Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes
MeteoGalicia, Consellería de Medio Ambiente, Territorio y Vivienda – Xunta de Galicia, Santiago de Compostela, Spain
Tragsatec, Santiago de Compostela, Spain
Related authors
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Forrest M. Hoffman, Birgit Hassler, Ranjini Swaminathan, Jared Lewis, Bouwe Andela, Nathaniel Collier, Dóra Hegedűs, Jiwoo Lee, Charlotte Pascoe, Mika Pflüger, Martina Stockhause, Paul Ullrich, Min Xu, Lisa Bock, Felicity Chun, Bettina K. Gier, Douglas I. Kelley, Axel Lauer, Julien Lenhardt, Manuel Schlund, Mohanan G. Sreeush, Katja Weigel, Ed Blockley, Rebecca Beadling, Romain Beucher, Demiso D. Dugassa, Valerio Lembo, Jianhua Lu, Swen Brands, Jerry Tjiputra, Elizaveta Malinina, Brian Mederios, Enrico Scoccimarro, Jeremy Walton, Philip Kershaw, André L. Marquez, Malcolm J. Roberts, Eleanor O’Rourke, Elisabeth Dingley, Briony Turner, Helene Hewitt, and John P. Dunne
EGUsphere, https://doi.org/10.5194/egusphere-2025-2685, https://doi.org/10.5194/egusphere-2025-2685, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
As Earth system models become more complex, rapid and comprehensive evaluation through comparison with observational data is necessary. The upcoming Assessment Fast Track for the Seventh Phase of the Coupled Model Intercomparison Project (CMIP7) will require fast analysis. This paper describes a new Rapid Evaluation Framework (REF) that was developed for the Assessment Fast Track that will be run at the Earth System Grid Federation (ESGF) to inform the community about the performance of models.
Cited articles
AMS: General Circulation Model, Glossary of Meteorology,
https://glossary.ametsoc.org/wiki/General_circulation_model (last access: 11 February 2022),
2020. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a, b
Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N.,
Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R.,
Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S.,
Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model: description,
control climate and evaluation, Aust. Meteorol. Ocean.
J., 63, 41–64, https://doi.org/10.22499/2.6301.004, 2013. a, b, c
Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law,
R., Harman, I., Srbinovsky, J., Rashid, H., Dobrohotoff, P., Mackallah, C.,
Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., and
Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new generation
Australian Community Climate and Earth System Simulator Coupled Model,
Journal of Southern Hemisphere Earth Systems Science, 70, 225–251,
https://doi.org/10.1071/ES19040, 2020. a, b
Bleck, R. and Smith, L. T.: A wind-driven isopycnic coordinate model of the
north and equatorial Atlantic Ocean: 1. Model development and supporting
experiments, J. Geophys. Res.-Oceans, 95, 3273–3285,
https://doi.org/10.1029/JC095iC03p03273, 1990. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a, b
Brands, S.: Which ENSO teleconnections are robust to internal atmospheric
variability?, Geophys. Res. Lett., 44, 1483–1493,
https://doi.org/10.1002/2016GL071529, 2017. a
Brands, S.: A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the northern hemisphere, Zenodo [data set], https://doi.org/10.5281/zenodo.4452080, 2021. a, b
Brands, S.: Python code to calculate Lamb circulation types for the northern hemisphere derived from historical CMIP simulations and reanalysis data, Zenodo [code], https://doi.org/10.5281/zenodo.4555367, 2022. a, b
Brands, S., Gutiérrez, J. M., Herrera, S., and Cofiño, A. S.: On the Use of
Reanalysis Data for Downscaling, J. Climate, 25, 2517–2526,
https://doi.org/10.1175/JCLI-D-11-00251.1, 2012. a
Brands, S., Herrera García, S., Fernández, J., and Gutiérrez, J.: How well
do CMIP5 Earth System Models simulate present climate conditions in Europe
and Africa? A performance comparison for the downscaling community, Clim.
