Articles | Volume 15, issue 4
https://doi.org/10.5194/gmd-15-1375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1375-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the Northern Hemisphere mid-to-high latitudes
MeteoGalicia, Consellería de Medio Ambiente, Territorio y Vivienda – Xunta de Galicia, Santiago de Compostela, Spain
Tragsatec, Santiago de Compostela, Spain
Related authors
Swen Brands, Guillermo Fernández-García, Marta García Vivanco, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venâncio, Pedro Melo Da Costa, Paula Costa Tomé, Cristina Otero, María Luz Macho, and Juan Taboada
Geosci. Model Dev., 13, 3947–3973, https://doi.org/10.5194/gmd-13-3947-2020, https://doi.org/10.5194/gmd-13-3947-2020, 2020
Short summary
Short summary
The capability of numerical models to predict air quality depends on many factors. Here, the role of the applied model resolution, emission configuration and model chemistry is assessed for the CHIMERE model and the northwestern Iberian Peninsula. Although heterogeneous results are obtained, the forecasts can be systematically improved by increasing the vertical resolution in the lower and middle troposphere. This finding might also apply to other regions with similar characteristics.
Swen Brands, Guillermo Fernández-García, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venancio, Pedro Melo da Costa, Paula Costa Tomé, Christina Otero, María Luz Macho, and Juan Taboada
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-351, https://doi.org/10.5194/acp-2019-351, 2019
Revised manuscript not accepted
Short summary
Short summary
The capability of numerical models used to predict air quality depends on many factors. Here, the role of model resolution and model chemistry is assessed for the CHIMERE model and the northwestern Iberian Peninsula. Forecasts are improved particularly by increasing the vertical resolution in the lower and middle troposphere. This finding might help to achieve better forecasts in other regions as well.
Swen Brands, Guillermo Fernández-García, Marta García Vivanco, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venâncio, Pedro Melo Da Costa, Paula Costa Tomé, Cristina Otero, María Luz Macho, and Juan Taboada
Geosci. Model Dev., 13, 3947–3973, https://doi.org/10.5194/gmd-13-3947-2020, https://doi.org/10.5194/gmd-13-3947-2020, 2020
Short summary
Short summary
The capability of numerical models to predict air quality depends on many factors. Here, the role of the applied model resolution, emission configuration and model chemistry is assessed for the CHIMERE model and the northwestern Iberian Peninsula. Although heterogeneous results are obtained, the forecasts can be systematically improved by increasing the vertical resolution in the lower and middle troposphere. This finding might also apply to other regions with similar characteristics.
Swen Brands, Guillermo Fernández-García, Marcos Tesouro Montecelo, Nuria Gallego Fernández, Anthony David Saunders Estévez, Pablo Enrique Carracedo García, Anabela Neto Venancio, Pedro Melo da Costa, Paula Costa Tomé, Christina Otero, María Luz Macho, and Juan Taboada
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-351, https://doi.org/10.5194/acp-2019-351, 2019
Revised manuscript not accepted
Short summary
Short summary
The capability of numerical models used to predict air quality depends on many factors. Here, the role of model resolution and model chemistry is assessed for the CHIMERE model and the northwestern Iberian Peninsula. Forecasts are improved particularly by increasing the vertical resolution in the lower and middle troposphere. This finding might help to achieve better forecasts in other regions as well.
Related subject area
Climate and Earth system modeling
Development of a plant carbon–nitrogen interface coupling framework in a coupled biophysical-ecosystem–biogeochemical model (SSiB5/TRIFFID/DayCent-SOM v1.0)
Dynamical Madden–Julian Oscillation forecasts using an ensemble subseasonal-to-seasonal forecast system of the IAP-CAS model
Implementation of a brittle sea ice rheology in an Eulerian, finite-difference, C-grid modeling framework: impact on the simulated deformation of sea ice in the Arctic
HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model
A 3D-Var assimilation scheme for vertical velocity with CMA-MESO v5.0
Updating the radiation infrastructure in MESSy (based on MESSy version 2.55)
An urban module coupled with the Variable Infiltration Capacity model to improve hydrothermal simulations in urban systems
Bayesian hierarchical model for bias-correcting climate models
Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Reduced floating-point precision in regional climate simulations: an ensemble-based statistical verification
TorchClim v1.0: a deep-learning plugin for climate model physics
Linking global terrestrial and ocean biogeochemistry with process-based, coupled freshwater algae–nutrient–solid dynamics in LM3-FANSY v1.0
Validating a microphysical prognostic stratospheric aerosol implementation in E3SMv2 using observations after the Mount Pinatubo eruption
Implementing detailed nucleation predictions in the Earth system model EC-Earth3.3.4: sulfuric acid–ammonia nucleation
Modeling biochar effects on soil organic carbon on croplands in a microbial decomposition model (MIMICS-BC_v1.0)
Hector V3.2.0: functionality and performance of a reduced-complexity climate model
Evaluation of CMIP6 model simulations of PM2.5 and its components over China
Assessment of a tiling energy budget approach in a land surface model, ORCHIDEE-MICT (r8205)
Multivariate adjustment of drizzle bias using machine learning in European climate projections
Development and evaluation of the interactive Model for Air Pollution and Land Ecosystems (iMAPLE) version 1.0
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
Parallel SnowModel (v1.0): a parallel implementation of a distributed snow-evolution modeling system (SnowModel)
LB-SCAM: a learning-based method for efficient large-scale sensitivity analysis and tuning of the Single Column Atmosphere Model (SCAM)
Quantifying the impact of SST feedback frequency on Madden–Julian oscillation simulations
Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3
A revised model of global silicate weathering considering the influence of vegetation cover on erosion rate
A radiative–convective model computing precipitation with the maximum entropy production hypothesis
Leveraging regional mesh refinement to simulate future climate projections for California using the Simplified Convection-Permitting E3SM Atmosphere Model Version 0
Machine learning parameterization of the multi-scale Kain–Fritsch (MSKF) convection scheme and stable simulation coupled in the Weather Research and Forecasting (WRF) model using WRF–ML v1.0
Impacts of spatial heterogeneity of anthropogenic aerosol emissions in a regionally refined global aerosol–climate model
cfr (v2024.1.26): a Python package for climate field reconstruction
NEWTS1.0: Numerical model of coastal Erosion by Waves and Transgressive Scarps
Evaluation of isoprene emissions from the coupled model SURFEX–MEGANv2.1
A comprehensive Earth system model (AWI-ESM2.1) with interactive icebergs: effects on surface and deep-ocean characteristics
The regional climate–chemistry–ecology coupling model RegCM-Chem (v4.6)–YIBs (v1.0): development and application
Coupling the regional climate model ICON-CLM v2.6.6 into the Earth system model GCOAST-AHOI v2.0 using OASIS3-MCT v4.0
An overview of cloud–radiation denial experiments for the Energy Exascale Earth System Model version 1
The computational and energy cost of simulation and storage for climate science: lessons from CMIP6
Subgrid-scale variability of cloud ice in the ICON-AES 1.3.00
INFERNO-peat v1.0.0: a representation of northern high-latitude peat fires in the JULES-INFERNO global fire model
The 4DEnVar-based weakly coupled land data assimilation system for E3SM version 2
Continental-scale bias-corrected climate and hydrological projections for Australia
G6-1.5K-SAI: a new Geoengineering Model Intercomparison Project (GeoMIP) experiment integrating recent advances in solar radiation modification studies
Bridging the gap: a new module for human water use in the Community Earth System Model version 2.2.1
Modeling the effects of tropospheric ozone on the growth and yield of global staple crops with DSSAT v4.8.0
A one-dimensional urban flow model with an eddy-diffusivity mass-flux (EDMF) scheme and refined turbulent transport (MLUCM v3.0)
DCMIP2016: the tropical cyclone test case
At-scale Model Output Statistics in mountain environments (AtsMOS v1.0)
Impact of ocean vertical mixing parameterization on Arctic sea ice and upper ocean properties using the NEMO-SI3 model
Methane dynamics in the Baltic Sea: investigating concentration, flux and isotopic composition patterns using the coupled physical-biogeochemical model BALTSEM-CH4 v1.0
Zheng Xiang, Yongkang Xue, Weidong Guo, Melannie D. Hartman, Ye Liu, and William J. Parton
Geosci. Model Dev., 17, 6437–6464, https://doi.org/10.5194/gmd-17-6437-2024, https://doi.org/10.5194/gmd-17-6437-2024, 2024
Short summary
Short summary
A process-based plant carbon (C)–nitrogen (N) interface coupling framework has been developed which mainly focuses on plant resistance and N-limitation effects on photosynthesis, plant respiration, and plant phenology. A dynamic C / N ratio is introduced to represent plant resistance and self-adjustment. The framework has been implemented in a coupled biophysical-ecosystem–biogeochemical model, and testing results show a general improvement in simulating plant properties with this framework.
