Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1803-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1803-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability and extremes: statistical validation of the Alfred Wegener Institute Earth System Model (AWI-ESM)
Alfred Wegener Institute, Helmholtz Centre for Polar Marine Research, Bremerhaven, Germany
Department of Environmental Physics, University of Bremen, Bremen, Germany
Thorsten Dickhaus
Institute for Statistics, University of Bremen, Bremen, Germany
Gerrit Lohmann
Alfred Wegener Institute, Helmholtz Centre for Polar Marine Research, Bremerhaven, Germany
Department of Environmental Physics, University of Bremen, Bremen, Germany
Related authors
No articles found.
Xiaoxu Shi, Martin Werner, Hu Yang, Roberta D'Agostino, Jiping Liu, Chaoyuan Yang, and Gerrit Lohmann
Clim. Past, 19, 2157–2175, https://doi.org/10.5194/cp-19-2157-2023, https://doi.org/10.5194/cp-19-2157-2023, 2023
Short summary
Short summary
The Last Glacial Maximum (LGM) marks the most recent extremely cold and dry time period of our planet. Using AWI-ESM, we quantify the relative importance of Earth's orbit, greenhouse gases (GHG) and ice sheets (IS) in determining the LGM climate. Our results suggest that both GHG and IS play important roles in shaping the LGM temperature. Continental ice sheets exert a major control on precipitation, atmospheric dynamics, and the intensity of El Niño–Southern Oscillation.
Xin Ren, Daniel J. Lunt, Erica Hendy, Anna von der Heydt, Ayako Abe-Ouchi, Bette Otto-Bliesner, Charles J. R. Williams, Christian Stepanek, Chuncheng Guo, Deepak Chandan, Gerrit Lohmann, Julia C. Tindall, Linda E. Sohl, Mark A. Chandler, Masa Kageyama, Michiel L. J. Baatsen, Ning Tan, Qiong Zhang, Ran Feng, Stephen Hunter, Wing-Le Chan, W. Richard Peltier, Xiangyu Li, Youichi Kamae, Zhongshi Zhang, and Alan M. Haywood
Clim. Past, 19, 2053–2077, https://doi.org/10.5194/cp-19-2053-2023, https://doi.org/10.5194/cp-19-2053-2023, 2023
Short summary
Short summary
We investigate the Maritime Continent climate in the mid-Piacenzian warm period and find it is warmer and wetter and the sea surface salinity is lower compared with preindustrial period. Besides, the fresh and warm water transfer through the Maritime Continent was stronger. In order to avoid undue influence from closely related models in the multimodel results, we introduce a new metric, the multi-cluster mean, which could reveal spatial signals that are not captured by the multimodel mean.
Ryan Love, Lev Tarasov, Heather Andres, Alan Condron, Xu Zhang, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2225, https://doi.org/10.5194/egusphere-2023-2225, 2023
This preprint is open for discussion and under review for Climate of the Past (CP).
Short summary
Short summary
Freshwater injection into bands across the North Atlantic are a mainstay of climate modelling when investigating topics such as climate change or the role of glacial runoff in the glacial climate system. However, this approach is unrealistic and results in a systematic bias in the climate response to a given flux of freshwater. We evaluate the magnitude of this bias by comparison to two other approaches for introducing freshwater into a coupled climate model setup for glacial conditions.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-2061, https://doi.org/10.5194/egusphere-2023-2061, 2023
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep water masses in the Southern Ocean is enhanced.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Di Cai, Gerrit Lohmann, Xianyao Chen, and Monica Ionita
EGUsphere, https://doi.org/10.5194/egusphere-2023-1646, https://doi.org/10.5194/egusphere-2023-1646, 2023
Preprint archived
Short summary
Short summary
Our study reveals how a decline in autumn sea ice in the Barents-Kara Seas leads to severe winters in Europe. Using observational data, we illustrate that Arctic sea ice loss isn't just a local issue – it impacts harsh winter conditions globally. Current climate models struggle to reflect these effects accurately, indicating a need for more research. Gaining a more nuanced understanding of this relationship will enhance our climate predictions and preparation for future extremes.
Viorica Nagavciuc, Simon L. L. Michel, Daniel F. Balting, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David N. Steger, Gerrit Lohmann, and Monica Ionita
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-35, https://doi.org/10.5194/cp-2023-35, 2023
Preprint under review for CP
Short summary
Short summary
The main aim of this paper is to present the summer VPD reconstruction dataset for the last 400 years over Europe based on 26 European tree-ring oxygen isotope records by using a Random Forest approach. We provide both a spatial as well as a temporal long-term perspective on the past summer VPD. This is the first gridded reconstruction of the European summer VPD over the past 400 years, a dataset which was produced to cover a large knowledge gap about past European VPD variability.
Uta Krebs-Kanzow, Christian B. Rodehacke, and Gerrit Lohmann
EGUsphere, https://doi.org/10.5194/egusphere-2023-525, https://doi.org/10.5194/egusphere-2023-525, 2023
Short summary
Short summary
We compare components of the surface energy balance from two data sets, ERA5 and ERA-Interim, which can be used to estimate surface mass balance (SMB) on the Greenland Ice Sheet (GrIS). ERA5 differs significantly from ERA-Interim, especially in the melt regions with lower temperatures and stronger shortwave radiation. Consequently, methods that previously estimated the GrIS SMB from the ERA-Interim need to be carefully re-calibrated before converting to ERA5 forcing.
Pengyang Song, Dmitry Sidorenko, Patrick Scholz, Maik Thomas, and Gerrit Lohmann
Geosci. Model Dev., 16, 383–405, https://doi.org/10.5194/gmd-16-383-2023, https://doi.org/10.5194/gmd-16-383-2023, 2023
Short summary
Short summary
Tides have essential effects on the ocean and climate. Most previous research applies parameterised tidal mixing to discuss their effects in models. By comparing the effect of a tidal mixing parameterisation and tidal forcing on the ocean state, we assess the advantages and disadvantages of the two methods. Our results show that tidal mixing in the North Pacific Ocean strongly affects the global thermohaline circulation. We also list some effects that are not considered in the parameterisation.
Julia E. Weiffenbach, Michiel L. J. Baatsen, Henk A. Dijkstra, Anna S. von der Heydt, Ayako Abe-Ouchi, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Zixuan Han, Alan M. Haywood, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Julia C. Tindall, Charles J. R. Williams, Qiong Zhang, and Zhongshi Zhang
Clim. Past, 19, 61–85, https://doi.org/10.5194/cp-19-61-2023, https://doi.org/10.5194/cp-19-61-2023, 2023
Short summary
Short summary
We study the behavior of the Atlantic Meridional Overturning Circulation (AMOC) in the mid-Pliocene. The mid-Pliocene was about 3 million years ago and had a similar CO2 concentration to today. We show that the stronger AMOC during this period relates to changes in geography and that this has a significant influence on ocean temperatures and heat transported northwards by the Atlantic Ocean. Understanding the behavior of the mid-Pliocene AMOC can help us to learn more about our future climate.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Xiaoxu Shi, Martin Werner, Carolin Krug, Chris M. Brierley, Anni Zhao, Endurance Igbinosa, Pascale Braconnot, Esther Brady, Jian Cao, Roberta D'Agostino, Johann Jungclaus, Xingxing Liu, Bette Otto-Bliesner, Dmitry Sidorenko, Robert Tomas, Evgeny M. Volodin, Hu Yang, Qiong Zhang, Weipeng Zheng, and Gerrit Lohmann
Clim. Past, 18, 1047–1070, https://doi.org/10.5194/cp-18-1047-2022, https://doi.org/10.5194/cp-18-1047-2022, 2022
Short summary
Short summary
Since the orbital parameters of the past are different from today, applying the modern calendar to the past climate can lead to an artificial bias in seasonal cycles. With the use of multiple model outputs, we found that such a bias is non-ignorable and should be corrected to ensure an accurate comparison between modeled results and observational records, as well as between simulated past and modern climates, especially for the Last Interglacial.
Ryan A. Green, Laurie Menviel, Katrin J. Meissner, Xavier Crosta, Deepak Chandan, Gerrit Lohmann, W. Richard Peltier, Xiaoxu Shi, and Jiang Zhu
Clim. Past, 18, 845–862, https://doi.org/10.5194/cp-18-845-2022, https://doi.org/10.5194/cp-18-845-2022, 2022
Short summary
Short summary
Climate models are used to predict future climate changes and as such, it is important to assess their performance in simulating past climate changes. We analyze seasonal sea-ice cover over the Southern Ocean simulated from numerical PMIP3, PMIP4 and LOVECLIM simulations during the Last Glacial Maximum (LGM). Comparing these simulations to proxy data, we provide improved estimates of LGM seasonal sea-ice cover. Our estimate of summer sea-ice extent is 20 %–30 % larger than previous estimates.
Sebastian Hinck, Evan J. Gowan, Xu Zhang, and Gerrit Lohmann
The Cryosphere, 16, 941–965, https://doi.org/10.5194/tc-16-941-2022, https://doi.org/10.5194/tc-16-941-2022, 2022
Short summary
Short summary
Proglacial lakes were pervasive along the retreating continental ice margins after the Last Glacial Maximum. Similarly to the marine ice boundary, interactions at the ice-lake interface impact ice sheet dynamics and mass balance. Previous numerical ice sheet modeling studies did not include a dynamical lake boundary. We describe the implementation of an adaptive lake boundary condition in PISM and apply the model to the glacial retreat of the Laurentide Ice Sheet.
Daniel Balting, Simon Michel, Viorica Nagavciuc, Gerhard Helle, Mandy Freund, Gerhard H. Schleser, David Steger, Gerrit Lohmann, and Monica Ionita
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-47, https://doi.org/10.5194/essd-2022-47, 2022
Preprint withdrawn
Short summary
Short summary
Vapor pressure deficit is a key component of vegetation dynamics, soil science, meteorology, and soil science. In this study, we reconstruct the variability of the vapor pressure deficit in the past and examine the changes in future scenarios using climate models. In this way, past, present and future changes of the vapor pressure deficit can be detected locally, regionally, and continentally with higher statistical significance.
Stephan Krätschmer, Michèlle van der Does, Frank Lamy, Gerrit Lohmann, Christoph Völker, and Martin Werner
Clim. Past, 18, 67–87, https://doi.org/10.5194/cp-18-67-2022, https://doi.org/10.5194/cp-18-67-2022, 2022
Short summary
Short summary
We use an atmospheric model coupled to an aerosol model to investigate the global mineral dust cycle with a focus on the Southern Hemisphere for warmer and colder climate states and compare our results to observational data. Our findings suggest that Australia is the predominant source of dust deposited over Antarctica during the last glacial maximum. In addition, we find that the southward transport of dust from all sources to Antarctica happens at lower altitudes in colder climates.
Martin Wegmann, Yvan Orsolini, Antje Weisheimer, Bart van den Hurk, and Gerrit Lohmann
Weather Clim. Dynam., 2, 1245–1261, https://doi.org/10.5194/wcd-2-1245-2021, https://doi.org/10.5194/wcd-2-1245-2021, 2021
Short summary
Short summary
Northern Hemisphere winter weather is influenced by the strength of westerly winds 30 km above the surface, the so-called polar vortex. Eurasian autumn snow cover is thought to modulate the polar vortex. So far, however, the modeled influence of snow on the polar vortex did not fit the observed influence. By analyzing a model experiment for the time span of 110 years, we could show that the causality of this impact is indeed sound and snow cover can weaken the polar vortex.
Kim H. Stadelmaier, Patrick Ludwig, Pascal Bertran, Pierre Antoine, Xiaoxu Shi, Gerrit Lohmann, and Joaquim G. Pinto
Clim. Past, 17, 2559–2576, https://doi.org/10.5194/cp-17-2559-2021, https://doi.org/10.5194/cp-17-2559-2021, 2021
Short summary
Short summary
We use regional climate simulations for the Last Glacial Maximum to reconstruct permafrost and to identify areas of thermal contraction cracking of the ground in western Europe. We find ground cracking, a precondition for the development of permafrost proxies, south of the probable permafrost border, implying that permafrost was not the limiting factor for proxy development. A good agreement with permafrost and climate proxy data is achieved when easterly winds are modelled more frequently.
Zixuan Han, Qiong Zhang, Qiang Li, Ran Feng, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Bette L. Otto-Bliesner, Esther C. Brady, Nan Rosenbloom, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Charles J. R. Williams, Daniel J. Lunt, Jianbo Cheng, Qin Wen, and Natalie J. Burls
Clim. Past, 17, 2537–2558, https://doi.org/10.5194/cp-17-2537-2021, https://doi.org/10.5194/cp-17-2537-2021, 2021
Short summary
Short summary
Understanding the potential processes responsible for large-scale hydrological cycle changes in a warmer climate is of great importance. Our study implies that an imbalance in interhemispheric atmospheric energy during the mid-Pliocene could have led to changes in the dynamic effect, offsetting the thermodynamic effect and, hence, altering mid-Pliocene hydroclimate cycling. Moreover, a robust westward shift in the Pacific Walker circulation can moisten the northern Indian Ocean.
Arthur M. Oldeman, Michiel L. J. Baatsen, Anna S. von der Heydt, Henk A. Dijkstra, Julia C. Tindall, Ayako Abe-Ouchi, Alice R. Booth, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Mark A. Chandler, Camille Contoux, Ran Feng, Chuncheng Guo, Alan M. Haywood, Stephen J. Hunter, Youichi Kamae, Qiang Li, Xiangyu Li, Gerrit Lohmann, Daniel J. Lunt, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Gabriel M. Pontes, Gilles Ramstein, Linda E. Sohl, Christian Stepanek, Ning Tan, Qiong Zhang, Zhongshi Zhang, Ilana Wainer, and Charles J. R. Williams
Clim. Past, 17, 2427–2450, https://doi.org/10.5194/cp-17-2427-2021, https://doi.org/10.5194/cp-17-2427-2021, 2021
Short summary
Short summary
In this work, we have studied the behaviour of El Niño events in the mid-Pliocene, a period of around 3 million years ago, using a collection of 17 climate models. It is an interesting period to study, as it saw similar atmospheric carbon dioxide levels to the present day. We find that the El Niño events were less strong in the mid-Pliocene simulations, when compared to pre-industrial climate. Our results could help to interpret El Niño behaviour in future climate projections.
Nele Lamping, Juliane Müller, Jens Hefter, Gesine Mollenhauer, Christian Haas, Xiaoxu Shi, Maria-Elena Vorrath, Gerrit Lohmann, and Claus-Dieter Hillenbrand
Clim. Past, 17, 2305–2326, https://doi.org/10.5194/cp-17-2305-2021, https://doi.org/10.5194/cp-17-2305-2021, 2021
Short summary
Short summary
We analysed biomarker concentrations on surface sediment samples from the Antarctic continental margin. Highly branched isoprenoids and GDGTs are used for reconstructing recent sea-ice distribution patterns and ocean temperatures respectively. We compared our biomarker-based results with data obtained from satellite observations and estimated from a numerical model and find reasonable agreements. Further, we address caveats and provide recommendations for future investigations.