Dynam., 41, 803–817, https://doi.org/10.1007/s00382-013-1742-8, 2013. a, b
Brands, S., Herrera, S., and Gutiérrez, J.: Is Eurasian snow cover in October
a reliable statistical predictor for the wintertime climate on the Iberian
Peninsula?, Int. J. Climatol., 34, 1615–1627,
https://doi.org/10.1002/joc.3788, 2014. a, b
Brunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., and Knutti, R.: Reduced global warming from CMIP6 projections when weighting models by performance and independence, Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, 2020. a
Cannon, A.: Reductions in daily continental-scale atmospheric circulation
biases between generations of Global Climate Models: CMIP5 to CMIP6,
Environ. Res. Lett., 15, 064006, https://doi.org/10.1088/1748-9326/ab7e4f,
2020. a
Cao, J., Wang, B., Yang, Y.-M., Ma, L., Li, J., Sun, B., Bao, Y., He, J., Zhou, X., and Wu, L.: The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation, Geosci. Model Dev., 11, 2975–2993, https://doi.org/10.5194/gmd-11-2975-2018, 2018. a, b, c
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S.,
Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.:
Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled
Model, J. Adv. Model. Earth Sy., 11, 185–209,
https://doi.org/10.1029/2018MS001369, 2019. a, b, c
Chylek, P., Li, J., Dubey, M. K., Wang, M., and Lesins, G.: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2, Atmos. Chem. Phys. Discuss., 11, 22893–22907, https://doi.org/10.5194/acpd-11-22893-2011, 2011. a, b
Collier, M., Jeffrey, S., Rotstayn, L., Wong, K.-H., Dravitzki, S., Moeseneder,
C., Hamalainen, C., Syktus, J., Suppiah, R., Antony, J., El Zein, A., and
Atif, M.: The CSIRO-Mk3.6.0 Atmosphere Ocean GCM: participation in CMIP5 and data publication, 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2691–2697, Perth, Australia, http://mssanz.org.au/modsim2011 (last access: 22 February 2022), 2011. a, b
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011. a, b, c, d
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for earth
system modeling developed for CCSM4 and CESM1, Int. J.
High Perform. C., 26, 31–42,
https://doi.org/10.1177/1094342011428141, 2012. a, b
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Koehler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Deser, C., Simpson, I. R., McKinnon, K. A., and Phillips, A. S.: The Northern
Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well
Do We Know It and How Do We Evaluate Models Accordingly?, J. Climate,
30, 5059–5082, https://doi.org/10.1175/JCLI-D-16-0844.1, 2017. a
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T., Bergmann, T., Bernadello, R., Bousetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O’Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-446, in review, 2021. a, b, c, d, e, f
Droettboom, M., Caswell, T. A., Hunter, J., Firing, E., Hedegaard Nielsen, J., Root, B., Elson, P., Dale, D., Lee, J.-J., Varoquaux, N., Seppänen, J. K., McDougall, D., May, R., Straw, A., de Andrade, E. S., Lee, A., Yu, T. S., Ma, E, Gohlke, C., Silvester, S., Moad, C., Hobson, P., Schulz, J., Würtz, P., Ariza, F., Cimarron, Hisch, T., Kniazev, N., Vincent, A. F., and Thomas, I.: matplotlib/matplotlib: v2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.248351, 2017. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J.-P., Ethe, C., Fairhead, L., Fichefet,
T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi,
E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,
Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P.,
Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S.,
Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C.,
Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the
IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013. a, b, c, d
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Fernandez-Granja, J. A., Casanueva, A., Bedia, J., and Fernández, J.: Improved
atmospheric circulation over Europe by the new generation of CMIP6 earth
system models, Clim. Dynam., 56, 3527–3540,
https://doi.org/10.1007/s00382-021-05652-9, 2021. a, b
Fogli, P. G., Manzini, E., Vichi, M., Alessandri, A., Patara, L., Gualdi, S.,
Scoccimarro, E., Masina, S., and Navarra, A.: INGV-CMCC Carbon (ICC): A
carbon cycle Earth system model, SSRN Electronic Journal, CMCC Research Paper No. 61, 31 pp.,
https://doi.org/10.2139/ssrn.1517282, 2009. a
Gates, W.: AMIP – The Atmospheric Model Intercomparison Project, B. Am.