Yangke Liu, Qing Bao, Bian He, Xiaofei Wu, Jing Yang, Yimin Liu, Guoxiong Wu, Tao Zhu, Siyuan Zhou, Yao Tang, Ankang Qu, Yalan Fan, Anling Liu, Dandan Chen, Zhaoming Luo, Xing Hu, and Tongwen Wu
Geosci. Model Dev., 17, 6249–6275, https://doi.org/10.5194/gmd-17-6249-2024, https://doi.org/10.5194/gmd-17-6249-2024, 2024
Short summary
Short summary
We give an overview of the Institute of Atmospheric Physics–Chinese Academy of Sciences subseasonal-to-seasonal ensemble forecasting system and Madden–Julian Oscillation forecast evaluation of the system. Compared to other S2S models, the IAP-CAS model has its benefits but also biases, i.e., underdispersive ensemble, overestimated amplitude, and faster propagation speed when forecasting MJO. We provide a reason for these biases and prospects for further improvement of this system in the future.
Laurent Brodeau, Pierre Rampal, Einar Ólason, and Véronique Dansereau
Geosci. Model Dev., 17, 6051–6082, https://doi.org/10.5194/gmd-17-6051-2024, https://doi.org/10.5194/gmd-17-6051-2024, 2024
Short summary
Short summary
A new brittle sea ice rheology, BBM, has been implemented into the sea ice component of NEMO. We describe how a new spatial discretization framework was introduced to achieve this. A set of idealized and realistic ocean and sea ice simulations of the Arctic have been performed using BBM and the standard viscous–plastic rheology of NEMO. When compared to satellite data, our simulations show that our implementation of BBM leads to a fairly good representation of sea ice deformations.
Joseph P. Hollowed, Christiane Jablonowski, Hunter Y. Brown, Benjamin R. Hillman, Diana L. Bull, and Joseph L. Hart
Geosci. Model Dev., 17, 5913–5938, https://doi.org/10.5194/gmd-17-5913-2024, https://doi.org/10.5194/gmd-17-5913-2024, 2024
Short summary
Short summary
Large volcanic eruptions deposit material in the upper atmosphere, which is capable of altering temperature and wind patterns of Earth's atmosphere for subsequent years. This research describes a new method of simulating these effects in an idealized, efficient atmospheric model. A volcanic eruption of sulfur dioxide is described with a simplified set of physical rules, which eventually cools the planetary surface. This model has been designed as a test bed for climate attribution studies.
Hong Li, Yi Yang, Jian Sun, Yuan Jiang, Ruhui Gan, and Qian Xie
Geosci. Model Dev., 17, 5883–5896, https://doi.org/10.5194/gmd-17-5883-2024, https://doi.org/10.5194/gmd-17-5883-2024, 2024
Short summary
Short summary
Vertical atmospheric motions play a vital role in convective-scale precipitation forecasts by connecting atmospheric dynamics with cloud development. A three-dimensional variational vertical velocity assimilation scheme is developed within the high-resolution CMA-MESO model, utilizing the adiabatic Richardson equation as the observation operator. A 10 d continuous run and an individual case study demonstrate improved forecasts, confirming the scheme's effectiveness.
Matthias Nützel, Laura Stecher, Patrick Jöckel, Franziska Winterstein, Martin Dameris, Michael Ponater, Phoebe Graf, and Markus Kunze
Geosci. Model Dev., 17, 5821–5849, https://doi.org/10.5194/gmd-17-5821-2024, https://doi.org/10.5194/gmd-17-5821-2024, 2024
Short summary
Short summary
We extended the infrastructure of our modelling system to enable the use of an additional radiation scheme. After calibrating the model setups to the old and the new radiation scheme, we find that the simulation with the new scheme shows considerable improvements, e.g. concerning the cold-point temperature and stratospheric water vapour. Furthermore, perturbations of radiative fluxes associated with greenhouse gas changes, e.g. of methane, tend to be improved when the new scheme is employed.
Yibing Wang, Xianhong Xie, Bowen Zhu, Arken Tursun, Fuxiao Jiang, Yao Liu, Dawei Peng, and Buyun Zheng
Geosci. Model Dev., 17, 5803–5819, https://doi.org/10.5194/gmd-17-5803-2024, https://doi.org/10.5194/gmd-17-5803-2024, 2024
Short summary
Short summary
Urban expansion intensifies challenges like urban heat and urban dry islands. To address this, we developed an urban module, VIC-urban, in the Variable Infiltration Capacity (VIC) model. Tested in Beijing, VIC-urban accurately simulated turbulent heat fluxes, runoff, and land surface temperature. We provide a reliable tool for large-scale simulations considering urban environment and a systematic urban modelling framework within VIC, offering crucial insights for urban planners and designers.