Saeid Bagheri Dastgerdi, Melanie Behrens, Jean-Louis Bonne, Maria Hörhold, Gerrit Lohmann, Elisabeth Schlosser, and Martin Werner
The Cryosphere, 15, 4745–4767, https://doi.org/10.5194/tc-15-4745-2021, https://doi.org/10.5194/tc-15-4745-2021, 2021
Short summary
Short summary
In this study, for the first time, water vapour isotope measurements in Antarctica for all seasons of a year are performed. Local temperature is identified as the main driver of δ18O and δD variability. A similar slope of the temperature–δ18O relationship in vapour and surface snow points to the water vapour isotope content as a potential key driver. This dataset can be used as a new dataset to evaluate the capability of isotope-enhanced climate models.
Ellen Berntell, Qiong Zhang, Qiang Li, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Kerim H. Nisancioglu, Christian Stepanek, Gerrit Lohmann, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, William Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, Charles J. R. Williams, Daniel J. Lunt, Ran Feng, Bette L. Otto-Bliesner, and Esther C. Brady
Clim. Past, 17, 1777–1794, https://doi.org/10.5194/cp-17-1777-2021, https://doi.org/10.5194/cp-17-1777-2021, 2021
Short summary
Short summary
The mid-Pliocene Warm Period (~ 3.2 Ma) is often considered an analogue for near-future climate projections, and model results from the PlioMIP2 ensemble show an increase of rainfall over West Africa and the Sahara region compared to pre-industrial conditions. Though previous studies of future projections show a west–east drying–wetting contrast over the Sahel, these results indicate a uniform rainfall increase over the Sahel in warm climates characterized by increased greenhouse gas forcing.
Xiaoxu Shi, Dirk Notz, Jiping Liu, Hu Yang, and Gerrit Lohmann
Geosci. Model Dev., 14, 4891–4908, https://doi.org/10.5194/gmd-14-4891-2021, https://doi.org/10.5194/gmd-14-4891-2021, 2021
Short summary
Short summary
The ice–ocean heat flux is one of the key elements controlling sea ice changes. It motivates our study, which aims to examine the responses of modeled climate to three ice–ocean heat flux parameterizations, including two old approaches that assume one-way heat transport and a new one describing a double-diffusive ice–ocean heat exchange. The results show pronounced differences in the modeled sea ice, ocean, and atmosphere states for the latter as compared to the former two parameterizations.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Uta Krebs-Kanzow, Paul Gierz, Christian B. Rodehacke, Shan Xu, Hu Yang, and Gerrit Lohmann
The Cryosphere, 15, 2295–2313, https://doi.org/10.5194/tc-15-2295-2021, https://doi.org/10.5194/tc-15-2295-2021, 2021
Short summary
Short summary
The surface mass balance scheme dEBM (diurnal Energy Balance Model) provides a novel, computationally inexpensive interface between the atmosphere and land ice for Earth system modeling. The dEBM is particularly suitable for Earth system modeling on multi-millennial timescales as it accounts for changes in the Earth's orbit and atmospheric greenhouse gas concentration.
Daniel F. Balting, Monica Ionita, Martin Wegmann, Gerhard Helle, Gerhard H. Schleser, Norel Rimbu, Mandy B. Freund, Ingo Heinrich, Diana Caldarescu, and Gerrit Lohmann
Clim. Past, 17, 1005–1023, https://doi.org/10.5194/cp-17-1005-2021, https://doi.org/10.5194/cp-17-1005-2021, 2021
Short summary
Short summary
To extend climate information back in time, we investigate the climate sensitivity of a δ18O network from tree rings, consisting of 26 European sites and covering the last 400 years. Our results suggest that the δ18O variability is associated with large-scale anomaly patterns that resemble those observed for the El Niño–Southern Oscillation. We conclude that the investigation of large-scale climate signals far beyond instrumental records can be done with a δ18O network derived from tree rings.
James Keeble, Birgit Hassler, Antara Banerjee, Ramiro Checa-Garcia, Gabriel Chiodo, Sean Davis, Veronika Eyring, Paul T. Griffiths, Olaf Morgenstern, Peer Nowack, Guang Zeng, Jiankai Zhang, Greg Bodeker, Susannah Burrows, Philip Cameron-Smith, David Cugnet, Christopher Danek, Makoto Deushi, Larry W. Horowitz, Anne Kubin, Lijuan Li, Gerrit Lohmann, Martine Michou, Michael J. Mills, Pierre Nabat, Dirk Olivié, Sungsu Park, Øyvind Seland, Jens Stoll, Karl-Hermann Wieners, and Tongwen Wu
Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, https://doi.org/10.5194/acp-21-5015-2021, 2021
Short summary
Short summary
Stratospheric ozone and water vapour are key components of the Earth system; changes to both have important impacts on global and regional climate. We evaluate changes to these species from 1850 to 2100 in the new generation of CMIP6 models. There is good agreement between the multi-model mean and observations, although there is substantial variation between the individual models. The future evolution of both ozone and water vapour is strongly dependent on the assumed future emissions scenario.
Zhongshi Zhang, Xiangyu Li, Chuncheng Guo, Odd Helge Otterå, Kerim H. Nisancioglu, Ning Tan, Camille Contoux, Gilles Ramstein, Ran Feng, Bette L. Otto-Bliesner, Esther Brady, Deepak Chandan, W. Richard Peltier, Michiel L. J. Baatsen, Anna S. von der Heydt, Julia E. Weiffenbach, Christian Stepanek, Gerrit Lohmann, Qiong Zhang, Qiang Li, Mark A. Chandler, Linda E. Sohl, Alan M. Haywood, Stephen J. Hunter, Julia C. Tindall, Charles Williams, Daniel J. Lunt, Wing-Le Chan, and Ayako Abe-Ouchi
Clim. Past, 17, 529–543, https://doi.org/10.5194/cp-17-529-2021, https://doi.org/10.5194/cp-17-529-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important topic in the Pliocene Model Intercomparison Project. Previous studies have suggested a much stronger AMOC during the Pliocene than today. However, our current multi-model intercomparison shows large model spreads and model–data discrepancies, which can not support the previous hypothesis. Our study shows good consistency with future projections of the AMOC.
Daniel J. Lunt, Fran Bragg, Wing-Le Chan, David K. Hutchinson, Jean-Baptiste Ladant, Polina Morozova, Igor Niezgodzki, Sebastian Steinig, Zhongshi Zhang, Jiang Zhu, Ayako Abe-Ouchi, Eleni Anagnostou, Agatha M. de Boer, Helen K. Coxall, Yannick Donnadieu, Gavin Foster, Gordon N. Inglis, Gregor Knorr, Petra M. Langebroek, Caroline H. Lear, Gerrit Lohmann, Christopher J. Poulsen, Pierre Sepulchre, Jessica E. Tierney, Paul J. Valdes, Evgeny M. Volodin, Tom Dunkley Jones, Christopher J. Hollis, Matthew Huber, and Bette L. Otto-Bliesner
Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, https://doi.org/10.5194/cp-17-203-2021, 2021
Short summary
Short summary
This paper presents the first modelling results from the Deep-Time Model Intercomparison Project (DeepMIP), in which we focus on the early Eocene climatic optimum (EECO, 50 million years ago). We show that, in contrast to previous work, at least three models (CESM, GFDL, and NorESM) produce climate states that are consistent with proxy indicators of global mean temperature and polar amplification, and they achieve this at a CO2 concentration that is consistent with the CO2 proxy record.
Masa Kageyama, Louise C. Sime, Marie Sicard, Maria-Vittoria Guarino, Anne de Vernal, Ruediger Stein, David Schroeder, Irene Malmierca-Vallet, Ayako Abe-Ouchi, Cecilia Bitz, Pascale Braconnot, Esther C. Brady, Jian Cao, Matthew A. Chamberlain, Danny Feltham, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina Morozova, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Ryouta O'ishi, Silvana Ramos Buarque, David Salas y Melia, Sam Sherriff-Tadano, Julienne Stroeve, Xiaoxu Shi, Bo Sun, Robert A. Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, Weipeng Zheng, and Tilo Ziehn
Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, https://doi.org/10.5194/cp-17-37-2021, 2021
Short summary
Short summary
The Last interglacial (ca. 127 000 years ago) is a period with increased summer insolation at high northern latitudes, resulting in a strong reduction in Arctic sea ice. The latest PMIP4-CMIP6 models all simulate this decrease, consistent with reconstructions. However, neither the models nor the reconstructions agree on the possibility of a seasonally ice-free Arctic. Work to clarify the reasons for this model divergence and the conflicting interpretations of the records will thus be needed.
Bette L. Otto-Bliesner, Esther C. Brady, Anni Zhao, Chris M. Brierley, Yarrow Axford, Emilie Capron, Aline Govin, Jeremy S. Hoffman, Elizabeth Isaacs, Masa Kageyama, Paolo Scussolini, Polychronis C. Tzedakis, Charles J. R. Williams, Eric Wolff, Ayako Abe-Ouchi, Pascale Braconnot, Silvana Ramos Buarque, Jian Cao, Anne de Vernal, Maria Vittoria Guarino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Katrin J. Meissner, Laurie Menviel, Polina A. Morozova, Kerim H. Nisancioglu, Ryouta O'ishi, David Salas y Mélia, Xiaoxu Shi, Marie Sicard, Louise Sime, Christian Stepanek, Robert Tomas, Evgeny Volodin, Nicholas K. H. Yeung, Qiong Zhang, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, https://doi.org/10.5194/cp-17-63-2021, 2021
Short summary
Short summary
The CMIP6–PMIP4 Tier 1 lig127k experiment was designed to address the climate responses to strong orbital forcing. We present a multi-model ensemble of 17 climate models, most of which have also completed the CMIP6 DECK experiments and are thus important for assessing future projections. The lig127ksimulations show strong summer warming over the NH continents. More than half of the models simulate a retreat of the Arctic minimum summer ice edge similar to the average for 2000–2018.
Gerrit Lohmann
Earth Syst. Dynam., 11, 1195–1208, https://doi.org/10.5194/esd-11-1195-2020, https://doi.org/10.5194/esd-11-1195-2020, 2020
Short summary
Short summary
With the development of computer capacities, simpler models like energy balance models have not disappeared, and a stronger emphasis has been given to the concept of a hierarchy of models. The global temperature is calculated by the radiation budget through the incoming energy from the Sun and the outgoing energy from the Earth. The argument that the temperature can be calculated by a simple radiation budget is revisited, and it is found that the effective heat capacity matters.
Maria-Elena Vorrath, Juliane Müller, Lorena Rebolledo, Paola Cárdenas, Xiaoxu Shi, Oliver Esper, Thomas Opel, Walter Geibert, Práxedes Muñoz, Christian Haas, Gerhard Kuhn, Carina B. Lange, Gerrit Lohmann, and Gesine Mollenhauer
Clim. Past, 16, 2459–2483, https://doi.org/10.5194/cp-16-2459-2020, https://doi.org/10.5194/cp-16-2459-2020, 2020
Short summary
Short summary
We tested the applicability of the organic biomarker IPSO25 for sea ice reconstructions in the industrial era at the western Antarctic Peninsula. We successfully evaluated our data with satellite sea ice observations. The comparison with marine and ice core records revealed that sea ice interpretations must consider climatic and sea ice dynamics. Sea ice biomarker production is mainly influenced by the Southern Annular Mode, while the El Niño–Southern Oscillation seems to have a minor impact.
Wesley de Nooijer, Qiong Zhang, Qiang Li, Qiang Zhang, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Alan M. Haywood, Julia C. Tindall, Stephen J. Hunter, Harry J. Dowsett, Christian Stepanek, Gerrit Lohmann, Bette L. Otto-Bliesner, Ran Feng, Linda E. Sohl, Mark A. Chandler, Ning Tan, Camille Contoux, Gilles Ramstein, Michiel L. J. Baatsen, Anna S. von der Heydt, Deepak Chandan, W. Richard Peltier, Ayako Abe-Ouchi, Wing-Le Chan, Youichi Kamae, and Chris M. Brierley
Clim. Past, 16, 2325–2341, https://doi.org/10.5194/cp-16-2325-2020, https://doi.org/10.5194/cp-16-2325-2020, 2020
Short summary
Short summary
The simulations for the past climate can inform us about the performance of climate models in different climate scenarios. Here, we analyse Arctic warming in an ensemble of 16 simulations of the mid-Pliocene Warm Period (mPWP), when the CO2 level was comparable to today. The results highlight the importance of slow feedbacks in the model simulations and imply that we must be careful when using simulations of the mPWP as an analogue for future climate change.
Christian Stepanek, Eric Samakinwa, Gregor Knorr, and Gerrit Lohmann
Clim. Past, 16, 2275–2323, https://doi.org/10.5194/cp-16-2275-2020, https://doi.org/10.5194/cp-16-2275-2020, 2020
Short summary
Short summary
Future climate is expected to be warmer than today. We study climate based on simulations of the mid-Pliocene (about 3 million years ago), which was a time of elevated temperatures, and discuss implications for the future. Our results are provided towards a comparison to both proxy evidence and output of other climate models. We simulate a mid-Pliocene climate that is both warmer and wetter than today. Some climate characteristics can be more directly transferred to the near future than others.
Florian Fuhrmann, Benedikt Diensberg, Xun Gong, Gerrit Lohmann, and Frank Sirocko
Clim. Past, 16, 2221–2238, https://doi.org/10.5194/cp-16-2221-2020, https://doi.org/10.5194/cp-16-2221-2020, 2020
Short summary
Short summary
Proxy data of sediment cores, speleothem, pollen and isotope data were used to reconstruct past aridity of eight regions of the world over the last 60 000 years. These regions show humid conditions during the early MIS3 (60 to 45 ka). Also the early Holocene (14 to 6 ka) was humid throughout the regions. In contrast, MIS2 and the LGM were arid in Northern Nemisphere records. On- and offsets of aridity/humidity differ between the regions. All this is in good agreement with recent model results.
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Alan M. Haywood, Julia C. Tindall, Harry J. Dowsett, Aisling M. Dolan, Kevin M. Foley, Stephen J. Hunter, Daniel J. Hill, Wing-Le Chan, Ayako Abe-Ouchi, Christian Stepanek, Gerrit Lohmann, Deepak Chandan, W. Richard Peltier, Ning Tan, Camille Contoux, Gilles Ramstein, Xiangyu Li, Zhongshi Zhang, Chuncheng Guo, Kerim H. Nisancioglu, Qiong Zhang, Qiang Li, Youichi Kamae, Mark A. Chandler, Linda E. Sohl, Bette L. Otto-Bliesner, Ran Feng, Esther C. Brady, Anna S. von der Heydt, Michiel L. J. Baatsen, and Daniel J. Lunt
Clim. Past, 16, 2095–2123, https://doi.org/10.5194/cp-16-2095-2020, https://doi.org/10.5194/cp-16-2095-2020, 2020
Short summary
Short summary
The large-scale features of middle Pliocene climate from the 16 models of PlioMIP Phase 2 are presented. The PlioMIP2 ensemble average was ~ 3.2 °C warmer and experienced ~ 7 % more precipitation than the pre-industrial era, although there are large regional variations. PlioMIP2 broadly agrees with a new proxy dataset of Pliocene sea surface temperatures. Combining PlioMIP2 and proxy data suggests that a doubling of atmospheric CO2 would increase globally averaged temperature by 2.6–4.8 °C.