Meteorol. Soc., 73, 1962–1970,
https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2, 1992. a, b
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1,
2011. a, b
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013. a, b, c
Gourgue, O.: Normalized Taylor diagram Python module (Version 1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3715535, 2020. a, b
Griffies, S., Winton, M., Donner, L., Horowitz, L., Downes, S., Farneti, R.,
Gnanadesikan, A., Hurlin, W., Lee, H.-C., Liang, Z., Palter, J., Samuels, B.,
Wittenberg, A., Wyman, B., Yin, J., and Zadeh, N.: The GFDL-CM3 Coupled
Climate Model: Characteristics of the Ocean and Sea Ice Simulations, J. Climate, 24, 3520–3544, https://doi.org/10.1175/2011JCLI3964.1, 2011. a, b
Grotch, S. and MacCracken, M.: The Use of General Circulation Models to Predict
Regional Climatic Change, J. Climate, 4, 286–303,
https://doi.org/10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2, 1991. a
Gutiérrez, J. M., San-Martín, D., Brands, S., Manzanas, R., and Herrera, S.:
Reassessing Statistical Downscaling Techniques for Their Robust Application
under Climate Change Conditions, J. Climate, 26, 171–188,
https://doi.org/10.1175/JCLI-D-11-00687.1, 2013. a, b
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. a, b
Harris, C., Millman, K., Walt, S., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N., Kern, R., Picus, M., Hoyer, S.,
Kerkwijk, M., Brett, M., Haldane, A., Río, J., Wiebe, M., Peterson, P., and
Oliphant, T.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hazeleger, W., Severijns, C., Semmler, T., Briceag, S., Yang, S., Wang, X.,
Wyser, K., Dutra, E., Baldasano, J., Bintanja, R., Bougeault, P., Caballero,
R., Ekman, A., Christensen, J., Hurk, B., Jimenez-Guerrero, P., Jones, C.,
Kallberg, P., Koenigk, T., and Willén, U.: EC-Earth: A Seamless Earth-System
Prediction Approach in Action, B. Am. Meteorol.
Soc., 91, 1357–1363, https://doi.org/10.1175/2010bams2877.1, 2010. a
Hazeleger, W., Wang, X., Severijns, C., Briceag, S., Bintanja, R., Sterl, A.,
Wyser, K., Semmler, T., Yang, S., Hurk, B., Noije, T., Van der Linden, E.,
and van der Wiel, K.: EC-Earth V2.2: Description and validation of a new
seamless Earth system prediction model, Clim. Dynam., 39, 1–19,
https://doi.org/10.1007/s00382-011-1228-5, 2011. a, b
Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J.,
Shevliakova, E., Winton, M., Zhao, M., Bushuk, M., Wittenberg, A. T., Wyman,
B., Xiang, B., Zhang, R., Anderson, W., Balaji, V., Donner, L., Dunne, K.,
Durachta, J., Gauthier, P. P. G., Ginoux, P., Golaz, J.-C., Griffies, S. M.,
Hallberg, R., Harris, L., Harrison, M., Hurlin, W., John, J., Lin, P., Lin,
S.-J., Malyshev, S., Menzel, R., Milly, P. C. D., Ming, Y., Naik, V.,
Paynter, D., Paulot, F., Rammaswamy, V., Reichl, B., Robinson, T., Rosati,
A., Seman, C., Silvers, L. G., Underwood, S., and Zadeh, N.: Structure and
Performance of GFDL's CM4.0 Climate Model, J. Adv. Model. Earth Sy., 11, 3691–3727, https://doi.org/10.1029/2019MS001829, 2019. a, b
Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin,
N., Jam, A., Musat, I., Idelkadi, A., Fairhead, L., Foujols, M.-A., Mellul,
L., Traore, A.-K., Dufresne, J.-L., Boucher, O., Lefebvre, M.-P., Millour,
E., Vignon, E., Jouhaud, J., Diallo, F. B., Lott, F., Gastineau, G., Caubel,
A., Meurdesoif, Y., and Ghattas, J.: LMDZ6A: The Atmospheric Component of the
IPSL Climate Model With Improved and Better Tuned Physics, J. Adv. Model. Earth Sy., 12, e2019MS001892,
https://doi.org/10.1029/2019MS001892, 2020. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python,
J. Open Res. Softw., 5, 10 pp., https://doi.org/10.5334/jors.148, 2017. a
Hoyer, S., Fitzgerald, C., Hamman, J., akleeman, Kluyver. T., Maussion, F., Roos, M., Markel, Helmus, J. J., Cable, P., Wolfram, P., Bovy, B., Abernathey, R., Noel, V., Kanmae, T., Miles, A., Hill, S., crusaderky, Sinclair, S., Filipe, Guedes, R., ebrevdo, chunweiyuan, Delley, Y., Wilson, R., Signell, J., Laliberte, F., Malevich, B., Hilboll, A., and Johnson, A.: pydata/xarray: v0.9.1 (v0.9.1), Zenodo [code], https://doi.org/10.5281/zenodo.264282, 2017. a
Hulme, M., Briffal, K., Jones, P., and Senior, C.: Validation of GCM control
simulations using indices of daily airflow types over British Isles, Clim.
