egusphere-2024-246, 2024
Short summary
Brief communication: Surface energy balance differences over Greenland between ERA5 and ERA-Interim
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
The Cryosphere, 17, 5131–5136, https://doi.org/10.5194/tc-17-5131-2023,https://doi.org/10.5194/tc-17-5131-2023, 2023
Short summary

Related subject area

Climate and Earth system modeling
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024,https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024,https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024,https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024,https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024,https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary

Cited articles

Acero, F. J., García, J. A., and Gallego, M. C.: Peaks-over-Threshold Study of Trends in Extreme Rainfall over the Iberian Peninsula, J. Climate, 24, 1089–1105, https://doi.org/10.1175/2010JCLI3627.1, 2011. a
Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model, Geophys. Res. Lett., 47, e2019GL086810, https://doi.org/10.1029/2019GL086810, 2020. a, b, c
Bador, M., Boé, J., Terray, L., Alexander, L. V., Baker, A., Bellucci, A., Haarsma, R., Koenigk, T., Moine, M.-P., Lohmann, K., Putrasahan, D. A., Roberts, C., Roberts, M., Scoccimarro, E., Schiemann, R., Seddon, J., Senan, R., Valcke, S., and Vanniere, B.: Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models, J. Geophys. Res.-Atmos., 125, e2019JD032184, https://doi.org/10.1029/2019JD032184, 2020a. a, b
Bargaoui, Z. and Bárdossy, A.: Modeling short duration extreme precipitation patterns using copula and generalized maximum pseudo-likelihood estimation with censoring, Adv. Water Resour., 84, 1–13, https://doi.org/10.1016/j.advwatres.2015.07.006, 2015. a
Bernard, E., Naveau, P., Vrac, M., and Mestre, O.: Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France, J. Climate, 26, 7929–7937, https://doi.org/10.1175/JCLI-D-12-00836.1, 2013. a, b
Download
Short summary
Climate models are of paramount importance to predict future climate changes. Since many severe consequences of climate change are due to extreme events, the accurate behaviour of models in terms of extremes needs to be validated thoroughly. We present a method for model validation in terms of climate extremes and an algorithm to detect regions in which extremes tend to occur at the same time. These methods are applied to data from different climate models and to observational data.