Chris M. Brierley, Anni Zhao, Sandy P. Harrison, Pascale Braconnot, Charles J. R. Williams, David J. R. Thornalley, Xiaoxu Shi, Jean-Yves Peterschmitt, Rumi Ohgaito, Darrell S. Kaufman, Masa Kageyama, Julia C. Hargreaves, Michael P. Erb, Julien Emile-Geay, Roberta D'Agostino, Deepak Chandan, Matthieu Carré, Partrick J. Bartlein, Weipeng Zheng, Zhongshi Zhang, Qiong Zhang, Hu Yang, Evgeny M. Volodin, Robert A. Tomas, Cody Routson, W. Richard Peltier, Bette Otto-Bliesner, Polina A. Morozova, Nicholas P. McKay, Gerrit Lohmann, Allegra N. Legrande, Chuncheng Guo, Jian Cao, Esther Brady, James D. Annan, and Ayako Abe-Ouchi
Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, https://doi.org/10.5194/cp-16-1847-2020, 2020
Short summary
Short summary
This paper provides an initial exploration and comparison to climate reconstructions of the new climate model simulations of the mid-Holocene (6000 years ago). These use state-of-the-art models developed for CMIP6 and apply the same experimental set-up. The models capture several key aspects of the climate, but some persistent issues remain.
Josephine R. Brown, Chris M. Brierley, Soon-Il An, Maria-Vittoria Guarino, Samantha Stevenson, Charles J. R. Williams, Qiong Zhang, Anni Zhao, Ayako Abe-Ouchi, Pascale Braconnot, Esther C. Brady, Deepak Chandan, Roberta D'Agostino, Chuncheng Guo, Allegra N. LeGrande, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, Ryouta O'ishi, Bette L. Otto-Bliesner, W. Richard Peltier, Xiaoxu Shi, Louise Sime, Evgeny M. Volodin, Zhongshi Zhang, and Weipeng Zheng
Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, https://doi.org/10.5194/cp-16-1777-2020, 2020
Short summary
Short summary
El Niño–Southern Oscillation (ENSO) is the largest source of year-to-year variability in the current climate, but the response of ENSO to past or future changes in climate is uncertain. This study compares the strength and spatial pattern of ENSO in a set of climate model simulations in order to explore how ENSO changes in different climates, including past cold glacial climates and past climates with different seasonal cycles, as well as gradual and abrupt future warming cases.
Jesper Sjolte, Florian Adolphi, Bo M. Vinther, Raimund Muscheler, Christophe Sturm, Martin Werner, and Gerrit Lohmann
Clim. Past, 16, 1737–1758, https://doi.org/10.5194/cp-16-1737-2020, https://doi.org/10.5194/cp-16-1737-2020, 2020
Short summary
Short summary
In this study we investigate seasonal climate reconstructions produced by matching climate model output to ice core and tree-ring data, and we evaluate the model–data reconstructions against meteorological observations. The reconstructions capture the main patterns of variability in sea level pressure and temperature in summer and winter. The performance of the reconstructions depends on seasonal climate variability itself, and definitions of seasons can be optimized to capture this variability.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Erin L. McClymont, Heather L. Ford, Sze Ling Ho, Julia C. Tindall, Alan M. Haywood, Montserrat Alonso-Garcia, Ian Bailey, Melissa A. Berke, Kate Littler, Molly O. Patterson, Benjamin Petrick, Francien Peterse, A. Christina Ravelo, Bjørg Risebrobakken, Stijn De Schepper, George E. A. Swann, Kaustubh Thirumalai, Jessica E. Tierney, Carolien van der Weijst, Sarah White, Ayako Abe-Ouchi, Michiel L. J. Baatsen, Esther C. Brady, Wing-Le Chan, Deepak Chandan, Ran Feng, Chuncheng Guo, Anna S. von der Heydt, Stephen Hunter, Xiangyi Li, Gerrit Lohmann, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, W. Richard Peltier, Christian Stepanek, and Zhongshi Zhang
Clim. Past, 16, 1599–1615, https://doi.org/10.5194/cp-16-1599-2020, https://doi.org/10.5194/cp-16-1599-2020, 2020
Short summary
Short summary
We examine the sea-surface temperature response to an interval of climate ~ 3.2 million years ago, when CO2 concentrations were similar to today and the near future. Our geological data and climate models show that global mean sea-surface temperatures were 2.3 to 3.2 ºC warmer than pre-industrial climate, that the mid-latitudes and high latitudes warmed more than the tropics, and that the warming was particularly enhanced in the North Atlantic Ocean.
Eric Samakinwa, Christian Stepanek, and Gerrit Lohmann
Clim. Past, 16, 1643–1665, https://doi.org/10.5194/cp-16-1643-2020, https://doi.org/10.5194/cp-16-1643-2020, 2020
Short summary
Short summary
Boundary conditions, forcing, and methodology for the two phases of PlioMIP differ considerably. We compare results from PlioMIP1 and PlioMIP2 simulations. We also carry out sensitivity experiments to infer the relative contribution of different boundary conditions to mid-Pliocene warmth. Our results show dominant effects of mid-Pliocene geography on the climate state and also that prescribing orbital forcing for different time slices within the mid-Pliocene could lead to pronounced variations.
Paul Gierz, Lars Ackermann, Christian B. Rodehacke, Uta Krebs-Kanzow, Christian Stepanek, Dirk Barbi, and Gerrit Lohmann
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-159, https://doi.org/10.5194/gmd-2020-159, 2020
Publication in GMD not foreseen
Short summary
Short summary
In this study, we describe the SCOPE coupler, which is used connect the ECHAM6/JSBACH/FESOM1.4 climate model to the PISM 1.1.4 ice sheet model. This system is used to simulate IPCC scenarios projected for the future, and several warm periods in the past; the mid Holocene and the Last Interglacial. Our new model allows us to simulate the ice sheet’s response to changes in the climatic conditions, providing a new avenue of investigation over the previous models, which keep the cryosphere fixed.
Martin Wegmann, Marco Rohrer, María Santolaria-Otín, and Gerrit Lohmann
Earth Syst. Dynam., 11, 509–524, https://doi.org/10.5194/esd-11-509-2020, https://doi.org/10.5194/esd-11-509-2020, 2020
Short summary
Short summary
Predicting the climate of the upcoming season is of big societal benefit, but finding out which component of the climate system can act as a predictor is difficult. In this study, we focus on Eurasian snow cover as such a component and show that knowing the snow cover in November is very helpful in predicting the state of winter over Europe. However, this mechanism was questioned in the past. Using snow data that go back 150 years into the past, we are now very confident in this relationship.
Jianjun Zou, Xuefa Shi, Aimei Zhu, Selvaraj Kandasamy, Xun Gong, Lester Lembke-Jene, Min-Te Chen, Yonghua Wu, Shulan Ge, Yanguang Liu, Xinru Xue, Gerrit Lohmann, and Ralf Tiedemann
Clim. Past, 16, 387–407, https://doi.org/10.5194/cp-16-387-2020, https://doi.org/10.5194/cp-16-387-2020, 2020
Short summary
Short summary
Large-scale reorganization of global ocean circulation has been documented in a variety of marine archives, including the enhanced North Pacific Intermediate Water NPIW. Our data support both the model- and data-based ideas that the enhanced NPIW mainly developed during cold spells, while an expansion of oxygen-poor zones occurred at warming intervals (Bölling-Alleröd).
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
Alexandre Cauquoin, Martin Werner, and Gerrit Lohmann
Clim. Past, 15, 1913–1937, https://doi.org/10.5194/cp-15-1913-2019, https://doi.org/10.5194/cp-15-1913-2019, 2019
Short summary
Short summary
We present here the first model results of a newly developed isotope-enhanced version of the Earth system model MPI-ESM. Our model setup has a finer spatial resolution compared to other isotope-enabled fully coupled models. We evaluate the model for preindustrial and mid-Holocene climate conditions. Our analyses show a good to very good agreement with various isotopic data. The spatial and temporal links between isotopes and climate variables under warm climatic conditions are also analyzed.
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019, https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Short summary
Processes causing the same global-average radiative forcing might lead to different global temperature changes. We expand the theoretical framework by which we calculate paleoclimate sensitivity with an efficacy factor. Applying the revised approach to radiative forcing caused by CO2 and land ice albedo perturbations, inferred from data of the past 800 000 years, gives a new paleo-based estimate of climate sensitivity.
Monica Ionita, Klaus Grosfeld, Patrick Scholz, Renate Treffeisen, and Gerrit Lohmann
Earth Syst. Dynam., 10, 189–203, https://doi.org/10.5194/esd-10-189-2019, https://doi.org/10.5194/esd-10-189-2019, 2019
Short summary
Short summary
Based on a simple statistical model we show that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months' oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the September sea ice extent and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters that are important for the sea ice development in the Arctic.
Evan J. Gowan, Lu Niu, Gregor Knorr, and Gerrit Lohmann
Earth Syst. Sci. Data, 11, 375–391, https://doi.org/10.5194/essd-11-375-2019, https://doi.org/10.5194/essd-11-375-2019, 2019
Short summary
Short summary
The speed of ice sheet flow is largely controlled by the strength of the ice–bed interface. We present three datasets on the geological properties of regions in North America, Greenland and Iceland that were covered by Quaternary ice sheets. These include the grain size of glacial sediments, the continuity of sediment cover and bedrock geology. Simple ice modelling experiments show that altering the basal strength of the ice sheet on the basis of these datasets impacts ice thickness.
Uta Krebs-Kanzow, Paul Gierz, and Gerrit Lohmann
The Cryosphere, 12, 3923–3930, https://doi.org/10.5194/tc-12-3923-2018, https://doi.org/10.5194/tc-12-3923-2018, 2018
Short summary
Short summary
We present a new surface melt scheme for land ice. Derived from the energy balance of melting surfaces, the scheme may be particularly suitable for long ice-sheet simulations of past and future climates. It is computationally inexpensive and can be adapted to changes in the Earth's orbit and atmospheric composition. The scheme yields a better spatial representation of surface melt than common empirical schemes when applied to the Greenland Ice Sheet under present-day climate conditions.
Gerrit Lohmann
Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, https://doi.org/10.5194/esd-9-1279-2018, 2018
Short summary
Short summary
Long-term sea surface temperature trends and variability are underestimated in models compared to paleoclimate data. The idea is presented that the trends and variability are related, which is elaborated in a conceptual model framework. The temperature spectrum can be used to estimate the timescale-dependent climate sensitivity.
Axel Wagner, Gerrit Lohmann, and Matthias Prange
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-172, https://doi.org/10.5194/gmd-2018-172, 2018
Publication in GMD not foreseen
Short summary
Short summary
This study demonstrates the dependence of simulated surface air temperatures on variations in grid resolution and resolution-dependent orography in simulations of the Mid-Holocene. A set of Mid-Holocene sensitivity experiments is carried out. The simulated Mid-Holocene temperature differences (low versus high resolution) reveal a response that regionally exceeds the Mid-Holocene to preindustrial modelled temperature anomalies, and show partly reversed signs across the same geographical regions.
Jesper Sjolte, Christophe Sturm, Florian Adolphi, Bo M. Vinther, Martin Werner, Gerrit Lohmann, and Raimund Muscheler
Clim. Past, 14, 1179–1194, https://doi.org/10.5194/cp-14-1179-2018, https://doi.org/10.5194/cp-14-1179-2018, 2018
Short summary
Short summary
Tropical volcanic eruptions and variations in solar activity have been suggested to influence the strength of westerly winds across the North Atlantic. We use Greenland ice core records together with a climate model simulation, and find stronger westerly winds for five winters following tropical volcanic eruptions. We see a delayed response to solar activity of 5 years, and the response to solar minima corresponds well to the cooling pattern during the period known as the Little Ice Age.
Sebastian G. Mutz, Todd A. Ehlers, Martin Werner, Gerrit Lohmann, Christian Stepanek, and Jingmin Li
Earth Surf. Dynam., 6, 271–301, https://doi.org/10.5194/esurf-6-271-2018, https://doi.org/10.5194/esurf-6-271-2018, 2018
Short summary
Short summary
We use a climate model and statistics to provide an overview of regional climates from different times in the late Cenozoic. We focus on tectonically active mountain ranges in particular. Our results highlight significant changes in climates throughout the late Cenozoic, which should be taken into consideration when interpreting erosion rates. We also document the differences between model- and proxy-based estimates for late Cenozoic climate change in South America and Tibet.
Akil Hossain, Xu Zhang, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-9, https://doi.org/10.5194/cp-2018-9, 2018
Revised manuscript not accepted
Norel Rimbu, Monica Ionita, Markus Czymzik, Achim Brauer, and Gerrit Lohmann
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-137, https://doi.org/10.5194/cp-2017-137, 2017
Manuscript not accepted for further review
Short summary
Short summary
Multi-decadal to millennial flood frequency variations in the Mid- to Late Holocene in a flood layer record from Lake Ammersee is strongly related to the occurrence of extreme precipitation and temperatures in the northeastern Europe.
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. LeGrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Francesco S. R. Pausata, Jean-Yves Peterschmitt, Steven J. Phipps, Hans Renssen, and Qiong Zhang
Geosci. Model Dev., 10, 3979–4003, https://doi.org/10.5194/gmd-10-3979-2017, https://doi.org/10.5194/gmd-10-3979-2017, 2017
Short summary
Short summary
The PMIP4 and CMIP6 mid-Holocene and Last Interglacial simulations provide an opportunity to examine the impact of two different changes in insolation forcing on climate at times when other forcings were relatively similar to present. This will allow exploration of the role of feedbacks relevant to future projections. Evaluating these simulations using paleoenvironmental data will provide direct out-of-sample tests of the reliability of state-of-the-art models to simulate climate changes.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Lu Niu, Gerrit Lohmann, Sebastian Hinck, and Evan J. Gowan
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-105, https://doi.org/10.5194/cp-2017-105, 2017
Revised manuscript not accepted
Short summary
Short summary
The sensitivity of Northern Hemisphere ice sheets to atmospheric forcing during the last glacial-interglacial cycle is investigated by using output from PMIP3 models. The results show large diversity in simulated ice sheets between different models. We found that summer surface air temperature pattern resembles the ice sheet extent pattern at the LGM. This study implies careful constrains on climate output is essential for simulating reliable glacial-interglacial Northern Hemisphere ice sheets.
Vera D. Meyer, Jens Hefter, Gerrit Lohmann, Lars Max, Ralf Tiedemann, and Gesine Mollenhauer
Clim. Past, 13, 359–377, https://doi.org/10.5194/cp-13-359-2017, https://doi.org/10.5194/cp-13-359-2017, 2017
Bette L. Otto-Bliesner, Pascale Braconnot, Sandy P. Harrison, Daniel J. Lunt, Ayako Abe-Ouchi, Samuel Albani, Patrick J. Bartlein, Emilie Capron, Anders E. Carlson, Andrea Dutton, Hubertus Fischer, Heiko Goelzer, Aline Govin, Alan Haywood, Fortunat Joos, Allegra N. Legrande, William H. Lipscomb, Gerrit Lohmann, Natalie Mahowald, Christoph Nehrbass-Ahles, Jean-Yves Peterschmidt, Francesco S.-R. Pausata, Steven Phipps, and Hans Renssen
Clim. Past Discuss., https://doi.org/10.5194/cp-2016-106, https://doi.org/10.5194/cp-2016-106, 2016
Preprint retracted
Madlene Pfeiffer and Gerrit Lohmann
Clim. Past, 12, 1313–1338, https://doi.org/10.5194/cp-12-1313-2016, https://doi.org/10.5194/cp-12-1313-2016, 2016
Short summary
Short summary
The Last Interglacial was warmer, with a reduced Greenland Ice Sheet (GIS), compared to the late Holocene. We analyse – through climate model simulations – the impact of a reduced GIS on the global surface air temperature and find a relatively strong warming especially in the Northern Hemisphere. These results are then compared to temperature reconstructions, indicating good agreement with respect to the pattern. However, the simulated temperatures underestimate the proxy-based temperatures.