Dynam., 9, 95–105, https://doi.org/10.1007/BF00210012, 1993. a, b
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a, b, c
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L.,
Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E.,
Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C.,
Keuler, K., Kovats, S., and Yiou, P.: EURO-CORDEX: New high-resolution
climate change projections for European impact research, Reg.
Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a, b
Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6HH6H41, 2013. a
Jenkinson, A. and Collison, F.: An Initial Climatology of Gales over the North Sea, Synoptic Climatology Branch Memorandum, 62, Meteorological Office, Bracknell, UK, 1977. a
Jinjun, J.: A Climate-Vegetation Interaction Model: Simulating Physical and
Biological Processes at the Surface, J. Biogeogr., 22, 445–451,
1995. a
Jones, C. D.: So What Is in an Earth System Model?, J. Adv. Model. Earth Sy., 12, e2019MS001967,
https://doi.org/10.1029/2019MS001967, 2020. a, b
Jones, P. D., Hulme, M., and Briffa, K. R.: A comparison of Lamb circulation
types with an objective classification scheme, Int. J.
Climatol., 13, 655–663, https://doi.org/10.1002/joc.3370130606, 1993. a, b
Jones, P. D., Harpham, C., and Briffa, K. R.: Lamb weather types derived from
reanalysis products, Int. J. Climatol., 33, 1129–1139,
https://doi.org/10.1002/joc.3498, 2013. a, b, c, d
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model. Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell,
G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V.,
Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio,
A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, A. A.,
Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E.,
McDermid, S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C.,
García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A.,
Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng,
E., Wu, J., and Yao, M.-S.: GISS-E2.1: Configurations and Climatology,
J. Adv. Model. Earth Sy., 12, e2019MS002025,
https://doi.org/10.1029/2019MS002025, 2020. a, b
Kirkevag, A., Iversen, T., Øyvind Seland, Debernard, J. B., Storelvmo, T., and
Kristjánsson, J. E.: Aerosol-cloud-climate interactions in the climate model
CAM-Oslo, Tellus A, 60, 492–512,
https://doi.org/10.1111/j.1600-0870.2007.00313.x, 2008. a
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., and
Eyring, V.: A climate model projection weighting scheme accounting for
performance and interdependence, Geophys. Res. Lett., 44,
1909–1918,https://doi.org/10.1002/2016GL072012, 2017. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, 2020. a, b
Li, L., Lin, P., Yu, Y.-Q., Zhou, T., Liu, L., Liu, J., Bao, Q., Xu, S., Huang,
W., Xia, K., Pu, Y., Dong, L., Shen, S., Liu, Y., Hu, N., Liu, M., Sun, W.,
Shi, X., and Qiao, F.-L.: The flexible global ocean-atmosphere-land system
model, Grid-point Version 2: FGOALS-g2, Adv. Atmos. Sci., 30,
543–560, https://doi.org/10.1007/s00376-012-2140-6, 2013. a, b
Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou, T., Liu,
L., Wang, L., Pu, Y., Chen, X., Chen, L., Xie, Z., Liu, H., Zhang, L., Huang,
X., Feng, T., Zheng, W., Xia, K., Liu, H., Liu, J., Wang, Y., Wang, L., Jia,
B., Xie, F., Wang, B., Zhao, S., Yu, Z., Zhao, B., and Wei, J.: The Flexible
Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3):
Description and Evaluation, J. Adv. Model. Earth Sy.,
12, e2019MS002012, https://doi.org/10.1029/2019MS002012,
2020. a, b
Lorenzo, M. N., Taboada, J. J., and Gimeno, L.: Links between circulation
weather types and teleconnection patterns and their influence on
precipitation patterns in Galicia (NW Spain), Int. J.