Jeremy Carter, Erick A. Chacón-Montalván, and Amber Leeson
Geosci. Model Dev., 17, 5733–5757, https://doi.org/10.5194/gmd-17-5733-2024, https://doi.org/10.5194/gmd-17-5733-2024, 2024
Short summary
Short summary
Climate models are essential tools in the study of climate change and its wide-ranging impacts on life on Earth. However, the output is often afflicted with some bias. In this paper, a novel model is developed to predict and correct bias in the output of climate models. The model captures uncertainty in the correction and explicitly models underlying spatial correlation between points. These features are of key importance for climate change impact assessments and resulting decision-making.
Anna Martin, Veronika Gayler, Benedikt Steil, Klaus Klingmüller, Patrick Jöckel, Holger Tost, Jos Lelieveld, and Andrea Pozzer
Geosci. Model Dev., 17, 5705–5732, https://doi.org/10.5194/gmd-17-5705-2024, https://doi.org/10.5194/gmd-17-5705-2024, 2024
Short summary
Short summary
The study evaluates the land surface and vegetation model JSBACHv4 as a replacement for the simplified submodel SURFACE in EMAC. JSBACH mitigates earlier problems of soil dryness, which are critical for vegetation modelling. When analysed using different datasets, the coupled model shows strong correlations of key variables, such as land surface temperature, surface albedo and radiation flux. The versatility of the model increases significantly, while the overall performance does not degrade.
Hugo Banderier, Christian Zeman, David Leutwyler, Stefan Rüdisühli, and Christoph Schär
Geosci. Model Dev., 17, 5573–5586, https://doi.org/10.5194/gmd-17-5573-2024, https://doi.org/10.5194/gmd-17-5573-2024, 2024
Short summary
Short summary
We investigate the effects of reduced-precision arithmetic in a state-of-the-art regional climate model by studying the results of 10-year-long simulations. After this time, the results of the reduced precision and the standard implementation are hardly different. This should encourage the use of reduced precision in climate models to exploit the speedup and memory savings it brings. The methodology used in this work can help researchers verify reduced-precision implementations of their model.
David Fuchs, Steven C. Sherwood, Abhnil Prasad, Kirill Trapeznikov, and Jim Gimlett
Geosci. Model Dev., 17, 5459–5475, https://doi.org/10.5194/gmd-17-5459-2024, https://doi.org/10.5194/gmd-17-5459-2024, 2024
Short summary
Short summary
Machine learning (ML) of unresolved processes offers many new possibilities for improving weather and climate models, but integrating ML into the models has been an engineering challenge, and there are performance issues. We present a new software plugin for this integration, TorchClim, that is scalable and flexible and thereby allows a new level of experimentation with the ML approach. We also provide guidance on ML training and demonstrate a skillful hybrid ML atmosphere model.
Minjin Lee, Charles A. Stock, John P. Dunne, and Elena Shevliakova
Geosci. Model Dev., 17, 5191–5224, https://doi.org/10.5194/gmd-17-5191-2024, https://doi.org/10.5194/gmd-17-5191-2024, 2024
Short summary
Short summary
Modeling global freshwater solid and nutrient loads, in both magnitude and form, is imperative for understanding emerging eutrophication problems. Such efforts, however, have been challenged by the difficulty of balancing details of freshwater biogeochemical processes with limited knowledge, input, and validation datasets. Here we develop a global freshwater model that resolves intertwined algae, solid, and nutrient dynamics and provide performance assessment against measurement-based estimates.
Hunter York Brown, Benjamin Wagman, Diana Bull, Kara Peterson, Benjamin Hillman, Xiaohong Liu, Ziming Ke, and Lin Lin
Geosci. Model Dev., 17, 5087–5121, https://doi.org/10.5194/gmd-17-5087-2024, https://doi.org/10.5194/gmd-17-5087-2024, 2024
Short summary
Short summary
Explosive volcanic eruptions lead to long-lived, microscopic particles in the upper atmosphere which act to cool the Earth's surface by reflecting the Sun's light back to space. We include and test this process in a global climate model, E3SM. E3SM is tested against satellite and balloon observations of the 1991 eruption of Mt. Pinatubo, showing that with these particles in the model we reasonably recreate Pinatubo and its global effects. We also explore how particle size leads to these effects.
Carl Svenhag, Moa K. Sporre, Tinja Olenius, Daniel Yazgi, Sara M. Blichner, Lars P. Nieradzik, and Pontus Roldin
Geosci. Model Dev., 17, 4923–4942, https://doi.org/10.5194/gmd-17-4923-2024, https://doi.org/10.5194/gmd-17-4923-2024, 2024
Short summary
Short summary
Our research shows the importance of modeling new particle formation (NPF) and growth of particles in the atmosphere on a global scale, as they influence the outcomes of clouds and our climate. With the global model EC-Earth3 we show that using a new method for NPF modeling, which includes new detailed processes with NH3 and H2SO4, significantly impacts the number of particles in the air and clouds and changes the radiation balance of the same magnitude as anthropogenic greenhouse emissions.
Mengjie Han, Qing Zhao, Xili Wang, Ying-Ping Wang, Philippe Ciais, Haicheng Zhang, Daniel S. Goll, Lei Zhu, Zhe Zhao, Zhixuan Guo, Chen Wang, Wei Zhuang, Fengchang Wu, and Wei Li
Geosci. Model Dev., 17, 4871–4890, https://doi.org/10.5194/gmd-17-4871-2024, https://doi.org/10.5194/gmd-17-4871-2024, 2024
Short summary
Short summary
The impact of biochar (BC) on soil organic carbon (SOC) dynamics is not represented in most land carbon models used for assessing land-based climate change mitigation. Our study develops a BC model that incorporates our current understanding of BC effects on SOC based on a soil carbon model (MIMICS). The BC model can reproduce the SOC changes after adding BC, providing a useful tool to couple dynamic land models to evaluate the effectiveness of BC application for CO2 removal from the atmosphere.
Kalyn Dorheim, Skylar Gering, Robert Gieseke, Corinne Hartin, Leeya Pressburger, Alexey N. Shiklomanov, Steven J. Smith, Claudia Tebaldi, Dawn L. Woodard, and Ben Bond-Lamberty
Geosci. Model Dev., 17, 4855–4869, https://doi.org/10.5194/gmd-17-4855-2024, https://doi.org/10.5194/gmd-17-4855-2024, 2024
Short summary
Short summary
Hector is an easy-to-use, global climate–carbon cycle model. With its quick run time, Hector can provide climate information from a run in a fraction of a second. Hector models on a global and annual basis. Here, we present an updated version of the model, Hector V3. In this paper, we document Hector’s new features. Hector V3 is capable of reproducing historical observations, and its future temperature projections are consistent with those of more complex models.