Norel Rimbu, Markus Czymzik, Monica Ionita, Gerrit Lohmann, and Achim Brauer
Clim. Past, 12, 377–385, https://doi.org/10.5194/cp-12-377-2016, https://doi.org/10.5194/cp-12-377-2016, 2016
M. Werner, B. Haese, X. Xu, X. Zhang, M. Butzin, and G. Lohmann
Geosci. Model Dev., 9, 647–670, https://doi.org/10.5194/gmd-9-647-2016, https://doi.org/10.5194/gmd-9-647-2016, 2016
Short summary
Short summary
This paper presents the first results of a new isotope-enabled GCM set-up, based on the ECHAM5/MPI-OM fully coupled atmosphere-ocean model. Results of two equilibrium simulations under pre-industrial and Last Glacial Maximum conditions reveal a good to very good agreement with many delta O-18 and delta D observational records, and a remarkable improvement for the modelling of the deuterium excess signal in Antarctic ice cores.
M. Stärz, G. Lohmann, and G. Knorr
Clim. Past, 12, 151–170, https://doi.org/10.5194/cp-12-151-2016, https://doi.org/10.5194/cp-12-151-2016, 2016
Short summary
Short summary
In order to account for coupled climate-soil processes, we developed a soil scheme which is asynchronously coupled to an earth system model. We tested the scheme and found additional warming for a relatively warm climate (mid-Holocene), and extra cooling for a colder (Last Glacial Maximum) than preindustrial climate. These findings indicate a relatively strong positive soil feedback to climate, which may help to reduce model-data discrepancies for the climate of the geological past.
M. Forrest, J. T. Eronen, T. Utescher, G. Knorr, C. Stepanek, G. Lohmann, and T. Hickler
Clim. Past, 11, 1701–1732, https://doi.org/10.5194/cp-11-1701-2015, https://doi.org/10.5194/cp-11-1701-2015, 2015
Short summary
Short summary
We simulated Late Miocene (11-7 Million years ago) vegetation using two plausible CO2 concentrations: 280ppm CO2 and 450ppm CO2. We compared the simulated vegetation to existing plant fossil data for the whole Northern Hemisphere. Our results suggest that during the Late Miocene the CO2 levels have been relatively low, or that other factors that are not included in the models maintained the seasonal temperate forests and open vegetation.
X. Shi and G. Lohmann
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esdd-6-2137-2015, https://doi.org/10.5194/esdd-6-2137-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Our work is to investigate to what degree the open water ice formation affects the ice and ocean properties.
Our results show a positive feedback among the Arctic sea ice, the AMOC, and the surface air temperature in the Arctic.
The sea ice transport affects the freshwater budget in regions of deep water formation.
A link between the climate of Northern Hemisphere continents and the lead closing rate during ice formation period is also shown by the model.
B. de Boer, A. M. Dolan, J. Bernales, E. Gasson, H. Goelzer, N. R. Golledge, J. Sutter, P. Huybrechts, G. Lohmann, I. Rogozhina, A. Abe-Ouchi, F. Saito, and R. S. W. van de Wal
The Cryosphere, 9, 881–903, https://doi.org/10.5194/tc-9-881-2015, https://doi.org/10.5194/tc-9-881-2015, 2015
Short summary
Short summary
We present results from simulations of the Antarctic ice sheet by means of an intercomparison project with six ice-sheet models. Our results demonstrate the difficulty of all models used here to simulate a significant retreat or re-advance of the East Antarctic ice grounding line. Improved grounding-line physics could be essential for a correct representation of the migration of the grounding line of the Antarctic ice sheet during the Pliocene.
A. M. Dolan, S. J. Hunter, D. J. Hill, A. M. Haywood, S. J. Koenig, B. L. Otto-Bliesner, A. Abe-Ouchi, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, G. Ramstein, N. A. Rosenbloom, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 11, 403–424, https://doi.org/10.5194/cp-11-403-2015, https://doi.org/10.5194/cp-11-403-2015, 2015
Short summary
Short summary
Climate and ice sheet models are often used to predict the nature of ice sheets in Earth history. It is important to understand whether such predictions are consistent among different models, especially in warm periods of relevance to the future. We use input from 15 different climate models to run one ice sheet model and compare the predictions over Greenland. We find that there are large differences between the predicted ice sheets for the warm Pliocene (c. 3 million years ago).
D. Barbi, G. Lohmann, K. Grosfeld, and M. Thoma
Geosci. Model Dev., 7, 2003–2013, https://doi.org/10.5194/gmd-7-2003-2014, https://doi.org/10.5194/gmd-7-2003-2014, 2014
T. Goelles, K. Grosfeld, and G. Lohmann
Geosci. Model Dev., 7, 1395–1408, https://doi.org/10.5194/gmd-7-1395-2014, https://doi.org/10.5194/gmd-7-1395-2014, 2014
A. Basu, M. G. Schultz, S. Schröder, L. Francois, X. Zhang, G. Lohmann, and T. Laepple
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-3193-2014, https://doi.org/10.5194/acpd-14-3193-2014, 2014
Revised manuscript not accepted
D. J. Hill, A. M. Haywood, D. J. Lunt, S. J. Hunter, F. J. Bragg, C. Contoux, C. Stepanek, L. Sohl, N. A. Rosenbloom, W.-L. Chan, Y. Kamae, Z. Zhang, A. Abe-Ouchi, M. A. Chandler, A. Jost, G. Lohmann, B. L. Otto-Bliesner, G. Ramstein, and H. Ueda
Clim. Past, 10, 79–90, https://doi.org/10.5194/cp-10-79-2014, https://doi.org/10.5194/cp-10-79-2014, 2014
X. Zhang, G. Lohmann, G. Knorr, and X. Xu
Clim. Past, 9, 2319–2333, https://doi.org/10.5194/cp-9-2319-2013, https://doi.org/10.5194/cp-9-2319-2013, 2013
B. Haese, M. Werner, and G. Lohmann
Geosci. Model Dev., 6, 1463–1480, https://doi.org/10.5194/gmd-6-1463-2013, https://doi.org/10.5194/gmd-6-1463-2013, 2013
R. Zhang, Q. Yan, Z. S. Zhang, D. Jiang, B. L. Otto-Bliesner, A. M. Haywood, D. J. Hill, A. M. Dolan, C. Stepanek, G. Lohmann, C. Contoux, F. Bragg, W.-L. Chan, M. A. Chandler, A. Jost, Y. Kamae, A. Abe-Ouchi, G. Ramstein, N. A. Rosenbloom, L. Sohl, and H. Ueda
Clim. Past, 9, 2085–2099, https://doi.org/10.5194/cp-9-2085-2013, https://doi.org/10.5194/cp-9-2085-2013, 2013
Z.-S. Zhang, K. H. Nisancioglu, M. A. Chandler, A. M. Haywood, B. L. Otto-Bliesner, G. Ramstein, C. Stepanek, A. Abe-Ouchi, W.-L. Chan, F. J. Bragg, C. Contoux, A. M. Dolan, D. J. Hill, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, N. A. Rosenbloom, L. E. Sohl, and H. Ueda
Clim. Past, 9, 1495–1504, https://doi.org/10.5194/cp-9-1495-2013, https://doi.org/10.5194/cp-9-1495-2013, 2013
M. Kageyama, U. Merkel, B. Otto-Bliesner, M. Prange, A. Abe-Ouchi, G. Lohmann, R. Ohgaito, D. M. Roche, J. Singarayer, D. Swingedouw, and X Zhang
Clim. Past, 9, 935–953, https://doi.org/10.5194/cp-9-935-2013, https://doi.org/10.5194/cp-9-935-2013, 2013
C. Giry, T. Felis, M. Kölling, W. Wei, G. Lohmann, and S. Scheffers
Clim. Past, 9, 841–858, https://doi.org/10.5194/cp-9-841-2013, https://doi.org/10.5194/cp-9-841-2013, 2013
A. M. Haywood, D. J. Hill, A. M. Dolan, B. L. Otto-Bliesner, F. Bragg, W.-L. Chan, M. A. Chandler, C. Contoux, H. J. Dowsett, A. Jost, Y. Kamae, G. Lohmann, D. J. Lunt, A. Abe-Ouchi, S. J. Pickering, G. Ramstein, N. A. Rosenbloom, U. Salzmann, L. Sohl, C. Stepanek, H. Ueda, Q. Yan, and Z. Zhang
Clim. Past, 9, 191–209, https://doi.org/10.5194/cp-9-191-2013, https://doi.org/10.5194/cp-9-191-2013, 2013
G. Lohmann, A. Wackerbarth, P. M. Langebroek, M. Werner, J. Fohlmeister, D. Scholz, and A. Mangini
Clim. Past, 9, 89–98, https://doi.org/10.5194/cp-9-89-2013, https://doi.org/10.5194/cp-9-89-2013, 2013
S. Dietrich, M. Werner, T. Spangehl, and G. Lohmann
Clim. Past, 9, 13–26, https://doi.org/10.5194/cp-9-13-2013, https://doi.org/10.5194/cp-9-13-2013, 2013
Related subject area
Climate and Earth system modeling
A sub-grid parameterization scheme for topographic vertical motion in CAM5-SE
Technology to aid the analysis of large-volume multi-institute climate model output at a central analysis facility (PRIMAVERA Data Management Tool V2.10)
A diffusion-based kernel density estimator (diffKDE, version 1) with optimal bandwidth approximation for the analysis of data in geoscience and ecological research
Monte Carlo drift correction – quantifying the drift uncertainty of global climate models
Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1
Earth System Model Aerosol–Cloud Diagnostics (ESMAC Diags) package, version 2: assessing aerosols, clouds, and aerosol–cloud interactions via field campaign and long-term observations
CIOFC1.0: a common parallel input/output framework based on C-Coupler2.0
Overcoming computational challenges to realize meter- to submeter-scale resolution in cloud simulations using the super-droplet method
Introducing a new floodplain scheme in ORCHIDEE (version 7885): validation and evaluation over the Pantanal wetlands
URock 2023a: an open-source GIS-based wind model for complex urban settings
DASH: a MATLAB toolbox for paleoclimate data assimilation
Comparing the Performance of Julia on CPUs versus GPUs and Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean (Version 7.1)
All aboard! Earth system investigations with the CH2O-CHOO TRAIN v1.0
The Canadian Atmospheric Model version 5 (CanAM5.0.3)
The Teddy tool v1.1: temporal disaggregation of daily climate model data for climate impact analysis
Assimilation of the AMSU-A radiances using the CESM (v2.1.0) and the DART (v9.11.13)–RTTOV (v12.3)
Modernizing the open-source community Noah with multi-parameterization options (Noah-MP) land surface model (version 5.0) with enhanced modularity, interoperability, and applicability
Simulated stable water isotopes during the mid-Holocene and pre-industrial periods using AWI-ESM-2.1-wiso
Truly Conserving with Conservative Remapping Methods
Rainbows and climate change: a tutorial on climate model diagnostics and parameterization
ModE-Sim – a medium-sized atmospheric general circulation model (AGCM) ensemble to study climate variability during the modern era (1420 to 2009)
MESMAR v1: a new regional coupled climate model for downscaling, predictability, and data assimilation studies in the Mediterranean region
Climate model Selection by Independence, Performance, and Spread (ClimSIPS v1.0.1) for regional applications
IceTFT v1.0.0: interpretable long-term prediction of Arctic sea ice extent with deep learning
Earth system modeling on Modular Supercomputing Architectures: coupled atmosphere-ocean simulations with ICON 2.6.6-rc
The KNMI Large Ensemble Time Slice (KNMI–LENTIS)
ENSO statistics, teleconnections, and atmosphere–ocean coupling in the Taiwan Earth System Model version 1
Using probabilistic machine learning to better model temporal patterns in parameterizations: a case study with the Lorenz 96 model
The Regional Aerosol Model Intercomparison Project (RAMIP)
DSCIM-Coastal v1.1: an open-source modeling platform for global impacts of sea level rise
TIMBER v0.1: a conceptual framework for emulating temperature responses to tree cover change
Recalibration of a three-dimensional water quality model with a newly developed autocalibration toolkit (EFDC-ACT v1.0.0): how much improvement will be achieved with a wider hydrological variability?
Description and evaluation of the JULES-ES set-up for ISIMIP2b
Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2
Modelling the terrestrial nitrogen and phosphorus cycle in the UVic ESCM
Modeling river water temperature with limiting forcing data: Air2stream v1.0.0, machine learning and multiple regression
WRF (v4.0)-SUEWS (v2018c) Coupled System: Development, Evaluation and Application
A machine learning approach targeting parameter estimation for plant functional type coexistence modeling using ELM-FATES (v2.0)
Resolving the mesoscale at reduced computational cost with FESOM 2.5: efficient modeling approaches applied to the Southern Ocean
Modeling and evaluating the effects of irrigation on land-atmosphere interaction in South-West Europe with the regional climate model REMO2020-iMOVE using a newly developed parameterization
The fully coupled regionally refined model of E3SM version 2: overview of the atmosphere, land, and river results
The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies
A new simplified parameterization of secondary organic aerosol in the Community Earth System Model Version 2 (CESM2; CAM6.3)
Deep learning for stochastic precipitation generation – deep SPG v1.0
Developing spring wheat in the Noah-MP land surface model (v4.4) for growing season dynamics and responses to temperature stress
Deep Learning Model based on Multi-scale Feature Fusion for Precipitation Nowcasting
Robust 4D climate-optimal flight planning in structured airspace using parallelized simulation on GPUs: ROOST V1.0
High resolution downscaling of CMIP6 Earth System and Global Climate Models using deep learning for Iberia
The Earth system model CLIMBER-X v1.0 – Part 2: The global carbon cycle
Yaqi Wang, Lanning Wang, Juan Feng, Zhenya Song, Qizhong Wu, and Huaqiong Cheng
Geosci. Model Dev., 16, 6857–6873, https://doi.org/10.5194/gmd-16-6857-2023, https://doi.org/10.5194/gmd-16-6857-2023, 2023
Short summary
Short summary
In this study, to noticeably improve precipitation simulation in steep mountains, we propose a sub-grid parameterization scheme for the topographic vertical motion in CAM5-SE to revise the original vertical velocity by adding the topographic vertical motion. The dynamic lifting effect of topography is extended from the lowest layer to multiple layers, thus improving the positive deviations of precipitation simulation in high-altitude regions and negative deviations in low-altitude regions.
Jon Seddon, Ag Stephens, Matthew S. Mizielinski, Pier Luigi Vidale, and Malcolm J. Roberts
Geosci. Model Dev., 16, 6689–6700, https://doi.org/10.5194/gmd-16-6689-2023, https://doi.org/10.5194/gmd-16-6689-2023, 2023
Short summary
Short summary
The PRIMAVERA project aimed to develop a new generation of advanced global climate models. The large volume of data generated was uploaded to a central analysis facility (CAF) and was analysed by 100 PRIMAVERA scientists there. We describe how the PRIMAVERA project used the CAF's facilities to enable users to analyse this large dataset. We believe that similar, multi-institute, big-data projects could also use a CAF to efficiently share, organise and analyse large volumes of data.