Climatol. 28, 1493–1505, https://doi.org/10.1002/joc.1646, 2008. a
Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Contoux, C., Cozic, A., Cugnet, D., Dufresne,
J.-L., Éthé, C., Foujols, M.-A., Ghattas, J., Hauglustaine, D., Hu, R.-M.,
Kageyama, M., Khodri, M., Lebas, N., Levavasseur, G., Marchand, M., Ottlé,
C., Peylin, P., Sima, A., Szopa, S., Thiéblemont, R., Vuichard, N., and
Boucher, O.: Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR
Model, J. Adv. Model. Earth Sy., 12, e2019MS001940,
https://doi.org/10.1029/2019MS001940, 2020. a
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619, 2008. a
Madec, G., Delécluse, P., Imbard, M., and Lévy, C.: OPA 8.1 Ocean General
Circulation Model reference manual, Notes du pôle de modélisation,
laboratoire d’océanographie dynamique et de climatologie, Institut Pierre
Simon Laplace des sciences de l’environnement global, 11, 91 pp., 1998. a
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V.
K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Reviews of Geophysics, 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a
Maraun, D., Shepherd, T., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J.,
Hagemann, S., Richter, I., Soares, P., Hall, A., and Mearns, L.: Towards
process-informed bias correction of climate change simulations, Nat.
Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418, 2017. a, b
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann,
S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la
Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner,
K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E.
M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K.,
Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S.,
Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens,
B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H.,
Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing
CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019. a, b, c, d, e
McKinney, W.: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Conference,
edited by: van der Walt, S. and Millman, J., 56 – 61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Mearns, L., Giorgi, F., Whetton, P., Pabón Caicedo, J. D., Hulme, M., and Lal,
M.: Guidelines for Use of Climate Scenarios Developed from Regional Climate
Model Experiments (version 1.0.0), 38 pp., Zenodo, https://doi.org/10.5281/zenodo.1421091,
2003. a
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine,
T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E.,
Stemmler, I., Tian, F., and Marotzke, J.: A Higher-resolution Version of the
Max Planck Institute Earth System Model (MPI-ESM1.2-HR), J. Adv.
Model. Earth Sy., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018. a
Osborn, T., Conway, D., Hulme, M., Gregory, J., and Jones, P.: Air flow
influences on local climate: Observed and simulated mean relationships for
the United Kingdom, Clim. Res., 13, 173–191, https://doi.org/10.3354/cr013173,
1999. a
Otero, N., Sillmann, J., and Butler, T.: Assessment of an extended version of
the Jenkinson-Collison classification on CMIP5 models over Europe, Clim.
Dynam., 50, 1559–1579, https://doi.org/10.1007/s00382-017-3705-y, 2017. a, b, c
Pak, G., Noh, Y., Lee, M.-I., Yeh, S.-W., Kim, D., Kim, S.-Y., Lee, J.-L., Lee,
H. J., Hyun, S.-H., Lee, K.-Y., Lee, J.-H., Park, Y.-G., Jin, H., Park, H.,
and Kim, Y. H.: Korea Institute of Ocean Science and Technology Earth System
Model and Its Simulation Characteristics, Ocean Sci. J., 56, 18–45,
https://doi.org/10.1007/s12601-021-00001-7, 2021. a, b
Palmer, T. and Stevens, B.: The scientific challenge of understanding and
estimating climate change, P. Natl. Acad. Sci. USA,
116, 24390–24395, https://doi.org/10.1073/pnas.1906691116, 2019. a
Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A., and Rodwell, M. J.: Toward
Seamless Prediction: Calibration of Climate Change Projections Using Seasonal
Forecasts, B. Am. Meteorol. Soc., 89, 459–470,
https://doi.org/10.1175/BAMS-89-4-459, 2008. a, b
Park, S., Shin, J., Kim, S., Oh, E., and Kim, Y.: Global Climate Simulated by