Fangxuan Ren, Jintai Lin, Chenghao Xu, Jamiu A. Adeniran, Jingxu Wang, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Larry W. Horowitz, Steven T. Turnock, Naga Oshima, Jie Zhang, Susanne Bauer, Kostas Tsigaridis, Øyvind Seland, Pierre Nabat, David Neubauer, Gary Strand, Twan van Noije, Philippe Le Sager, and Toshihiko Takemura
Geosci. Model Dev., 17, 4821–4836, https://doi.org/10.5194/gmd-17-4821-2024, https://doi.org/10.5194/gmd-17-4821-2024, 2024
Short summary
Short summary
We evaluate the performance of 14 CMIP6 ESMs in simulating total PM2.5 and its 5 components over China during 2000–2014. PM2.5 and its components are underestimated in almost all models, except that black carbon (BC) and sulfate are overestimated in two models, respectively. The underestimation is the largest for organic carbon (OC) and the smallest for BC. Models reproduce the observed spatial pattern for OC, sulfate, nitrate and ammonium well, yet the agreement is poorer for BC.
Yi Xi, Chunjing Qiu, Yuan Zhang, Dan Zhu, Shushi Peng, Gustaf Hugelius, Jinfeng Chang, Elodie Salmon, and Philippe Ciais
Geosci. Model Dev., 17, 4727–4754, https://doi.org/10.5194/gmd-17-4727-2024, https://doi.org/10.5194/gmd-17-4727-2024, 2024
Short summary
Short summary
The ORCHIDEE-MICT model can simulate the carbon cycle and hydrology at a sub-grid scale but energy budgets only at a grid scale. This paper assessed the implementation of a multi-tiling energy budget approach in ORCHIDEE-MICT and found warmer surface and soil temperatures, higher soil moisture, and more soil organic carbon across the Northern Hemisphere compared with the original version.
Georgia Lazoglou, Theo Economou, Christina Anagnostopoulou, George Zittis, Anna Tzyrkalli, Pantelis Georgiades, and Jos Lelieveld
Geosci. Model Dev., 17, 4689–4703, https://doi.org/10.5194/gmd-17-4689-2024, https://doi.org/10.5194/gmd-17-4689-2024, 2024
Short summary
Short summary
This study focuses on the important issue of the drizzle bias effect in regional climate models, described by an over-prediction of the number of rainy days while underestimating associated precipitation amounts. For this purpose, two distinct methodologies are applied and rigorously evaluated. These results are encouraging for using the multivariate machine learning method random forest to increase the accuracy of climate models concerning the projection of the number of wet days.
Xu Yue, Hao Zhou, Chenguang Tian, Yimian Ma, Yihan Hu, Cheng Gong, Hui Zheng, and Hong Liao
Geosci. Model Dev., 17, 4621–4642, https://doi.org/10.5194/gmd-17-4621-2024, https://doi.org/10.5194/gmd-17-4621-2024, 2024
Short summary
Short summary
We develop the interactive Model for Air Pollution and Land Ecosystems (iMAPLE). The model considers the full coupling between carbon and water cycles, dynamic fire emissions, wetland methane emissions, biogenic volatile organic compound emissions, and trait-based ozone vegetation damage. Evaluations show that iMAPLE is a useful tool for the study of the interactions among climate, chemistry, and ecosystems.
Malte Meinshausen, Carl-Friedrich Schleussner, Kathleen Beyer, Greg Bodeker, Olivier Boucher, Josep G. Canadell, John S. Daniel, Aïda Diongue-Niang, Fatima Driouech, Erich Fischer, Piers Forster, Michael Grose, Gerrit Hansen, Zeke Hausfather, Tatiana Ilyina, Jarmo S. Kikstra, Joyce Kimutai, Andrew D. King, June-Yi Lee, Chris Lennard, Tabea Lissner, Alexander Nauels, Glen P. Peters, Anna Pirani, Gian-Kasper Plattner, Hans Pörtner, Joeri Rogelj, Maisa Rojas, Joyashree Roy, Bjørn H. Samset, Benjamin M. Sanderson, Roland Séférian, Sonia Seneviratne, Christopher J. Smith, Sophie Szopa, Adelle Thomas, Diana Urge-Vorsatz, Guus J. M. Velders, Tokuta Yokohata, Tilo Ziehn, and Zebedee Nicholls
Geosci. Model Dev., 17, 4533–4559, https://doi.org/10.5194/gmd-17-4533-2024, https://doi.org/10.5194/gmd-17-4533-2024, 2024
Short summary
Short summary
The scientific community is considering new scenarios to succeed RCPs and SSPs for the next generation of Earth system model runs to project future climate change. To contribute to that effort, we reflect on relevant policy and scientific research questions and suggest categories for representative emission pathways. These categories are tailored to the Paris Agreement long-term temperature goal, high-risk outcomes in the absence of further climate policy and worlds “that could have been”.
Ross Mower, Ethan D. Gutmann, Glen E. Liston, Jessica Lundquist, and Soren Rasmussen
Geosci. Model Dev., 17, 4135–4154, https://doi.org/10.5194/gmd-17-4135-2024, https://doi.org/10.5194/gmd-17-4135-2024, 2024
Short summary
Short summary
Higher-resolution model simulations are better at capturing winter snowpack changes across space and time. However, increasing resolution also increases the computational requirements. This work provides an overview of changes made to a distributed snow-evolution modeling system (SnowModel) to allow it to leverage high-performance computing resources. Continental simulations that were previously estimated to take 120 d can now be performed in 5 h.
Jiaxu Guo, Juepeng Zheng, Yidan Xu, Haohuan Fu, Wei Xue, Lanning Wang, Lin Gan, Ping Gao, Wubing Wan, Xianwei Wu, Zhitao Zhang, Liang Hu, Gaochao Xu, and Xilong Che
Geosci. Model Dev., 17, 3975–3992, https://doi.org/10.5194/gmd-17-3975-2024, https://doi.org/10.5194/gmd-17-3975-2024, 2024
Short summary
Short summary
To enhance the efficiency of experiments using SCAM, we train a learning-based surrogate model to facilitate large-scale sensitivity analysis and tuning of combinations of multiple parameters. Employing a hybrid method, we investigate the joint sensitivity of multi-parameter combinations across typical cases, identifying the most sensitive three-parameter combination out of 11. Subsequently, we conduct a tuning process aimed at reducing output errors in these cases.
Yung-Yao Lan, Huang-Hsiung Hsu, and Wan-Ling Tseng
Geosci. Model Dev., 17, 3897–3918, https://doi.org/10.5194/gmd-17-3897-2024, https://doi.org/10.5194/gmd-17-3897-2024, 2024
Short summary
Short summary
This study uses the CAM5–SIT coupled model to investigate the effects of SST feedback frequency on the MJO simulations with intervals at 30 min, 1, 3, 6, 12, 18, 24, and 30 d. The simulations become increasingly unrealistic as the frequency of the SST feedback decreases. Our results suggest that more spontaneous air--sea interaction (e.g., ocean response within 3 d in this study) with high vertical resolution in the ocean model is key to the realistic simulation of the MJO.