Maria-Theresia Pelz, Markus Schartau, Christopher J. Somes, Vanessa Lampe, and Thomas Slawig
Geosci. Model Dev., 16, 6609–6634, https://doi.org/10.5194/gmd-16-6609-2023, https://doi.org/10.5194/gmd-16-6609-2023, 2023
Short summary
Short summary
Kernel density estimators (KDE) approximate the probability density of a data set without the assumption of an underlying distribution. We used the solution of the diffusion equation, and a new approximation of the optimal smoothing parameter build on two pilot estimation steps, to construct such a KDE best suited for typical characteristics of geoscientific data. The resulting KDE is insensitive to noise and well resolves multimodal data structures as well as boundary-close data.
Benjamin S. Grandey, Zhi Yang Koh, Dhrubajyoti Samanta, Benjamin P. Horton, Justin Dauwels, and Lock Yue Chew
Geosci. Model Dev., 16, 6593–6608, https://doi.org/10.5194/gmd-16-6593-2023, https://doi.org/10.5194/gmd-16-6593-2023, 2023
Short summary
Short summary
Global climate models are susceptible to spurious trends known as drift. Fortunately, drift can be corrected when analysing data produced by models. To explore the uncertainty associated with drift correction, we develop a new method: Monte Carlo drift correction. For historical simulations of thermosteric sea level rise, drift uncertainty is relatively large. When analysing data susceptible to drift, researchers should consider drift uncertainty.
Michael Sigmond, James Anstey, Vivek Arora, Ruth Digby, Nathan Gillett, Viatcheslav Kharin, William Merryfield, Catherine Reader, John Scinocca, Neil Swart, John Virgin, Carsten Abraham, Jason Cole, Nicolas Lambert, Woo-Sung Lee, Yongxiao Liang, Elizaveta Malinina, Landon Rieger, Knut von Salzen, Christian Seiler, Clint Seinen, Andrew Shao, Reinel Sospedra-Alfonso, Libo Wang, and Duo Yang
Geosci. Model Dev., 16, 6553–6591, https://doi.org/10.5194/gmd-16-6553-2023, https://doi.org/10.5194/gmd-16-6553-2023, 2023
Short summary
Short summary
We present a new activity which aims to organize the analysis of biases in the Canadian Earth System model (CanESM) in a systematic manner. Results of this “Analysis for Development” (A4D) activity includes a new CanESM version, CanESM5.1, which features substantial improvements regarding the simulation of dust and stratospheric temperatures, a second CanESM5.1 variant with reduced climate sensitivity, and insights into potential avenues to reduce various other model biases.
Shuaiqi Tang, Adam C. Varble, Jerome D. Fast, Kai Zhang, Peng Wu, Xiquan Dong, Fan Mei, Mikhail Pekour, Joseph C. Hardin, and Po-Lun Ma
Geosci. Model Dev., 16, 6355–6376, https://doi.org/10.5194/gmd-16-6355-2023, https://doi.org/10.5194/gmd-16-6355-2023, 2023
Short summary
Short summary
To assess the ability of Earth system model (ESM) predictions, we developed a tool called ESMAC Diags to understand how aerosols, clouds, and aerosol–cloud interactions are represented in ESMs. This paper describes its version 2 functionality. We compared the model predictions with measurements taken by planes, ships, satellites, and ground instruments over four regions across the world. Results show that this new tool can help identify model problems and guide future development of ESMs.
Xinzhu Yu, Li Liu, Chao Sun, Qingu Jiang, Biao Zhao, Zhiyuan Zhang, Hao Yu, and Bin Wang
Geosci. Model Dev., 16, 6285–6308, https://doi.org/10.5194/gmd-16-6285-2023, https://doi.org/10.5194/gmd-16-6285-2023, 2023
Short summary
Short summary
In this paper we propose a new common, flexible, and efficient parallel I/O framework for earth system modeling based on C-Coupler2.0. CIOFC1.0 can handle data I/O in parallel and provides a configuration file format that enables users to conveniently change the I/O configurations. It can automatically make grid and time interpolation, output data with an aperiodic time series, and accelerate data I/O when the field size is large.
Toshiki Matsushima, Seiya Nishizawa, and Shin-ichiro Shima
Geosci. Model Dev., 16, 6211–6245, https://doi.org/10.5194/gmd-16-6211-2023, https://doi.org/10.5194/gmd-16-6211-2023, 2023
Short summary
Short summary
A particle-based cloud model was developed for meter- to submeter-scale resolution in cloud simulations. Our new cloud model's computational performance is superior to a bin method and comparable to a two-moment bulk method. A highlight of this study is the 2 m resolution shallow cloud simulations over an area covering ∼10 km2. This model allows for studying turbulence and cloud physics at spatial scales that overlap with those covered by direct numerical simulations and field studies.
Anthony Schrapffer, Jan Polcher, Anna Sörensson, and Lluís Fita
Geosci. Model Dev., 16, 5755–5782, https://doi.org/10.5194/gmd-16-5755-2023, https://doi.org/10.5194/gmd-16-5755-2023, 2023
Short summary
Short summary
The present paper introduces a floodplain scheme for a high-resolution land surface model river routing. It was developed and evaluated over one of the world’s largest floodplains: the Pantanal in South America. This shows the impact of tropical floodplains on land surface conditions (soil moisture, temperature) and on land–atmosphere fluxes and highlights the potential impact of floodplains on land–atmosphere interactions and the importance of integrating this module in coupled simulations.
Jérémy Bernard, Fredrik Lindberg, and Sandro Oswald
Geosci. Model Dev., 16, 5703–5727, https://doi.org/10.5194/gmd-16-5703-2023, https://doi.org/10.5194/gmd-16-5703-2023, 2023
Short summary
Short summary
The UMEP plug-in integrated in the free QGIS software can now calculate the spatial variation of the wind speed within urban settings. This paper shows that the new wind model, URock, generally fits observations well and highlights the main needed improvements. According to this work, pedestrian wind fields and outdoor thermal comfort can now simply be estimated by any QGIS user (researchers, students, and practitioners).
Jonathan King, Jessica Tierney, Matthew Osman, Emily J. Judd, and Kevin J. Anchukaitis
Geosci. Model Dev., 16, 5653–5683, https://doi.org/10.5194/gmd-16-5653-2023, https://doi.org/10.5194/gmd-16-5653-2023, 2023
Short summary
Short summary
Paleoclimate data assimilation is a useful method that allows researchers to combine climate models with natural archives of past climates. However, it can be difficult to implement in practice. To facilitate this method, we present DASH, a MATLAB toolbox. The toolbox provides routines that implement common steps of paleoclimate data assimilation, and it can be used to implement assimilations for a wide variety of time periods, spatial regions, data networks, and analytical algorithms.
Siddhartha Bishnu, Robert R. Strauss, and Mark R. Petersen
Geosci. Model Dev., 16, 5539–5559, https://doi.org/10.5194/gmd-16-5539-2023, https://doi.org/10.5194/gmd-16-5539-2023, 2023
Short summary
Short summary
Here we test Julia, a relatively new programming language, which is designed to be simple to write, but also fast on advanced computer architectures. We found that Julia is both convenient and fast, but there is no free lunch. Our first attempt to develop an ocean model in Julia was relatively easy, but the code was slow. After several months of further development, we created a Julia code that is as fast on supercomputers as a Fortran ocean model.
Tyler Kukla, Daniel E. Ibarra, Kimberly V. Lau, and Jeremy K. C. Rugenstein
Geosci. Model Dev., 16, 5515–5538, https://doi.org/10.5194/gmd-16-5515-2023, https://doi.org/10.5194/gmd-16-5515-2023, 2023
Short summary
Short summary
The CH2O-CHOO TRAIN model can simulate how climate and the long-term carbon cycle interact across millions of years on a standard PC. While efficient, the model accounts for many factors including the location of land masses, the spatial pattern of the water cycle, and fundamental climate feedbacks. The model is a powerful tool for investigating how short-term climate processes can affect long-term changes in the Earth system.
Jason Neil Steven Cole, Knut von Salzen, Jiangnan Li, John Scinocca, David Plummer, Vivek Arora, Norman McFarlane, Michael Lazare, Murray MacKay, and Diana Verseghy
Geosci. Model Dev., 16, 5427–5448, https://doi.org/10.5194/gmd-16-5427-2023, https://doi.org/10.5194/gmd-16-5427-2023, 2023
Short summary
Short summary
The Canadian Atmospheric Model version 5 (CanAM5) is used to simulate on a global scale the climate of Earth's atmosphere, land, and lakes. We document changes to the physics in CanAM5 since the last major version of the model (CanAM4) and evaluate the climate simulated relative to observations and CanAM4. The climate simulated by CanAM5 is similar to CanAM4, but there are improvements, including better simulation of temperature and precipitation over the Amazon and better simulation of cloud.
Florian Zabel and Benjamin Poschlod
Geosci. Model Dev., 16, 5383–5399, https://doi.org/10.5194/gmd-16-5383-2023, https://doi.org/10.5194/gmd-16-5383-2023, 2023
Short summary
Short summary
Today, most climate model data are provided at daily time steps. However, more and more models from different sectors, such as energy, water, agriculture, and health, require climate information at a sub-daily temporal resolution for a more robust and reliable climate impact assessment. Here we describe and validate the Teddy tool, a new model for the temporal disaggregation of daily climate model data for climate impact analysis.
Young-Chan Noh, Yonghan Choi, Hyo-Jong Song, Kevin Raeder, Joo-Hong Kim, and Youngchae Kwon
Geosci. Model Dev., 16, 5365–5382, https://doi.org/10.5194/gmd-16-5365-2023, https://doi.org/10.5194/gmd-16-5365-2023, 2023
Short summary
Short summary
This is the first attempt to assimilate the observations of microwave temperature sounders into the global climate forecast model in which the satellite observations have not been assimilated in the past. To do this, preprocessing schemes are developed to make the satellite observations suitable to be assimilated. In the assimilation experiments, the model analysis is significantly improved by assimilating the observations of microwave temperature sounders.
Cenlin He, Prasanth Valayamkunnath, Michael Barlage, Fei Chen, David Gochis, Ryan Cabell, Tim Schneider, Roy Rasmussen, Guo-Yue Niu, Zong-Liang Yang, Dev Niyogi, and Michael Ek
Geosci. Model Dev., 16, 5131–5151, https://doi.org/10.5194/gmd-16-5131-2023, https://doi.org/10.5194/gmd-16-5131-2023, 2023
Short summary
Short summary
Noah-MP is one of the most widely used open-source community land surface models in the world, designed for applications ranging from uncoupled land surface and ecohydrological process studies to coupled numerical weather prediction and decadal climate simulations. To facilitate model developments and applications, we modernize Noah-MP by adopting modern Fortran code and data structures and standards, which substantially enhance model modularity, interoperability, and applicability.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Karl E. Taylor
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-177, https://doi.org/10.5194/gmd-2023-177, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
Remapping gridded data in a way that preserves the conservative properties of the climate system can be essential in coupling model components and for accurate assessment of the system’s energy and mass constituents. Remapping packages capable of handling a wide variety of grids can, for common grids, calculate remapping weights that are somewhat inaccurate. Correcting for these errors, guidelines are provided to ensure conservation when the weights are used in practice.
Andrew Gettelman
Geosci. Model Dev., 16, 4937–4956, https://doi.org/10.5194/gmd-16-4937-2023, https://doi.org/10.5194/gmd-16-4937-2023, 2023
Short summary
Short summary
A representation of rainbows is developed for a climate model. The diagnostic raises many common issues. Simulated rainbows are evaluated against limited observations. The pattern of rainbows in the model matches observations and theory about when and where rainbows are most common. The diagnostic is used to assess the past and future state of rainbows. Changes to clouds from climate change are expected to increase rainbows as cloud cover decreases in a warmer world.
Ralf Hand, Eric Samakinwa, Laura Lipfert, and Stefan Brönnimann
Geosci. Model Dev., 16, 4853–4866, https://doi.org/10.5194/gmd-16-4853-2023, https://doi.org/10.5194/gmd-16-4853-2023, 2023
Short summary
Short summary
ModE-Sim is an ensemble of simulations with an atmosphere model. It uses observed sea surface temperatures, sea ice conditions, and volcanic aerosols for 1420 to 2009 as model input while accounting for uncertainties in these conditions. This generates several representations of the possible climate given these preconditions. Such a setup can be useful to understand the mechanisms that contribute to climate variability. This paper describes the setup of ModE-Sim and evaluates its performance.
Andrea Storto, Yassmin Hesham Essa, Vincenzo de Toma, Alessandro Anav, Gianmaria Sannino, Rosalia Santoleri, and Chunxue Yang
Geosci. Model Dev., 16, 4811–4833, https://doi.org/10.5194/gmd-16-4811-2023, https://doi.org/10.5194/gmd-16-4811-2023, 2023
Short summary
Short summary
Regional climate models are a fundamental tool for a very large number of applications and are being increasingly used within climate services, together with other complementary approaches. Here, we introduce a new regional coupled model, intended to be later extended to a full Earth system model, for climate investigations within the Mediterranean region, coupled data assimilation experiments, and several downscaling exercises (reanalyses and long-range predictions).
Anna L. Merrifield, Lukas Brunner, Ruth Lorenz, Vincent Humphrey, and Reto Knutti
Geosci. Model Dev., 16, 4715–4747, https://doi.org/10.5194/gmd-16-4715-2023, https://doi.org/10.5194/gmd-16-4715-2023, 2023
Short summary
Short summary
Using all Coupled Model Intercomparison Project (CMIP) models is unfeasible for many applications. We provide a subselection protocol that balances user needs for model independence, performance, and spread capturing CMIP’s projection uncertainty simultaneously. We show how sets of three to five models selected for European applications map to user priorities. An audit of model independence and its influence on equilibrium climate sensitivity uncertainty in CMIP is also presented.
Bin Mu, Xiaodan Luo, Shijin Yuan, and Xi Liang
Geosci. Model Dev., 16, 4677–4697, https://doi.org/10.5194/gmd-16-4677-2023, https://doi.org/10.5194/gmd-16-4677-2023, 2023
Short summary
Short summary
To improve the long-term forecast skill for sea ice extent (SIE), we introduce IceTFT, which directly predicts 12 months of averaged Arctic SIE. The results show that IceTFT has higher forecasting skill. We conducted a sensitivity analysis of the variables in the IceTFT model. These sensitivities can help researchers study the mechanisms of sea ice development, and they also provide useful references for the selection of variables in data assimilation or the input of deep learning models.
Abhiraj Bishnoi, Olaf Stein, Catrin I. Meyer, René Redler, Norbert Eicker, Helmuth Haak, Lars Hoffmann, Daniel Klocke, Luis Kornblueh, and Estela Suarez
EGUsphere, https://doi.org/10.5194/egusphere-2023-1476, https://doi.org/10.5194/egusphere-2023-1476, 2023
Short summary
Short summary
We enabled the weather and climate model ICON to run in a high-resolution coupled atmosphere-ocean setup on the JUWELS supercomputer, where the ocean and the model I/O runs on the CPU Cluster, while the atmosphere is running simultaneously on GPUs. Compared to a simulation performed on CPUs only, our approach reduces energy consumption by 59 % with comparable runtimes. The experiments serve as preparation for efficient computing of kilometer-scale climate models on future supercomputing systems.