the Seoul National University Atmosphere Model Version 0 with a Unified
Convection Scheme (SAM0-UNICON), J. Climate, 32, 2917–2949,
https://doi.org/10.1175/JCLI-D-18-0796.1, 2019. a, b, c
Perez, J., Menendez, M., Mendez, F., and Losada, I.: Evaluating the performance
of CMIP3 and CMIP5 global climate models over the north-east Atlantic region,
Clim. Dynam., 43, 2663–2680, https://doi.org/10.1007/s00382-014-2078-8, 2014. a, b, c
Perry, A. and Mayes, J.: The Lamb weather type catalogue, Weather, 53,
222–229, https://doi.org/10.1002/j.1477-8696.1998.tb06387.x, 1998. a
Prein, A. F., Bukovsky, M. S., Mearns, L. O., Bruyère, C. L., and Done, J. M.:
Simulating North American Weather Types With Regional Climate Models,
Front. Environ. Sci., 7, 36, https://doi.org/10.3389/fenvs.2019.00036,
2019. a
Reback, J., jbrockmendel, McKinney, W., Van den Bossche, J., Augspurger, T., Cloud, P., Hawkins, S., Roeschke, M.; gfyoung; Sinhrks; Klein, A., Hoefler, P., Petersen, T., Tratner, J., She, C., Ayd, W., Naveh, S., Garcia, M., Darbyshire, JHM, Schendel J., Shadrach R., Hayden, A., Saxton, D., Gorelli, M. E., Li, F., Zeitlin, M., Jancauskas, V., McMaster, A., Battiston, P., and Seabold S.: pandas-dev/pandas: Pandas 1.4.0, Zenodo [code], https://doi.org/10.5281/zenodo.3509134, 2022. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a, b, c
San-Martín, D., Manzanas, R., Brands, S., Herrera, S., and Gutiérrez, J. M.:
Reassessing Model Uncertainty for Regional Projections of Precipitation with
an Ensemble of Statistical Downscaling Methods, J. Climate, 30,
203–223, https://doi.org/10.1175/JCLI-D-16-0366.1, 2016. a, b
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov,
I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H.,
Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G.,
Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande,
A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L.,
Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind,
D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev,
N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.:
Configuration and assessment of the GISS ModelE2 contributions to the CMIP5
archive, J. Adv. Model. Earth Sy., 6, 141–184,
https://doi.org/10.1002/2013MS000265, 2014. a, b, c
Schubert, S. D., Stewart, R. E., Wang, H., Barlow, M., Berbery, E. H., Cai, W.,
Hoerling, M. P., Kanikicharla, K. K., Koster, R. D., Lyon, B., Mariotti, A.,
Mechoso, C. R., Müller, O. V., Rodriguez-Fonseca, B., Seager, R.,
Seneviratne, S. I., Zhang, L., and Zhou, T.: Global Meteorological Drought: A
Synthesis of Current Understanding with a Focus on SST Drivers of
Precipitation Deficits, J. Climate, 29, 3989–4019,
https://doi.org/10.1175/JCLI-D-15-0452.1, 2016. a
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P.,
Manzini, E., Vichi, M., Oddo, P., and Navarra, A.: Effects of Tropical
Cyclones on Ocean Heat Transport in a High-Resolution Coupled General
Circulation Model, J. Climate, 24, 4368–4384,
https://doi.org/10.1175/2011JCLI4104.1, 2011. a, b
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. a, b, c
Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs,
C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., Sein, D. V., Sidorenko,
D., Wang, Q., and Jung, T.: Simulations for CMIP6 With the AWI Climate Model
AWI-CM-1-1, J. Adv. Model. Earth Sy., 12,
e2019MS002009, https://doi.org/10.1029/2019MS002009, 2020. a, b
Soares, P. M. M., Maraun, D., Brands, S., Jury, M. W., Gutiérrez, J. M.,
San-Martín, D., Hertig, E., Huth, R., Belušić Vozila, A., Cardoso, R. M.,
Kotlarski, S., Drobinski, P., and Obermann-Hellhund, A.: Process-based
evaluation of the VALUE perfect predictor experiment of statistical
downscaling methods, Int. J. Climatol., 39, 3868–3893,
https://doi.org/10.1002/joc.5911, 2019. a
Spellman, G.: An assessment of the Jenkinson and Collison synoptic
classification to a continental mid-latitude location, Theor.
Appl. Climatol., 128, 731–744, https://doi.org/10.1007/s00704-015-1711-8, 2016. a
Stainforth, D. A., Allen, M. R., Tredger, E. R., and Smith, L. A.: Confidence,
uncertainty and decision-support relevance in climate predictions, Philos.