Jiwoo Lee, Peter J. Gleckler, Min-Seop Ahn, Ana Ordonez, Paul A. Ullrich, Kenneth R. Sperber, Karl E. Taylor, Yann Y. Planton, Eric Guilyardi, Paul Durack, Celine Bonfils, Mark D. Zelinka, Li-Wei Chao, Bo Dong, Charles Doutriaux, Chengzhu Zhang, Tom Vo, Jason Boutte, Michael F. Wehner, Angeline G. Pendergrass, Daehyun Kim, Zeyu Xue, Andrew T. Wittenberg, and John Krasting
Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024, https://doi.org/10.5194/gmd-17-3919-2024, 2024
Short summary
Short summary
We introduce an open-source software, the PCMDI Metrics Package (PMP), developed for a comprehensive comparison of Earth system models (ESMs) with real-world observations. Using diverse metrics evaluating climatology, variability, and extremes simulated in thousands of simulations from the Coupled Model Intercomparison Project (CMIP), PMP aids in benchmarking model improvements across generations. PMP also enables efficient tracking of performance evolutions during ESM developments.
Haoyue Zuo, Yonggang Liu, Gaojun Li, Zhifang Xu, Liang Zhao, Zhengtang Guo, and Yongyun Hu
Geosci. Model Dev., 17, 3949–3974, https://doi.org/10.5194/gmd-17-3949-2024, https://doi.org/10.5194/gmd-17-3949-2024, 2024
Short summary
Short summary
Compared to the silicate weathering fluxes measured at large river basins, the current models tend to systematically overestimate the fluxes over the tropical region, which leads to an overestimation of the global total weathering flux. The most possible cause of such bias is found to be the overestimation of tropical surface erosion, which indicates that the tropical vegetation likely slows down physical erosion significantly. We propose a way of taking this effect into account in models.
Quentin Pikeroen, Didier Paillard, and Karine Watrin
Geosci. Model Dev., 17, 3801–3814, https://doi.org/10.5194/gmd-17-3801-2024, https://doi.org/10.5194/gmd-17-3801-2024, 2024
Short summary
Short summary
All accurate climate models use equations with poorly defined parameters, where knobs for the parameters are turned to fit the observations. This process is called tuning. In this article, we use another paradigm. We use a thermodynamic hypothesis, the maximum entropy production, to compute temperatures, energy fluxes, and precipitation, where tuning is impossible. For now, the 1D vertical model is used for a tropical atmosphere. The correct order of magnitude of precipitation is computed.
Jishi Zhang, Peter Bogenschutz, Qi Tang, Philip Cameron-smith, and Chengzhu Zhang
Geosci. Model Dev., 17, 3687–3731, https://doi.org/10.5194/gmd-17-3687-2024, https://doi.org/10.5194/gmd-17-3687-2024, 2024
Short summary
Short summary
We developed a regionally refined climate model that allows resolved convection and performed a 20-year projection to the end of the century. The model has a resolution of 3.25 km in California, which allows us to predict climate with unprecedented accuracy, and a resolution of 100 km for the rest of the globe to achieve efficient, self-consistent simulations. The model produces superior results in reproducing climate patterns over California that typical modern climate models cannot resolve.
Xiaohui Zhong, Xing Yu, and Hao Li
Geosci. Model Dev., 17, 3667–3685, https://doi.org/10.5194/gmd-17-3667-2024, https://doi.org/10.5194/gmd-17-3667-2024, 2024
Short summary
Short summary
In order to forecast localized warm-sector rainfall in the south China region, numerical weather prediction models are being run with finer grid spacing. The conventional convection parameterization (CP) performs poorly in the gray zone, necessitating the development of a scale-aware scheme. We propose a machine learning (ML) model to replace the scale-aware CP scheme. Evaluation against the original CP scheme has shown that the ML-based CP scheme can provide accurate and reliable predictions.
Taufiq Hassan, Kai Zhang, Jianfeng Li, Balwinder Singh, Shixuan Zhang, Hailong Wang, and Po-Lun Ma
Geosci. Model Dev., 17, 3507–3532, https://doi.org/10.5194/gmd-17-3507-2024, https://doi.org/10.5194/gmd-17-3507-2024, 2024
Short summary
Short summary
Anthropogenic aerosol emissions are an essential part of global aerosol models. Significant errors can exist from the loss of emission heterogeneity. We introduced an emission treatment that significantly improved aerosol emission heterogeneity in high-resolution model simulations, with improvements in simulated aerosol surface concentrations. The emission treatment will provide a more accurate representation of aerosol emissions and their effects on climate.
Feng Zhu, Julien Emile-Geay, Gregory J. Hakim, Dominique Guillot, Deborah Khider, Robert Tardif, and Walter A. Perkins
Geosci. Model Dev., 17, 3409–3431, https://doi.org/10.5194/gmd-17-3409-2024, https://doi.org/10.5194/gmd-17-3409-2024, 2024
Short summary
Short summary
Climate field reconstruction encompasses methods that estimate the evolution of climate in space and time based on natural archives. It is useful to investigate climate variations and validate climate models, but its implementation and use can be difficult for non-experts. This paper introduces a user-friendly Python package called cfr to make these methods more accessible, thanks to the computational and visualization tools that facilitate efficient and reproducible research on past climates.
Rose V. Palermo, J. Taylor Perron, Jason M. Soderblom, Samuel P. D. Birch, Alexander G. Hayes, and Andrew D. Ashton
Geosci. Model Dev., 17, 3433–3445, https://doi.org/10.5194/gmd-17-3433-2024, https://doi.org/10.5194/gmd-17-3433-2024, 2024
Short summary
Short summary
Models of rocky coastal erosion help us understand the controls on coastal morphology and evolution. In this paper, we present a simplified model of coastline erosion driven by either uniform erosion where coastline erosion is constant or wave-driven erosion where coastline erosion is a function of the wave power. This model can be used to evaluate how coastline changes reflect climate, sea-level history, material properties, and the relative influence of different erosional processes.
Safae Oumami, Joaquim Arteta, Vincent Guidard, Pierre Tulet, and Paul David Hamer
Geosci. Model Dev., 17, 3385–3408, https://doi.org/10.5194/gmd-17-3385-2024, https://doi.org/10.5194/gmd-17-3385-2024, 2024
Short summary
Short summary
In this paper, we coupled the SURFEX and MEGAN models. The aim of this coupling is to improve the estimation of biogenic fluxes by using the SURFEX canopy environment model. The coupled model results were validated and several sensitivity tests were performed. The coupled-model total annual isoprene flux is 442 Tg; this value is within the range of other isoprene estimates reported. The ultimate aim of this coupling is to predict the impact of climate change on biogenic emissions.
Lars Ackermann, Thomas Rackow, Kai Himstedt, Paul Gierz, Gregor Knorr, and Gerrit Lohmann
Geosci. Model Dev., 17, 3279–3301, https://doi.org/10.5194/gmd-17-3279-2024, https://doi.org/10.5194/gmd-17-3279-2024, 2024
Short summary
Short summary
We present long-term simulations with interactive icebergs in the Southern Ocean. By melting, icebergs reduce the temperature and salinity of the surrounding ocean. In our simulations, we find that this cooling effect of iceberg melting is not limited to the surface ocean but also reaches the deep ocean and propagates northward into all ocean basins. Additionally, the formation of deep-water masses in the Southern Ocean is enhanced.