Laura Muntjewerf, Richard Bintanja, Thomas Reerink, and Karin van der Wiel
Geosci. Model Dev., 16, 4581–4597, https://doi.org/10.5194/gmd-16-4581-2023, https://doi.org/10.5194/gmd-16-4581-2023, 2023
Short summary
Short summary
The KNMI Large Ensemble Time Slice (KNMI–LENTIS) is a large ensemble of global climate model simulations with EC-Earth3. It covers two climate scenarios by focusing on two time slices: the present day (2000–2009) and a future +2 K climate (2075–2084 in the SSP2-4.5 scenario). We have 1600 simulated years for the two climates with (sub-)daily output frequency. The sampled climate variability allows for robust and in-depth research into (compound) extreme events such as heat waves and droughts.
Yi-Chi Wang, Wan-Ling Tseng, Yu-Luen Chen, Shih-Yu Lee, Huang-Hsiung Hsu, and Hsin-Chien Liang
Geosci. Model Dev., 16, 4599–4616, https://doi.org/10.5194/gmd-16-4599-2023, https://doi.org/10.5194/gmd-16-4599-2023, 2023
Short summary
Short summary
This study focuses on evaluating the performance of the Taiwan Earth System Model version 1 (TaiESM1) in simulating the El Niño–Southern Oscillation (ENSO), a significant tropical climate pattern with global impacts. Our findings reveal that TaiESM1 effectively captures several characteristics of ENSO, such as its seasonal variation and remote teleconnections. Its pronounced ENSO strength bias is also thoroughly investigated, aiming to gain insights to improve climate model performance.
Raghul Parthipan, Hannah M. Christensen, J. Scott Hosking, and Damon J. Wischik
Geosci. Model Dev., 16, 4501–4519, https://doi.org/10.5194/gmd-16-4501-2023, https://doi.org/10.5194/gmd-16-4501-2023, 2023
Short summary
Short summary
How can we create better climate models? We tackle this by proposing a data-driven successor to the existing approach for capturing key temporal trends in climate models. We combine probability, allowing us to represent uncertainty, with machine learning, a technique to learn relationships from data which are undiscoverable to humans. Our model is often superior to existing baselines when tested in a simple atmospheric simulation.
Laura J. Wilcox, Robert J. Allen, Bjørn H. Samset, Massimo A. Bollasina, Paul T. Griffiths, James Keeble, Marianne T. Lund, Risto Makkonen, Joonas Merikanto, Declan O'Donnell, David J. Paynter, Geeta G. Persad, Steven T. Rumbold, Toshihiko Takemura, Kostas Tsigaridis, Sabine Undorf, and Daniel M. Westervelt
Geosci. Model Dev., 16, 4451–4479, https://doi.org/10.5194/gmd-16-4451-2023, https://doi.org/10.5194/gmd-16-4451-2023, 2023
Short summary
Short summary
Changes in anthropogenic aerosol emissions have strongly contributed to global and regional climate change. However, the size of these regional impacts and the way they arise are still uncertain. With large changes in aerosol emissions a possibility over the next few decades, it is important to better quantify the potential role of aerosol in future regional climate change. The Regional Aerosol Model Intercomparison Project will deliver experiments designed to facilitate this.
Nicholas Depsky, Ian Bolliger, Daniel Allen, Jun Ho Choi, Michael Delgado, Michael Greenstone, Ali Hamidi, Trevor Houser, Robert E. Kopp, and Solomon Hsiang
Geosci. Model Dev., 16, 4331–4366, https://doi.org/10.5194/gmd-16-4331-2023, https://doi.org/10.5194/gmd-16-4331-2023, 2023
Short summary
Short summary
This work presents a novel open-source modeling platform for evaluating future sea level rise (SLR) impacts. Using nearly 10 000 discrete coastline segments around the world, we estimate 21st-century costs for 230 SLR and socioeconomic scenarios. We find that annual end-of-century costs range from USD 100 billion under a 2 °C warming scenario with proactive adaptation to 7 trillion under a 4 °C warming scenario with minimal adaptation, illustrating the cost-effectiveness of coastal adaptation.
Shruti Nath, Lukas Gudmundsson, Jonas Schwaab, Gregory Duveiller, Steven J. De Hertog, Suqi Guo, Felix Havermann, Fei Luo, Iris Manola, Julia Pongratz, Sonia I. Seneviratne, Carl F. Schleussner, Wim Thiery, and Quentin Lejeune
Geosci. Model Dev., 16, 4283–4313, https://doi.org/10.5194/gmd-16-4283-2023, https://doi.org/10.5194/gmd-16-4283-2023, 2023
Short summary
Short summary
Tree cover changes play a significant role in climate mitigation and adaptation. Their regional impacts are key in informing national-level decisions and prioritising areas for conservation efforts. We present a first step towards exploring these regional impacts using a simple statistical device, i.e. emulator. The emulator only needs to train on climate model outputs representing the maximal impacts of aff-, re-, and deforestation, from which it explores plausible in-between outcomes itself.
Chen Zhang and Tianyu Fu
Geosci. Model Dev., 16, 4315–4329, https://doi.org/10.5194/gmd-16-4315-2023, https://doi.org/10.5194/gmd-16-4315-2023, 2023
Short summary
Short summary
A new automatic calibration toolkit was developed and implemented into the recalibration of a 3-D water quality model, with observations in a wider range of hydrological variability. Compared to the model calibrated with the original strategy, the recalibrated model performed significantly better in modeled total phosphorus, chlorophyll a, and dissolved oxygen. Our work indicates that hydrological variability in the calibration periods has a non-negligible impact on the water quality models.
Camilla Mathison, Eleanor Burke, Andrew J. Hartley, Douglas I. Kelley, Chantelle Burton, Eddy Robertson, Nicola Gedney, Karina Williams, Andy Wiltshire, Richard J. Ellis, Alistair A. Sellar, and Chris D. Jones
Geosci. Model Dev., 16, 4249–4264, https://doi.org/10.5194/gmd-16-4249-2023, https://doi.org/10.5194/gmd-16-4249-2023, 2023
Short summary
Short summary
This paper describes and evaluates a new modelling methodology to quantify the impacts of climate change on water, biomes and the carbon cycle. We have created a new configuration and set-up for the JULES-ES land surface model, driven by bias-corrected historical and future climate model output provided by the Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP). This allows us to compare projections of the impacts of climate change across multiple impact models and multiple sectors.
Bo Dong, Ross Bannister, Yumeng Chen, Alison Fowler, and Keith Haines
Geosci. Model Dev., 16, 4233–4247, https://doi.org/10.5194/gmd-16-4233-2023, https://doi.org/10.5194/gmd-16-4233-2023, 2023
Short summary
Short summary
Traditional Kalman smoothers are expensive to apply in large global ocean operational forecast and reanalysis systems. We develop a cost-efficient method to overcome the technical constraints and to improve the performance of existing reanalysis products.
Yuying Zhang, Shaocheng Xie, Yi Qin, Wuyin Lin, Jean-Christophe Golaz, Xue Zheng, Po-Lun Ma, Yun Qian, Qi Tang, Christopher R. Terai, and Meng Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-1263, https://doi.org/10.5194/egusphere-2023-1263, 2023
Short summary
Short summary
We performed systematic evaluation of clouds simulated in the E3SMv2 to document model performance on clouds and understand what updates in E3SMv2 have caused the changes in clouds from E3SMv1 to E3SMv2. We find that stratocumulus clouds along the subtropical west coast of continents are dramatically improved primarily due to the re-tuning of cloud macrophysics parameters. This study offers additional insights about clouds simulated in E3SMv2 and will benefit the future E3SM developments.
Makcim L. De Sisto, Andrew H. MacDougall, Nadine Mengis, and Sophia Antoniello
Geosci. Model Dev., 16, 4113–4136, https://doi.org/10.5194/gmd-16-4113-2023, https://doi.org/10.5194/gmd-16-4113-2023, 2023
Short summary
Short summary
In this study, we developed a nitrogen and phosphorus cycle in an intermediate-complexity Earth system climate model. We found that the implementation of nutrient limitation in simulations has reduced the capacity of land to take up atmospheric carbon and has decreased the vegetation biomass, hence, improving the fidelity of the response of land to simulated atmospheric CO2 rise.
Manuel C. Almeida and Pedro S. Coelho
Geosci. Model Dev., 16, 4083–4112, https://doi.org/10.5194/gmd-16-4083-2023, https://doi.org/10.5194/gmd-16-4083-2023, 2023
Short summary
Short summary
Water temperature (WT) datasets of low-order rivers are scarce. In this study, five different models are used to predict the WT of 83 rivers. Generally, the results show that the models' hyperparameter optimization is essential and that to minimize the prediction error it is relevant to apply all the models considered in this study. Results also show that there is a logarithmic correlation among the error of the predicted river WT and the watershed time of concentration.
Ting Sun, Hamidreza Omidvar, Zhenkun Li, Ning Zhang, Wenjuan Huang, Simone Kotthaus, Helen C. Ward, Zhiwen Luo, and Sue Grimmond
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-117, https://doi.org/10.5194/gmd-2023-117, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
For the first time, we coupled a state-of-the-art urban land surface model – Surface Urban Energy and Water Scheme (SUEWS) – with the widely-used Weather Research and Forecasting (WRF) model, creating an open-source tool that may benefit multiple applications. We tested our new system at two UK sites and demonstrated its potential by examining how human activities in various areas of Greater London influence local weather conditions.
Lingcheng Li, Yilin Fang, Zhonghua Zheng, Mingjie Shi, Marcos Longo, Charles D. Koven, Jennifer A. Holm, Rosie A. Fisher, Nate G. McDowell, Jeffrey Chambers, and L. Ruby Leung
Geosci. Model Dev., 16, 4017–4040, https://doi.org/10.5194/gmd-16-4017-2023, https://doi.org/10.5194/gmd-16-4017-2023, 2023
Short summary
Short summary
Accurately modeling plant coexistence in vegetation demographic models like ELM-FATES is challenging. This study proposes a repeatable method that uses machine-learning-based surrogate models to optimize plant trait parameters in ELM-FATES. Our approach significantly improves plant coexistence modeling, thus reducing errors. It has important implications for modeling ecosystem dynamics in response to climate change.
Nathan Beech, Thomas Rackow, Tido Semmler, and Thomas Jung
EGUsphere, https://doi.org/10.5194/egusphere-2023-1496, https://doi.org/10.5194/egusphere-2023-1496, 2023
Short summary
Short summary
Ocean models struggle to simulate small-scale ocean flows due to the computational cost of high-resolution simulations. Several cost-reducing strategies are applied to simulations of the Southern Ocean and evaluated with respect to observations and traditional, lower-resolution modelling methods. The high-resolution simulations effectively reproduce small-scale flows seen in satellite data and are largely consistent with traditional model simulations regarding their response to climate change.
Christina Asmus, Peter Hoffmann, Joni-Pekka Pietikäinen, Jürgen Böhner, and Diana Rechid
EGUsphere, https://doi.org/10.5194/egusphere-2023-890, https://doi.org/10.5194/egusphere-2023-890, 2023
Short summary
Short summary
Irrigation modifies the land surface and soil conditions. The caused effects can be quantified using numerical climate models. Our study introduces a new irrigation parameterization, which is simulating the effects of irrigation on land, atmosphere, and vegetation. We applied the parameterization and evaluated the results in their physical consistency. We found an improvement in the model results in the 2 m temperature representation in comparison with observational data for our study.
Qi Tang, Jean-Christophe Golaz, Luke P. Van Roekel, Mark A. Taylor, Wuyin Lin, Benjamin R. Hillman, Paul A. Ullrich, Andrew M. Bradley, Oksana Guba, Jonathan D. Wolfe, Tian Zhou, Kai Zhang, Xue Zheng, Yunyan Zhang, Meng Zhang, Mingxuan Wu, Hailong Wang, Cheng Tao, Balwinder Singh, Alan M. Rhoades, Yi Qin, Hong-Yi Li, Yan Feng, Yuying Zhang, Chengzhu Zhang, Charles S. Zender, Shaocheng Xie, Erika L. Roesler, Andrew F. Roberts, Azamat Mametjanov, Mathew E. Maltrud, Noel D. Keen, Robert L. Jacob, Christiane Jablonowski, Owen K. Hughes, Ryan M. Forsyth, Alan V. Di Vittorio, Peter M. Caldwell, Gautam Bisht, Renata B. McCoy, L. Ruby Leung, and David C. Bader
Geosci. Model Dev., 16, 3953–3995, https://doi.org/10.5194/gmd-16-3953-2023, https://doi.org/10.5194/gmd-16-3953-2023, 2023
Short summary
Short summary
High-resolution simulations are superior to low-resolution ones in capturing regional climate changes and climate extremes. However, uniformly reducing the grid size of a global Earth system model is too computationally expensive. We provide an overview of the fully coupled regionally refined model (RRM) of E3SMv2 and document a first-of-its-kind set of climate production simulations using RRM at an economic cost. The key to this success is our innovative hybrid time step method.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Duseong S. Jo, Simone Tilmes, Louisa K. Emmons, Siyuan Wang, and Francis Vitt
Geosci. Model Dev., 16, 3893–3906, https://doi.org/10.5194/gmd-16-3893-2023, https://doi.org/10.5194/gmd-16-3893-2023, 2023
Short summary
Short summary
A new simple secondary organic aerosol (SOA) scheme has been developed for the Community Atmosphere Model (CAM) based on the complex SOA scheme in CAM with detailed chemistry (CAM-chem). The CAM with the new SOA scheme shows better agreements with CAM-chem in terms of aerosol concentrations and radiative fluxes, which ensures more consistent results between different compsets in the Community Earth System Model. The new SOA scheme also has technical advantages for future developments.
Leroy J. Bird, Matthew G. W. Walker, Greg E. Bodeker, Isaac H. Campbell, Guangzhong Liu, Swapna Josmi Sam, Jared Lewis, and Suzanne M. Rosier
Geosci. Model Dev., 16, 3785–3808, https://doi.org/10.5194/gmd-16-3785-2023, https://doi.org/10.5194/gmd-16-3785-2023, 2023
Short summary
Short summary
Deriving the statistics of expected future changes in extreme precipitation is challenging due to these events being rare. Regional climate models (RCMs) are computationally prohibitive for generating ensembles capable of capturing large numbers of extreme precipitation events with statistical robustness. Stochastic precipitation generators (SPGs) provide an alternative to RCMs. We describe a novel single-site SPG that learns the statistics of precipitation using a machine-learning approach.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Jinkai Tan, Qiqiao Huang, and Sheng Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-109, https://doi.org/10.5194/gmd-2023-109, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
1. This study present a deep learning architecture MFF to improve the forecast skills of precipitations especially for heavy precipitations. 2. MFF uses multi-scale receptive fields so that the movement features of precipitation systems are well captured. 3. MFF uses the mechanism of discrete probability to reduce uncertainties and forecast errors, so that heavy precipitations are produced.