T. R. Soc. A, 365, 2145–2161,
https://doi.org/10.1098/rsta.2007.2074, 2007. a
Sterl, A.: On the (In)Homogeneity of Reanalysis Products, J. Climate,
17, 3866–3873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2,
2004. a
Stryhal, J. and Huth, R.: Classifications of winter atmospheric circulation
patterns: validation of CMIP5 GCMs over Europe and the North Atlantic,
Clim. Dynam., 52, 3575–3598, https://doi.org/10.1007/s00382-018-4344-7, 2018. a
Swapna, P., Koll, R., Aparna, K., Kulkarni, K., Ag, P., Ashok, K., Raghavan,
K., Moorthi, S., Kumar, A., and Goswami, B. N.: The IITM Earth System Model:
Transformation of a Seasonal Prediction Model to a Long Term Climate Model,
B. Am. Meteorol. Soc., 96, 1351–1367,
https://doi.org/10.1175/BAMS-D-13-00276.1, 2015. a, b
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin,
J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S.,
Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O.,
Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig,
R., Salas-y Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R.,
Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec, G.: Evaluation of
CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in
Present-Day and Future Climate, J. Adv. Model. Earth Sy., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019. a, b, c
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A.,
Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen, M., Ilyina,
T., John, J., Li, H., Long, M., Luo, J., Nakano, H., Romanou, A., Schwinger,
J., and Yamamoto, A.: Tracking Improvement in Simulated Marine
Biogeochemistry Between CMIP5 and CMIP6, Current Climate Change Reports, 6,
95–119, https://doi.org/10.1007/s40641-020-00160-0, 2020. a, b
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019. a, b
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a, b
Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, 2019. a
The HadGEM2 Development Team: Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011. a
Trigo, R. M. and DaCamara, C. C.: Circulation weather types and their influence
on the precipitation regime in Portugal, Int. J.
Climatol., 20, 1559–1581, https://doi.org/10.1002/1097-0088, 2000. a
Turco, M., Quintana-Seguí, P., Llasat, M. C., Herrera, S., and Gutiérrez,
J. M.: Testing MOS precipitation downscaling for ENSEMBLES regional climate
models over Spain, J. Geophys. Res.-Atmos., 116, D18109,
https://doi.org/10.1029/2011JD016166, 2011. a
Virtanen, P., Gommers, R. Oliphant, T. E., Cournapeau, D., Burovski, E., Weckesser, W., alexbrc, Peterson, P., wnbell, mattknox_ca, endolith, van der Walt, S., Laxalde, D., Brett, M., Millman, J., Lars, Mayorov, N., eric-jones, Kern, R., Moore, E., GM, P., Schofield, E., Leslie, T., Perktold, J., cookedm, Griffith, B., Nelson, A., Eads, D., Vanderplas, J., Carey, C. J., Waite, T., Wilson, J., Escalante, A., Falck R., fullung, Larson, E., Smith, D. B., Harris, C., Archibald, A., Molden, S., Cimrman, R., Henriksen, I., Hilboll, A., Berkenkamp, F., Feng, Y., Burns, C., Taylor, J., Schnell, I., Tsai, R., Nothman, J., Reimer, J., Quintero, E., Nowaczyk, N., Reddy, T., Taylor, J., prabhu, Stevenson, J., Seabold, S., Hochberg, T., Pedregosa, F., Teichmann, M., Bourquin, R., McIntyre, A., Warde-Farley, D., Ingold,G.-L., Kroshko, D., Varilly, P., Gohlke,C., Young, G., Probst, I., Nation, P., Fulton, C., Perez, F., Kulick, J., Vankerschaver, J., Kerr, C., fred.mailhot, Nandana, M., Scopatz, A., Vaught, T., jtravs, van Foreest, N., Robitaille, T., Lee, A., Venthur, B., Boulogne, F., Brodtkorb, P., and Bunch, P., Wettinger, R., Grigorievskiy, A., Gaul, A., Silterra, J., chanley, and weinbe58: scipy/scipy: SciPy 0.18.1, Zenodo [code], https://doi.org/10.5281/zenodo.154391, 2016. a
Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S., Brett,
M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E., Kern, R.,
and Larson, E.: SciPy 1.0: fundamental algorithms for scientific computing in
Python, Nature Methods, 17, 1–12, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Voldoire, A., Sanchez-Gomez, E., Salas y Melia, D., Decharme, B., Cassou, C.,
Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M.,
Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine,
M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R.,
Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global
climate model: description and basic evaluation, Clim. Dyn., 40, 2091–2121,
https://doi.org/10.1007/s00382-011-1259-y, 2013. a, b
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat,
P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I.,
Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville,
H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G.,
Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and
Waldman, R.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J.