Nanhong Xie, Tijian Wang, Xiaodong Xie, Xu Yue, Filippo Giorgi, Qian Zhang, Danyang Ma, Rong Song, Beiyao Xu, Shu Li, Bingliang Zhuang, Mengmeng Li, Min Xie, Natalya Andreeva Kilifarska, Georgi Gadzhev, and Reneta Dimitrova
Geosci. Model Dev., 17, 3259–3277, https://doi.org/10.5194/gmd-17-3259-2024, https://doi.org/10.5194/gmd-17-3259-2024, 2024
Short summary
Short summary
For the first time, we coupled a regional climate chemistry model, RegCM-Chem, with a dynamic vegetation model, YIBs, to create a regional climate–chemistry–ecology model, RegCM-Chem–YIBs. We applied it to simulate climatic, chemical, and ecological parameters in East Asia and fully validated it on a variety of observational data. Results show that RegCM-Chem–YIBs model is a valuable tool for studying the terrestrial carbon cycle, atmospheric chemistry, and climate change on a regional scale.
Ha Thi Minh Ho-Hagemann, Vera Maurer, Stefan Poll, and Irina Fast
EGUsphere, https://doi.org/10.5194/egusphere-2024-923, https://doi.org/10.5194/egusphere-2024-923, 2024
Short summary
Short summary
The regional Earth system model GCOAST-AHOI version 2.0 including the regional climate model ICON-CLM coupled with the ocean model NEMO and the hydrological discharge model HD via the OASIS3-MCT coupler can be a useful tool for conducting long-term regional climate simulations over the EURO-CORDEX domain. The new OASIS3-MCT coupling interface implemented in the ICON-CLM model makes it more flexible to couple with an external ocean model and an external hydrological discharge model.
Bryce E. Harrop, Jian Lu, L. Ruby Leung, William K. M. Lau, Kyu-Myong Kim, Brian Medeiros, Brian J. Soden, Gabriel A. Vecchi, Bosong Zhang, and Balwinder Singh
Geosci. Model Dev., 17, 3111–3135, https://doi.org/10.5194/gmd-17-3111-2024, https://doi.org/10.5194/gmd-17-3111-2024, 2024
Short summary
Short summary
Seven new experimental setups designed to interfere with cloud radiative heating have been added to the Energy Exascale Earth System Model (E3SM). These experiments include both those that test the mean impact of cloud radiative heating and those examining its covariance with circulations. This paper documents the code changes and steps needed to run these experiments. Results corroborate prior findings for how cloud radiative heating impacts circulations and rainfall patterns.
Mario C. Acosta, Sergi Palomas, Stella V. Paronuzzi Ticco, Gladys Utrera, Joachim Biercamp, Pierre-Antoine Bretonniere, Reinhard Budich, Miguel Castrillo, Arnaud Caubel, Francisco Doblas-Reyes, Italo Epicoco, Uwe Fladrich, Sylvie Joussaume, Alok Kumar Gupta, Bryan Lawrence, Philippe Le Sager, Grenville Lister, Marie-Pierre Moine, Jean-Christophe Rioual, Sophie Valcke, Niki Zadeh, and Venkatramani Balaji
Geosci. Model Dev., 17, 3081–3098, https://doi.org/10.5194/gmd-17-3081-2024, https://doi.org/10.5194/gmd-17-3081-2024, 2024
Short summary
Short summary
We present a collection of performance metrics gathered during the Coupled Model Intercomparison Project Phase 6 (CMIP6), a worldwide initiative to study climate change. We analyse the metrics that resulted from collaboration efforts among many partners and models and describe our findings to demonstrate the utility of our study for the scientific community. The research contributes to understanding climate modelling performance on the current high-performance computing (HPC) architectures.
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110, https://doi.org/10.5194/gmd-17-3099-2024, https://doi.org/10.5194/gmd-17-3099-2024, 2024
Short summary
Short summary
Especially over the midlatitudes, precipitation is mainly formed via the ice phase. In this study we focus on the initial snow formation process in the ICON-AES, the aggregation process. We use a stochastical approach for the aggregation parameterization and investigate the influence in the ICON-AES. Therefore, a distribution function of cloud ice is created, which is evaluated with satellite data. The new approach leads to cloud ice loss and an improvement in the process rate bias.
Katie R. Blackford, Matthew Kasoar, Chantelle Burton, Eleanor Burke, Iain Colin Prentice, and Apostolos Voulgarakis
Geosci. Model Dev., 17, 3063–3079, https://doi.org/10.5194/gmd-17-3063-2024, https://doi.org/10.5194/gmd-17-3063-2024, 2024
Short summary
Short summary
Peatlands are globally important stores of carbon which are being increasingly threatened by wildfires with knock-on effects on the climate system. Here we introduce a novel peat fire parameterization in the northern high latitudes to the INFERNO global fire model. Representing peat fires increases annual burnt area across the high latitudes, alongside improvements in how we capture year-to-year variation in burning and emissions.
Pengfei Shi, L. Ruby Leung, Bin Wang, Kai Zhang, Samson M. Hagos, and Shixuan Zhang
Geosci. Model Dev., 17, 3025–3040, https://doi.org/10.5194/gmd-17-3025-2024, https://doi.org/10.5194/gmd-17-3025-2024, 2024
Short summary
Short summary
Improving climate predictions have profound socio-economic impacts. This study introduces a new weakly coupled land data assimilation (WCLDA) system for a coupled climate model. We demonstrate improved simulation of soil moisture and temperature in many global regions and throughout the soil layers. Furthermore, significant improvements are also found in reproducing the time evolution of the 2012 US Midwest drought. The WCLDA system provides the groundwork for future predictability studies.
Justin Peter, Elisabeth Vogel, Wendy Sharples, Ulrike Bende-Michl, Louise Wilson, Pandora Hope, Andrew Dowdy, Greg Kociuba, Sri Srikanthan, Vi Co Duong, Jake Roussis, Vjekoslav Matic, Zaved Khan, Alison Oke, Margot Turner, Stuart Baron-Hay, Fiona Johnson, Raj Mehrotra, Ashish Sharma, Marcus Thatcher, Ali Azarvinand, Steven Thomas, Ghyslaine Boschat, Chantal Donnelly, and Robert Argent
Geosci. Model Dev., 17, 2755–2781, https://doi.org/10.5194/gmd-17-2755-2024, https://doi.org/10.5194/gmd-17-2755-2024, 2024
Short summary
Short summary
We detail the production of datasets and communication to end users of high-resolution projections of rainfall, runoff, and soil moisture for the entire Australian continent. This is important as previous projections for Australia were for small regions and used differing techniques for their projections, making comparisons difficult across Australia's varied climate zones. The data will be beneficial for research purposes and to aid adaptation to climate change.