Abolfazl Simorgh, Manuel Soler, Daniel González-Arribas, Florian Linke, Benjamin Lührs, Maximilian M. Meuser, Simone Dietmüller, Sigrun Matthes, Hiroshi Yamashita, Feijia Yin, Federica Castino, Volker Grewe, and Sabine Baumann
Geosci. Model Dev., 16, 3723–3748, https://doi.org/10.5194/gmd-16-3723-2023, https://doi.org/10.5194/gmd-16-3723-2023, 2023
Short summary
Short summary
This paper addresses the robust climate optimal trajectory planning problem under uncertain meteorological conditions within the structured airspace. Based on the optimization methodology, a Python library has been developed, which can be accessed using the following DOI: https://doi.org/10.5281/zenodo.7121862. The developed tool is capable of providing robust trajectories taking into account all probable realizations of meteorological conditions provided by an EPS computationally very fast.
Pedro M. M. Soares, Frederico Johannsen, Daniela C. A. Lima, Gil Lemos, Virgílio Bento, and Angelina Bushenkova
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-136, https://doi.org/10.5194/gmd-2023-136, 2023
Revised manuscript accepted for GMD
Short summary
Short summary
This study uses deep learning (DL) to downscale global climate models for the Iberian Peninsula. Four DL architectures were evaluated and trained using historical climate data, and then used to downscale future projections from the global models. These show agreement with the original models and reveal a warming of 2 ºC to 6 ºC, along with decreasing precipitation in western Iberia after 2040. This approach offers key regional climate change information for adaptation strategies in the region.
Matteo Willeit, Tatiana Ilyina, Bo Liu, Christoph Heinze, Mahé Perrette, Malte Heinemann, Daniela Dalmonech, Victor Brovkin, Guy Munhoven, Janine Börker, Jens Hartmann, Gibran Romero-Mujalli, and Andrey Ganopolski
Geosci. Model Dev., 16, 3501–3534, https://doi.org/10.5194/gmd-16-3501-2023, https://doi.org/10.5194/gmd-16-3501-2023, 2023
Short summary
Short summary
In this paper we present the carbon cycle component of the newly developed fast Earth system model CLIMBER-X. The model can be run with interactive atmospheric CO2 to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to > 100 000 years. CLIMBER-X is expected to be a useful tool for studying past climate–carbon cycle changes and for the investigation of the long-term future evolution of the Earth system.
Cited articles
Acero, F. J., García, J. A., and Gallego, M. C.: Peaks-over-Threshold Study of Trends in Extreme Rainfall over the Iberian Peninsula, J. Climate, 24, 1089–1105, https://doi.org/10.1175/2010JCLI3627.1, 2011. a
Ackermann, L., Danek, C., Gierz, P., and Lohmann, G.: AMOC Recovery in a
Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model,
Geophys. Res. Lett., 47, e2019GL086810, https://doi.org/10.1029/2019GL086810, 2020. a, b, c
Bador, M., Boé, J., Terray, L., Alexander, L. V., Baker, A., Bellucci, A.,
Haarsma, R., Koenigk, T., Moine, M.-P., Lohmann, K., Putrasahan, D. A.,
Roberts, C., Roberts, M., Scoccimarro, E., Schiemann, R., Seddon, J., Senan, R., Valcke, S., and Vanniere, B.: Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models, J. Geophys. Res.-Atmos., 125, e2019JD032184,
https://doi.org/10.1029/2019JD032184, 2020a. a, b
Bargaoui, Z. and Bárdossy, A.: Modeling short duration extreme precipitation
patterns using copula and generalized maximum pseudo-likelihood estimation
with censoring, Adv. Water Resour., 84, 1–13,
https://doi.org/10.1016/j.advwatres.2015.07.006, 2015. a
Bernard, E., Naveau, P., Vrac, M., and Mestre, O.: Clustering of Maxima:
Spatial Dependencies among Heavy Rainfall in France, J. Climate, 26, 7929–7937, https://doi.org/10.1175/JCLI-D-12-00836.1, 2013. a, b
Brierley, C. M., Zhao, A., Harrison, S. P., Braconnot, P., Williams, C. J. R., Thornalley, D. J. R., Shi, X., Peterschmitt, J.-Y., Ohgaito, R., Kaufman, D. S., Kageyama, M., Hargreaves, J. C., Erb, M. P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carré, M., Bartlein, P. J., Zheng, W., Zhang, Z., Zhang, Q., Yang, H., Volodin, E. M., Tomas, R. A., Routson, C., Peltier, W. R., Otto-Bliesner, B., Morozova, P. A., McKay, N. P., Lohmann, G., Legrande, A. N., Guo, C., Cao, J., Brady, E., Annan, J. D., and Abe-Ouchi, A.: Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations, Clim. Past, 16, 1847–1872, https://doi.org/10.5194/cp-16-1847-2020, 2020. a
Brown, J. R., Brierley, C. M., An, S.-I., Guarino, M.-V., Stevenson, S., Williams, C. J. R., Zhang, Q., Zhao, A., Abe-Ouchi, A., Braconnot, P., Brady, E. C., Chandan, D., D'Agostino, R., Guo, C., LeGrande, A. N., Lohmann, G., Morozova, P. A., Ohgaito, R., O'ishi, R., Otto-Bliesner, B. L., Peltier, W. R., Shi, X., Sime, L., Volodin, E. M., Zhang, Z., and Zheng, W.: Comparison of past and future simulations of ENSO in CMIP5/PMIP3 and CMIP6/PMIP4 models, Clim. Past, 16, 1777–1805, https://doi.org/10.5194/cp-16-1777-2020, 2020. a
Carvalho, M., Melo-Gonçalves, P., Teixeira, J., and Rocha, A.: Regionalization of Europe based on a K-Means Cluster Analysis of the climate change of temperatures and precipitation, Phys. Chem. Earth, 94, 22–28, https://doi.org/10.1016/j.pce.2016.05.001, 2016. a
Castro-Camilo, D. and Huser, R.: Local Likelihood Estimation of Complex Tail
Dependence Structures, Applied to U.S. Precipitation Extremes, J. Am. Stat.
Assoc., 115, 1037–1054, https://doi.org/10.1080/01621459.2019.1647842, 2020. a
Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J. M., Papale, D., Pilegaard, K., Rambal, S., Seufert, G., Soussana, J. F., Sanz, M. J., Schulze, E. D., Vesala T., and Valentini, R.: Europe-wide reduction in primary
productivity caused by the heat and drought in 2003, Nature, 437, 529–533,
https://doi.org/10.1038/nature03972, 2005. a
Cinquini, L., Crichton, D., Mattmann, C., Harney, J., Shipman, G., Wang, F.,
Ananthakrishnan, R., Miller, N., Denvil, S., Morgan, M., Pobre, Z., Bell,
G. M., Doutriaux, C., Drach, R., Williams, D., Kershaw, P., Pascoe, S.,
Gonzalez, E., Fiore, S., and Schweitzer, R.: The Earth System Grid
Federation: An open infrastructure for access to distributed geospatial data, Future Gener. Comp. Sy., 36, 400–417,
https://doi.org/10.1016/j.future.2013.07.002, 2014. a
Cleveland, R., Cleveland, W., McRae, J., and Terpenning, I.: STL: A
seasonal-trend decomposition procedure based on loess, J. Off. Stat., 6, 3–33, 1990. a
Coles, S., Pericchi, L. R., and Sisson, S.: A fully probabilistic approach to
extreme rainfall modeling, J. Hydrol., 273, 35–50,
https://doi.org/10.1016/S0022-1694(02)00353-0, 2003. a
Cooley, D., Naveau, P., and Poncet, P.: Variograms for spatial max-stable
random fields, in: Dependence in Probability and Statistics, edited by:
Bertail, P., Soulier, P., and Doukhan, P., Springer, New York, 373–390, https://doi.org/10.1007/0-387-36062-X, 2006. a, b
Danek, C., Shi, X., Stepanek, C., Yang, H., Barbi, D., Hegewald, J., and
Lohmann, G.: AWI AWI-ESM1.1LR model output prepared for CMIP6 CMIP
historical, Version 20200212, Earth System Grid Federation [data set],, https://doi.org/10.22033/ESGF/CMIP6.9328, 2020. a, b
de Bono, A., Giuliani, G., Kluser, S., and Peduzzi, P.: Impacts of summer
2003 heat wave in Europe, UNEP/DEWA/GRID, Europ. Environ. Alert.
Bull., 2, 1–4, 2004. a
Dombry, C., Ribatet, M., and Stoev, S.: Probabilities of Concurrent Extremes, J. Am. Stat. Assoc., 113, 1565–1582, https://doi.org/10.1080/01621459.2017.1356318, 2018. a
Dong, B., Sutton, R. T., and Shaffrey, L.: Understanding the rapid summer
warming and changes in temperature extremes since the mid-1990s over Western Europe, Clim. Dynam., 48, 1537–1554, https://doi.org/10.1007/s00382-016-3158-8, 2017. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth3-Veg-LR model output
prepared for CMIP6 CMIP historical, EC-Earth [data set], Version 20200217,
https://doi.org/10.22033/ESGF/CMIP6.4707, 2020. a
EC-Earth Consortium: EC-Earth-Consortium EC-Earth-3-CC model output prepared for CMIP6 CMIP historical, EC-Earth [data set], Earth System Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.4702, 2021. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a
Fischer, E. and Knutti, R.: Observed heavy precipitation increase confirms
theory and early models, Nat. Clim. Change, 6, 986–991,
https://doi.org/10.1038/nclimate3110, 2016. a
Fisher, R. A. and Tippett, L. H. C.: Limiting forms of the frequency
distribution of the largest or smallest member of a sample, Math. Proc. Cambridge, 24, 180–190, https://doi.org/10.1017/S0305004100015681, 1928. a
Fovell, R. G. and Fovell, M.-Y. C.: Climate zones of the Conterminous United
States defined using cluster analysis, J. Climate, 6, 2103–2135,
https://doi.org/10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2, 1993. a
Fowler, H. J. and Kilsby, C. G.: Implications of changes in seasonal and annual extreme rainfall, Geophys. Res. Lett., 30, 1720, https://doi.org/10.1029/2003GL017327, 2003. a
Fréchet, M.: Sur la loi de probabilité de l'écart maximum, Ann. Soc. Polon. Math., 6, 93–116, 1927. a
Gnedenko, B.: Sur la distribution limite du terme maximum d'une série
aléatoire, Ann. Math., 44, 423–453, https://doi.org/10.2307/1968974, 1943. a
Hagemann, S. and Dümenil, L.: A parametrization of the lateral waterflow for
the global scale, Clim. Dynam., 14, 17–31, 1997. a
Harris, I. C., Jones, P. D., and Osborn, T.: CRU TS4.04: Climatic Research Unit (CRU) Time-Series (TS) version 4.04 of high-resolution gridded data of month-by-month variation in climate (January 1901–December 2019), University of East Anglia Climatic Research Unit, Centre for Environmental Data Analysis [data set], https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9 (last access:12 June 2021), 2020a. a
Harris, I., Osborn, T., Jones, P., and Lister, D.: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset, Sci. Data, 7, 2052–4463, https://doi.org/10.1038/s41597-020-0453-3, 2020b. a, b
Horton, R., Mankin, J., Lesk, C., Coffel, E., and Raymond, C.: A review of
recent advances in research on extreme heat events, Curr. Clim. Change Rep., 2, 242–259, https://doi.org/10.1007/s40641-016-0042-x, 2016. a
Hosking, J.: Algorithm AS 215: Maximum-likelihood estimation of the parameters
of the generalized extreme-value distribution, J. Roy. Stat. Soc. C-App., 34, 301–310, https://doi.org/10.2307/2347483, 1985. a
Hosking, J., Wallis, J., and Wood, E.: Estimation of the generalized
extreme-value distribution by the method of probability-weighted moments,
Technometrics, 27, 251–261, https://doi.org/10.1080/00401706.1985.10488049, 1985. a, b
Ionita, M., Caldarescu, D. E., and Nagavciuc, V.: Compound Hot and Dry Events
in Europe: Variability and Large-Scale Drivers, Front. Climate, 3, 58, https://doi.org/10.3389/fclim.2021.688991, 2021a. a
Ionita, M., Dima, M., Nagavciuc, V., and Lohmann, G.: Past megadroughts in
central Europe were longer, more severe and less warm than modern droughts,
Commun. Earth Environ., 2, 61, https://doi.org/10.1038/s43247-021-00130-w,
2021b. a
IPCC: Managing the risks of extreme events and disasters to advance climate
change adaptation, A special report of working groups I and II of the
Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M., Cambridge University Press, Cambridge, UK, and New York, NY, USA, https://doi.org/10.13140/2.1.3117.9529, 2012. a, b
Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J., Mechler, R., Botzen, W., Bouwer, L., Pflug, G., Rojas, R., and Ward, P.: Increasing stress on disaster-risk finance due to large floods, Nat. Clim. Change, 4, 264–268,
https://doi.org/10.1038/NCLIMATE2124, 2014. a
Kageyama, M., Harrison, S. P., Kapsch, M.-L., Lofverstrom, M., Lora, J. M., Mikolajewicz, U., Sherriff-Tadano, S., Vadsaria, T., Abe-Ouchi, A., Bouttes, N., Chandan, D., Gregoire, L. J., Ivanovic, R. F., Izumi, K., LeGrande, A. N., Lhardy, F., Lohmann, G., Morozova, P. A., Ohgaito, R., Paul, A., Peltier, W. R., Poulsen, C. J., Quiquet, A., Roche, D. M., Shi, X., Tierney, J. E., Valdes, P. J., Volodin, E., and Zhu, J.: The PMIP4 Last Glacial Maximum experiments: preliminary results and comparison with the PMIP3 simulations, Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, 2021a. a
Kageyama, M., Sime, L. C., Sicard, M., Guarino, M.-V., de Vernal, A., Stein, R., Schroeder, D., Malmierca-Vallet, I., Abe-Ouchi, A., Bitz, C., Braconnot, P., Brady, E. C., Cao, J., Chamberlain, M. A., Feltham, D., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P., Nisancioglu, K. H., Otto-Bliesner, B. L., O'ishi, R., Ramos Buarque, S., Salas y Melia, D., Sherriff-Tadano, S., Stroeve, J., Shi, X., Sun, B., Tomas, R. A., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., Zheng, W., and Ziehn, T.: A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences, Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021, 2021b. a
Katz, R. and Brown, B.: Extreme events in a changing climate: Variability is
more important than averages, Clim. Change, 21, 289–302,
https://doi.org/10.1007/BF00139728, 1992. a
Keeble, J., Hassler, B., Banerjee, A., Checa-Garcia, R., Chiodo, G., Davis, S., Eyring, V., Griffiths, P. T., Morgenstern, O., Nowack, P., Zeng, G., Zhang, J., Bodeker, G., Burrows, S., Cameron-Smith, P., Cugnet, D., Danek, C., Deushi, M., Horowitz, L. W., Kubin, A., Li, L., Lohmann, G., Michou, M., Mills, M. J., Nabat, P., Olivié, D., Park, S., Seland, Ø., Stoll, J., Wieners, K.-H., and Wu, T.: Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100, Atmos. Chem. Phys., 21, 5015–5061, https://doi.org/10.5194/acp-21-5015-2021, 2021. a