Adva. Model. Earth Sy., 11, 2177–2213,
https://doi.org/10.1029/2019MS001683, 2019. a, b, c
Volodin, E., Diansky, N., and Gusev, A.: Simulating present-day climate with
the INMCM4.0 coupled model of the atmospheric and oceanic general
circulations, Izvestiya, Atmos. Ocean. Phys., 46, 414–431,
https://doi.org/10.1134/S000143381004002X, 2010. a, b
Waliser, D., Gleckler, P. J., Ferraro, R., Taylor, K. E., Ames, S., Biard, J., Bosilovich, M. G., Brown, O., Chepfer, H., Cinquini, L., Durack, P. J., Eyring, V., Mathieu, P.-P., Lee, T., Pinnock, S., Potter, G. L., Rixen, M., Saunders, R., Schulz, J., Thépaut, J.-N., and Tuma, M.: Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6, Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, 2020. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a
Wang, N., Zhu, L., Yang, H., and Han, L.: Classification of Synoptic
Circulation Patterns for Fog in the Urumqi Airport, Atmospheric and Climate
Sciences, 07, 352–366, https://doi.org/10.4236/acs.2017.73026, 2017. a, b
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335,
https://doi.org/10.1175/2010JCLI3679.1, 2010. a, b
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
a, b, c
Wilby, R. L. and Quinn, N. W.: Reconstructing multi-decadal variations in
fluvial flood risk using atmospheric circulation patterns, J.
Hydrol., 487, 109–121,
https://doi.org/10.1016/j.jhydrol.2013.02.038, 2013. a
Wu, T., Yu, R., and Zhang, F.: A Modified Dynamic Framework for the Atmospheric
Spectral Model and Its Application, J. Atmos. Sci., 65,
2235–2253, https://doi.org/10.1175/2007JAS2514.1, 2008. a
Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., Zhang, Y., Li, J., Zhang,
F., Wei, M., Shi, X., Wu, F., Zhang, L., Chu, M., Jie, W., Liu, Y., Wang, F.,
Liu, X., Li, Q., Dong, M., Liang, X., Gao, Y., and Zhang, J.: Global carbon
budgets simulated by the Beijing Climate Center Climate System Model for the
last century, J. Geophys. Res.-Atmos., 118, 4326–4347,
https://doi.org/10.1002/jgrd.50320, 2013. a
Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang, L.,
Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J., Fang, Y.,
Wang, F., Lu, Y., Liu, X., and Zhou, M.: An Overview of BCC Climate System
Model Development and Application for Climate Change Studies, Acta
Meteorol. Sin., 28, 34–56, https://doi.org/10.1007/s13351-014-3041-7, 2014. a
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019. a, b
Yukimoto, S., Yoshimura, H., Hosaka, M., Sakami, T., Tsujino, H., Hirabara, M.,
Tanaka, T., Deushi, M., Obata, A., Nakano, H., Adachi, Y., Shindo, E., Yabu,
S., Ose, T., and Kitoh, A.: Meteorological Research Institute-Earth System
Model Version 1 (MRI-ESM1) – Model Description, Technical Reports of
the Meteorological Research Institute, 64, 1–96, 2011. a, b, c, d, e
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0:
Description and Basic Evaluation of the Physical Component, J.
Meteorol. Soc. Jpn. Ser. II, 97, 931–965,
https://doi.org/10.2151/jmsj.2019-051, 2019. a, b
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M.,
Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth System
Model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems Science,
70, 193–214, https://doi.org/10.1071/ES19035, 2020. a, b
Short summary
The present study evaluates the last two global climate model generations in terms of their capability to reproduce recurrent regional atmospheric circulation patterns in the Northern Hemisphere mid-to-high latitudes under present climate conditions. These patterns are linked with many environmental variables on the local scale and thus provide an overarching concept for model verification. The results are expected to be of interest for model developers and regional climate scientists.
The present study evaluates the last two global climate model generations in terms of their...