Daniele Visioni, Alan Robock, Jim Haywood, Matthew Henry, Simone Tilmes, Douglas G. MacMartin, Ben Kravitz, Sarah J. Doherty, John Moore, Chris Lennard, Shingo Watanabe, Helene Muri, Ulrike Niemeier, Olivier Boucher, Abu Syed, Temitope S. Egbebiyi, Roland Séférian, and Ilaria Quaglia
Geosci. Model Dev., 17, 2583–2596, https://doi.org/10.5194/gmd-17-2583-2024, https://doi.org/10.5194/gmd-17-2583-2024, 2024
Short summary
Short summary
This paper describes a new experimental protocol for the Geoengineering Model Intercomparison Project (GeoMIP). In it, we describe the details of a new simulation of sunlight reflection using the stratospheric aerosols that climate models are supposed to run, and we explain the reasons behind each choice we made when defining the protocol.
Sabin I. Taranu, David M. Lawrence, Yoshihide Wada, Ting Tang, Erik Kluzek, Sam Rabin, Yi Yao, Steven J. De Hertog, Inne Vanderkelen, and Wim Thiery
EGUsphere, https://doi.org/10.5194/egusphere-2024-362, https://doi.org/10.5194/egusphere-2024-362, 2024
Short summary
Short summary
In this study, we improve an existing climate model to account for human water usage across domestic, industrial, and agriculture purposes. With the new capabilities, the model is now better equipped for studying questions related to water scarcity in both present and future conditions under climate change. Despite the advancements, there remains important limitations in our modelling framework which requires further work.
Jose Rafael Guarin, Jonas Jägermeyr, Elizabeth A. Ainsworth, Fabio A. A. Oliveira, Senthold Asseng, Kenneth Boote, Joshua Elliott, Lisa Emberson, Ian Foster, Gerrit Hoogenboom, David Kelly, Alex C. Ruane, and Katrina Sharps
Geosci. Model Dev., 17, 2547–2567, https://doi.org/10.5194/gmd-17-2547-2024, https://doi.org/10.5194/gmd-17-2547-2024, 2024
Short summary
Short summary
The effects of ozone (O3) stress on crop photosynthesis and leaf senescence were added to maize, rice, soybean, and wheat crop models. The modified models reproduced growth and yields under different O3 levels measured in field experiments and reported in the literature. The combined interactions between O3 and additional stresses were reproduced with the new models. These updated crop models can be used to simulate impacts of O3 stress under future climate change and air pollution scenarios.
Jiachen Lu, Negin Nazarian, Melissa Anne Hart, E. Scott Krayenhoff, and Alberto Martilli
Geosci. Model Dev., 17, 2525–2545, https://doi.org/10.5194/gmd-17-2525-2024, https://doi.org/10.5194/gmd-17-2525-2024, 2024
Short summary
Short summary
This study enhances urban canopy models by refining key assumptions. Simulations for various urban scenarios indicate discrepancies in turbulent transport efficiency for flow properties. We propose two modifications that involve characterizing diffusion coefficients for momentum and turbulent kinetic energy separately and introducing a physics-based
mass-fluxterm. These adjustments enhance the model's performance, offering more reliable temperature and surface flux estimates.
Justin L. Willson, Kevin A. Reed, Christiane Jablonowski, James Kent, Peter H. Lauritzen, Ramachandran Nair, Mark A. Taylor, Paul A. Ullrich, Colin M. Zarzycki, David M. Hall, Don Dazlich, Ross Heikes, Celal Konor, David Randall, Thomas Dubos, Yann Meurdesoif, Xi Chen, Lucas Harris, Christian Kühnlein, Vivian Lee, Abdessamad Qaddouri, Claude Girard, Marco Giorgetta, Daniel Reinert, Hiroaki Miura, Tomoki Ohno, and Ryuji Yoshida
Geosci. Model Dev., 17, 2493–2507, https://doi.org/10.5194/gmd-17-2493-2024, https://doi.org/10.5194/gmd-17-2493-2024, 2024
Short summary
Short summary
Accurate simulation of tropical cyclones (TCs) is essential to understanding their behavior in a changing climate. One way this is accomplished is through model intercomparison projects, where results from multiple climate models are analyzed to provide benchmark solutions for the wider climate modeling community. This study describes and analyzes the previously developed TC test case for nine climate models in an intercomparison project, providing solutions that aid in model development.
Maximillian Van Wyk de Vries, Tom Matthews, L. Baker Perry, Nirakar Thapa, and Rob Wilby
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-36, https://doi.org/10.5194/gmd-2024-36, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This paper introduces the AtsMOS workflow, a new tool for improving weather forecasts in mountainous areas. By combining advanced statistical techniques with local weather data, AtsMOS can provide more accurate predictions of weather conditions. Using data from Mount Everest as an example, AtsMOS has shown promise in better forecasting hazardous weather conditions, making it a valuable tool for communities in mountainous regions and beyond.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-49, https://doi.org/10.5194/gmd-2024-49, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
We study the parameters involved in the turbulent kinetic energy mixed layer penetration scheme of the NEMO model in Arctic sea ice-covered regions. This evaluation reveals the impact of these parameters on mixed layer depth, sea surface temperature and salinity, and ocean stratification. Our findings also demonstrate considerable impacts on sea ice thickness and sea ice concentration, emphasizing the importance of accurate ocean mixing representation in understanding Arctic climate dynamics.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-211, https://doi.org/10.5194/gmd-2023-211, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Methane (CH4) cycling in the Baltic Sea is studied through model simulations, allowing a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source, and two main sinks: CH4 oxidation in the water (87 % of the sinks) and outgassing to the atmosphere (13 % of the sinks). This study addresses CH4 emissions from coastal seas and is a first step towards understanding the relative importance of open water outgassing compared to local coastal hotspots.
Cited articles
AMS: General Circulation Model, Glossary of Meteorology,
https://glossary.ametsoc.org/wiki/General_circulation_model (last access: 11 February 2022),
2020. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a, b
Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H., Uotila, P., Hirst,
A., Kowalczyk, E., Golebiewski, M., Sullivan, A., Yan, H., Hannah, N.,
Franklin, C., Sun, Z., Vohralik, P., Watterson, I., Zhou, X., Fiedler, R.,
Collier, M., Ma, Y., Noonan, J., Stevens, L., Uhe, P., Zhu, H., Griffies, S.,
Hill, R., Harris, C., and Puri, K.: The ACCESS coupled model: description,
control climate and evaluation, Aust. Meteorol. Ocean.