Kiriliouk, A., Rootzén, H., Segers, J., and Wadsworth, J. L.: Peaks Over
Thresholds Modeling With Multivariate Generalized Pareto Distributions,
Technometrics, 61, 123–135, https://doi.org/10.1080/00401706.2018.1462738, 2019. a
Kornhuber, K., Coumou, D., Vogel, E., Lesk, C., Donges, J. F., Lehmann, J., and
Horton, R.: Amplified Rossby waves enhance risk of concurrent heatwaves in
major breadbasket regions, Nat. Clim. Change, 10, 48–53,
https://doi.org/10.1038/s41558-019-0637-z, 2020. a
Kovats, R. S. and Kristie, L. E.: Heatwaves and public health in Europe, Eur. J. Public Health, 16, 592–599, https://doi.org/10.1093/eurpub/ckl049, 2006. a
Lohmann, G.: ESD Ideas: The stochastic climate model shows that underestimated Holocene trends and variability represent two sides of the same coin, Earth Syst. Dynam., 9, 1279–1281, https://doi.org/10.5194/esd-9-1279-2018, 2018. a
Lohmann, G., Butzin, M., Eissner, N., Shi, X., and Stepanek, C.: Abrupt Climate
and Weather Changes Across Time Scales, Paleoceanography and
Paleoclimatology, 35, e2019PA003782,
https://doi.org/10.1029/2019PA003782, 2020. a, b, c
Mahajan, S., Evans, K., Branstetter, M., Anantharaj, V., and Leifeld, J.:
Fidelity of Precipitation Extremes in High Resolution Global Climate
Simulations, Procedia Comput. Sci., 51, 2178–2187,
https://doi.org/10.1016/j.procs.2015.05.492, 2015. a
Marcon, G., Padoan, S., Naveau, P., and Muliere, P.: Multivariate nonparametric
estimation of the Pickands Dependence Function using Bernstein Polynomials, J. Stat. Plan. Infer., 183, 1–14, https://doi.org/10.1016/j.jspi.2016.10.004, 2014. a, b
Millard, S. and Kowarik, A.: EnvStats, an R Package for Environmental Statistics, EnvStats, https://cran.r-project.org/web/packages/EnvStats/index.html (last access: 12 February 2021), 2013. a
Mills, E.: Insurance in a climate of change, Science, 309, 1040–1044,
https://doi.org/10.1126/science.1112121, 2005. a
Mishra, V., Kumar, D., Ganguly, A. R., Sanjay, J., Mujumdar, M., Krishnan, R., and Shah, R. D.: Reliability of regional and global climate models to
simulate precipitation extremes over India, J. Geophys. Res.-Atmos., 119,
9301–9323, https://doi.org/10.1002/2014JD021636, 2014. a
Murtagh, F. and Contreras, P.: Algorithms for hierarchical clustering: an
overview, WIREs Data Min. Knowl., 2, 86–97, https://doi.org/10.1002/widm.53, 2012. a
Myhre, G., Alterskjær, K., Stjern, C. W., Hodnebrog, Ø., Marelle, L., Samset, B., Sillmann, J., Schaller, N., Fischer, E., Schulz, M., and Stohl, A.: Frequency of extreme precipitation increases extensively with event rareness under global warming, Sci. Rep.-UK, 9, 16063, https://doi.org/10.1038/s41598-019-52277-4, 2019. a
Nazeri Tahroudi, M., Ramezani, Y., de Michele, C., and Mirabbasi, R.:
Multivariate analysis of rainfall and its deficiency signatures using vine
copulas, Int. J. Climatol., 1–14, https://doi.org/10.1002/joc.7349, 2021. a
Neumann, A., Bodnar, T., Pfeifer, D., and Dickhaus, T.: Multivariate multiple
test procedures based on nonparametric copula estimation, Biometrical J., 61, 40–61, https://doi.org/10.1002/bimj.201700205, 2019. a
Niu, L., Lohmann, G., Gierz, P., Gowan, E. J., and Knorr, G.: Coupled
climate-ice sheet modelling of MIS-13 reveals a sensitive Cordilleran Ice
Sheet, Global Planet. Change, 200, 103474,
https://doi.org/10.1016/j.gloplacha.2021.103474, 2021. a
Onwuegbuche, F., Kenyatta, A., Affognon, S. B., Enock, E., and Akinade, M.:
Application of extreme value theory in predicting climate change induced
extreme rainfall in Kenya, Int. J. Stat. Probab., 8, 85–94, https://doi.org/10.5539/ijsp.v8n4p85, 2019. a
Opitz, T.: Extremal t-processes: Elliptical domain of attraction and a spectral representation, J. Multivariate Anal., 122, 409–413,
https://doi.org/10.1016/j.jmva.2013.08.008, 2013. a
Otto-Bliesner, B. L., Brady, E. C., Zhao, A., Brierley, C. M., Axford, Y., Capron, E., Govin, A., Hoffman, J. S., Isaacs, E., Kageyama, M., Scussolini, P., Tzedakis, P. C., Williams, C. J. R., Wolff, E., Abe-Ouchi, A., Braconnot, P., Ramos Buarque, S., Cao, J., de Vernal, A., Guarino, M. V., Guo, C., LeGrande, A. N., Lohmann, G., Meissner, K. J., Menviel, L., Morozova, P. A., Nisancioglu, K. H., O'ishi, R., Salas y Mélia, D., Shi, X., Sicard, M., Sime, L., Stepanek, C., Tomas, R., Volodin, E., Yeung, N. K. H., Zhang, Q., Zhang, Z., and Zheng, W.: Large-scale features of Last Interglacial climate: results from evaluating the lig127k simulations for the Coupled Model Intercomparison Project (CMIP6)–Paleoclimate Modeling Intercomparison Project (PMIP4), Clim. Past, 17, 63–94, https://doi.org/10.5194/cp-17-63-2021, 2021. a
Pickands, J.: Multivariate extreme value distributions, in: Proceedings of the 43rd Session of the International Statistical Institute, Vol. 2 (Buenos
Aires, 1981), International Statistical Institute, 49, 859–878, 894–902, 1981. a
Qian, L., Wang, H., Dang, S., Wang, C., Jiao, Z., and Zhao, Y.: Modelling
bivariate extreme precipitation distribution for data-scarce regions using
Gumbel–Hougaard copula with maximum entropy estimation, Hydrol. Process., 32, 212–227, https://doi.org/10.1002/hyp.11406, 2018. a
Rackow, T., Goessling, H., Jung, T., Sidorenko, D., Semmler, T., Barbi, D., and Handorf, D.: Towards multi-resolution global climate modeling with
ECHAM6-FESOM, Part II: climate variability, Clim. Dynam., 50, 2369–2394,
https://doi.org/10.1007/s00382-016-3192-6, 2018. a
Rahmstorf, S. and Coumou, D.: Increase of extreme events in a warming world, P. Natl. Acad. Sci. USA, 108, 17905–17909, https://doi.org/10.1073/pnas.1101766108,
2011. a
Reick, C. H., Raddatz, T., Brovkin, V., and Gayler, V.: Representation of
natural and anthropogenic land cover change in MPI-ESM, J. Adv. Model. Earth Sy., 5, 459–482, https://doi.org/10.1002/jame.20022, 2013. a
Ribatet, M.: Modelling spatial extremes using max-stable processes, in:
Nonlinear and Stochastic Climate Dynamics, edited by: Franzke, C. L. E. and
O'Kane, T. J., Cambridge University Press, 369–391,
https://doi.org/10.1017/9781316339251.014, 2017. a
Ribatet, M., Dombry, C., and Oesting, M.: Spatial extremes and max-stable
processes, in: Extreme Value Modeling and Risk Analysis: Methods and
Applications, 179–194, https://doi.org/10.1201/b19721-10, 2015. a, b, c
Salvador, S. and Chan, P.: Determining the number of clusters/segments in
hierarchical clustering/segmentation algorithms, in: 16th IEEE International Conference on Tools with Artificial Intelligence, 576–584,
https://doi.org/10.1109/ICTAI.2004.50, 2004. a, b
Schär, C., Vidale, P., Lüthi, D., Frei, C., Häberli, C., Liniger, M., and
Appenzeller, C.: The role of increasing temperature variability in European
summer heatwaves, Nature, 427, 332–336, https://doi.org/10.1038/nature02300, 2004. a
Schlather, M.: Models for stationary max-stable random fields, Extremes, 5,
33–44, https://doi.org/10.1023/A:1020977924878, 2002. a
Shaby, B. A. and Reich, B. J.: Bayesian spatial extreme value analysis to
assess the changing risk of concurrent high temperatures across large
portions of European cropland, Environmetrics, 23, 638–648,
https://doi.org/10.1002/env.2178, 2012. a
Shi, X., Lohmann, G., Sidorenko, D., and Yang, H.: Early-Holocene simulations
using different forcings and resolutions in AWI-ESM, The Holocene, 30,
996–1015, https://doi.org/10.1177/0959683620908634, 2020. a, b
Sidorenko, D., Rackow, T., Jung, T., Semmler, T., Barbi, D., Danilov, S., Dethloff, K., Dorn, W., Fieg, K., Gößling, H. F., Horf, D., Harig, S., Hiller, W., Juricke, S., Losch, M., Schröter, J., Sein, D., and Wang, Q.: Towards multi-resolution global climate modeling with ECHAM6-FESOM. Part I: Model formulation and mean climate, Clim. Dynam., 44, 757–780, https://doi.org/10.1007/s00382-014-2290-6,
2015. a
Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., and Bronaugh, D.:
Climate extremes indices in the CMIP5 multimodel ensemble: Part 2, Future
climate projections, J. Geophys. Res.-Atmos., 118, 2473–2493,
https://doi.org/10.1002/jgrd.50188, 2013. a
Smith, R. L.: Max-stable processes and spatial extremes, Unpublished
Manuscript, University of Surrey, Guildford GU25XH, England, https://www.rls.sites.oasis.unc.edu/postscript/rs/spatex.pdf (last access: 28 April 2021), 1990. a
Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salzmann, M., Schmidt, H., Bader, J., Block, K., Brokopf, R., Fast, I., Kinne, S., Kornblueh, L., Lohmann, U., Pincus, R., Reichler, T., and Roeckner, E.: Atmospheric component of the
MPI-M Earth System Model: ECHAM6, J. Adv. Model. Earth Sy., 5, 146–172,
https://doi.org/10.1002/jame.20015, 2013. a
Tabari, H., De Troch, R., Giot, O., Hamdi, R., Termonia, P., Saeed, S., Brisson, E., Van Lipzig, N., and Willems, P.: Local impact analysis of climate change on precipitation extremes: are high-resolution climate models needed for realistic simulations?, Hydrol. Earth Syst. Sci., 20, 3843–3857, https://doi.org/10.5194/hess-20-3843-2016, 2016. a
Tapiador, F. J., Turk, F., Petersen, W., Hou, A. Y., García-Ortega, E., Machado, L. A. T., Angelis, C. F., Salio, P., Kidd, C., Huffman, G. J., and de Castro, M.: Global precipitation
measurement: Methods, datasets and applications, Atmos. Res., 104–105, 70–97, https://doi.org/10.1016/j.atmosres.2011.10.021, 2012. a
Timmermans, B., Wehner, M., Cooley, D., O’Brien, T., and Krishnan, H.: An
evaluation of the consistency of extremes in gridded precipitation data sets, Clim. Dynam., 52, 1–20, https://doi.org/10.1007/s00382-018-4537-0, 2019. a
Toreti, A., Cronie, O., and Zampieri, M.: Concurrent climate extremes in the
key wheat producing regions of the world, Sci. Rep.-UK, 9, 5493,
https://doi.org/10.1038/s41598-019-41932-5, 2019. a
Trenberth, K. E. and Fasullo, J. T.: An apparent hiatus in global warming?,
Earths Future, 1, 19–32, https://doi.org/10.1002/2013EF000165, 2013. a
University of East Anglia Climatic Research Unit: Harris, I. C., Jones,
P. D., and Osborn, T.: CRU TS4.04: Climatic Research Unit (CRU) Time-Series
(TS) version 4.04 of high-resolution gridded data of month-by-month variation
in climate (January 1901 – December 2019), Centre for Environmental Data Analysis [data set], https://catalogue.ceda.ac.uk/uuid/89e1e34ec3554dc98594a5732622bce9 (last access: 25 May 2021), 2020. a
Vandentorren, S., Suzan, F., Medina, S., Pascal, M., Maulpoix, A., Cohen,
J.-C., and Ledrans, M.: Mortality in 13 French cities during the August 2003 heat wave, Am. J. Public Health, 94, 1518–1520, https://doi.org/10.2105/AJPH.94.9.1518, 2004. a
Vernieuwe, H., Vandenberghe, S., De Baets, B., and Verhoest, N. E. C.: A continuous rainfall model based on vine copulas, Hydrol. Earth Syst. Sci., 19, 2685–2699, https://doi.org/10.5194/hess-19-2685-2015, 2015. a
Villarini, G., Smith, J. A., Ntelekos, A. A., and Schwarz, U.: Annual maximum
and peaks-over-threshold analyses of daily rainfall accumulations for
Austria, J. Geophys. Res.-Atmos., 116, D05103, https://doi.org/10.1029/2010JD015038, 2011.
a
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014. a
Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, L., Mohr, C. W., Paçal, A., Pérez-Zanón, N., Predoi, V., Sandstad, M., Sillmann, J., Sterl, A., Vegas-Regidor, J., von Hardenberg, J., and Eyring, V.: Earth System Model Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact evaluation, and analysis of Earth system models in CMIP, Geosci. Model Dev., 14, 3159–3184, https://doi.org/10.5194/gmd-14-3159-2021, 2021. a
Zhang, Q., Li, J., Singh, V. P., and Xu, C.-Y.: Copula-based spatio-temporal
patterns of precipitation extremes in China, Int. J. Climatol., 33, 1140–1152, https://doi.org/10.1002/joc.3499, 2013. a
Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson,
T. C., Trewin, B., and Zwiers, F. W.: Indices for monitoring changes in
extremes based on daily temperature and precipitation data, WIREs Clim.
Change, 2, 851–870, https://doi.org/10.1002/wcc.147, 2011. a, b
Zscheischler, J., Mahecha, M. D., and Harmeling, S.: Climate classifications:
the value of unsupervised clustering, proceedings of the International
Conference on Computational Science, ICCS 2012, Procedia Comput. Sci., 9, 897–906, https://doi.org/10.1016/j.procs.2012.04.096, 2012. a
Zscheischler, J., Michalak, A. M., Schwalm, C., Mahecha, M. D., Huntzinger, D. N., Reichstein, M., Berthier, G., Ciais, P., Cook, R. B., El-Masri, B., Huang, M., Ito, A., Jain, A., King, A., Lei, H., Lu, C., Mao, J., Peng, S., Poulter, B., Ricciuto, D., Shi, X., Tao, B., Tian, H., Viovy, N., Wang, W., Wei, Y., Yang, J., and Zeng, N.: Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data, Global Biogeochem. Cy., 28, 585–600,
https://doi.org/10.1002/2014GB004826, 2014. a
Short summary
Climate models are of paramount importance to predict future climate changes. Since many severe consequences of climate change are due to extreme events, the accurate behaviour of models in terms of extremes needs to be validated thoroughly. We present a method for model validation in terms of climate extremes and an algorithm to detect regions in which extremes tend to occur at the same time. These methods are applied to data from different climate models and to observational data.
Climate models are of paramount importance to predict future climate changes. Since many severe...