J., 63, 41–64, https://doi.org/10.22499/2.6301.004, 2013. a, b, c
Bi, D., Dix, M., Marsland, S., O’Farrell, S., Sullivan, A., Bodman, R., Law,
R., Harman, I., Srbinovsky, J., Rashid, H., Dobrohotoff, P., Mackallah, C.,
Yan, H., Hirst, A., Savita, A., Dias, F. B., Woodhouse, M., Fiedler, R., and
Heerdegen, A.: Configuration and spin-up of ACCESS-CM2, the new generation
Australian Community Climate and Earth System Simulator Coupled Model,
Journal of Southern Hemisphere Earth Systems Science, 70, 225–251,
https://doi.org/10.1071/ES19040, 2020. a, b
Bleck, R. and Smith, L. T.: A wind-driven isopycnic coordinate model of the
north and equatorial Atlantic Ocean: 1. Model development and supporting
experiments, J. Geophys. Res.-Oceans, 95, 3273–3285,
https://doi.org/10.1029/JC095iC03p03273, 1990. a
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y.,
Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil, S., Deshayes,
J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S.,
Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., Guez, Lionel, E.,
Guilyardi, E., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A.,
Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G.,
Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L.,
Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, P., Planton, Y.,
Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A.,
Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M., Vial, J.,
Vialard, J., Viovy, N., and Vuichard, N.: Presentation and Evaluation of the
IPSL-CM6A-LR Climate Model, J. Adv. Model. Earth Sy.,
12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2020. a, b
Brands, S.: Which ENSO teleconnections are robust to internal atmospheric
variability?, Geophys. Res. Lett., 44, 1483–1493,
https://doi.org/10.1002/2016GL071529, 2017. a
Brands, S.: A circulation-based performance atlas of the CMIP5 and 6 models for regional climate studies in the northern hemisphere, Zenodo [data set], https://doi.org/10.5281/zenodo.4452080, 2021. a, b
Brands, S.: Python code to calculate Lamb circulation types for the northern hemisphere derived from historical CMIP simulations and reanalysis data, Zenodo [code], https://doi.org/10.5281/zenodo.4555367, 2022. a, b
Brands, S., Gutiérrez, J. M., Herrera, S., and Cofiño, A. S.: On the Use of
Reanalysis Data for Downscaling, J. Climate, 25, 2517–2526,
https://doi.org/10.1175/JCLI-D-11-00251.1, 2012. a
Brands, S., Herrera García, S., Fernández, J., and Gutiérrez, J.: How well
do CMIP5 Earth System Models simulate present climate conditions in Europe
and Africa? A performance comparison for the downscaling community, Clim.
Dynam., 41, 803–817, https://doi.org/10.1007/s00382-013-1742-8, 2013. a, b
Brands, S., Herrera, S., and Gutiérrez, J.: Is Eurasian snow cover in October
a reliable statistical predictor for the wintertime climate on the Iberian
Peninsula?, Int. J. Climatol., 34, 1615–1627,
https://doi.org/10.1002/joc.3788, 2014. a, b
Brunner, L., Pendergrass, A. G., Lehner, F., Merrifield, A. L., Lorenz, R., and Knutti, R.: Reduced global warming from CMIP6 projections when weighting models by performance and independence, Earth Syst. Dynam., 11, 995–1012, https://doi.org/10.5194/esd-11-995-2020, 2020. a
Cannon, A.: Reductions in daily continental-scale atmospheric circulation
biases between generations of Global Climate Models: CMIP5 to CMIP6,
Environ. Res. Lett., 15, 064006, https://doi.org/10.1088/1748-9326/ab7e4f,
2020. a
Cao, J., Wang, B., Yang, Y.-M., Ma, L., Li, J., Sun, B., Bao, Y., He, J., Zhou, X., and Wu, L.: The NUIST Earth System Model (NESM) version 3: description and preliminary evaluation, Geosci. Model Dev., 11, 2975–2993, https://doi.org/10.5194/gmd-11-2975-2018, 2018. a, b, c
Cherchi, A., Fogli, P. G., Lovato, T., Peano, D., Iovino, D., Gualdi, S.,
Masina, S., Scoccimarro, E., Materia, S., Bellucci, A., and Navarra, A.:
Global Mean Climate and Main Patterns of Variability in the CMCC-CM2 Coupled
Model, J. Adv. Model. Earth Sy., 11, 185–209,
https://doi.org/10.1029/2018MS001369, 2019. a, b, c
Chylek, P., Li, J., Dubey, M. K., Wang, M., and Lesins, G.: Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2, Atmos. Chem. Phys. Discuss., 11, 22893–22907, https://doi.org/10.5194/acpd-11-22893-2011, 2011. a, b
Collier, M., Jeffrey, S., Rotstayn, L., Wong, K.-H., Dravitzki, S., Moeseneder,
C., Hamalainen, C., Syktus, J., Suppiah, R., Antony, J., El Zein, A., and
Atif, M.: The CSIRO-Mk3.6.0 Atmosphere Ocean GCM: participation in CMIP5 and data publication, 19th International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand, 2691–2697, Perth, Australia, http://mssanz.org.au/modsim2011 (last access: 22 February 2022), 2011. a, b
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin, G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire, A., and Woodward, S.: Development and evaluation of an Earth-System model – HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011. a, b, c, d
Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for earth
system modeling developed for CCSM4 and CESM1, Int. J.
High Perform. C., 26, 31–42,
https://doi.org/10.1177/1094342011428141, 2012. a, b
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier,
A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A.,
Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M.,
Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R.,
Oleson, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes, S., van
Kampenhout, L., Vertenstein, M., Bertini, A., Dennis, J., Deser, C., Fischer,
C., Fox-Kemper, B., Kay, J. E., Kinnison, D., Kushner, P. J., Larson, V. E.,
Long, M. C., Mickelson, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch,
P. J., and Strand, W. G.: The Community Earth System Model Version 2 (CESM2),
J. Adv. Model. Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020. a, b
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Koehler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park,
B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J. N., and Vitart,
F.: The ERA-Interim reanalysis: configuration and performance of the data
assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Deser, C., Simpson, I. R., McKinnon, K. A., and Phillips, A. S.: The Northern
Hemisphere Extratropical Atmospheric Circulation Response to ENSO: How Well
Do We Know It and How Do We Evaluate Models Accordingly?, J. Climate,
30, 5059–5082, https://doi.org/10.1175/JCLI-D-16-0844.1, 2017. a
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arneth, A., Arsouze, T., Bergmann, T., Bernadello, R., Bousetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O’Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth System Model for the Climate Model Intercomparison Project 6, Geosci. Model Dev. Discuss. [preprint], https://doi.org/10.5194/gmd-2020-446, in review, 2021. a, b, c, d, e, f
Droettboom, M., Caswell, T. A., Hunter, J., Firing, E., Hedegaard Nielsen, J., Root, B., Elson, P., Dale, D., Lee, J.-J., Varoquaux, N., Seppänen, J. K., McDougall, D., May, R., Straw, A., de Andrade, E. S., Lee, A., Yu, T. S., Ma, E, Gohlke, C., Silvester, S., Moad, C., Hobson, P., Schulz, J., Würtz, P., Ariza, F., Cimarron, Hisch, T., Kniazev, N., Vincent, A. F., and Thomas, I.: matplotlib/matplotlib: v2.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.248351, 2017. a
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J.-P., Ethe, C., Fairhead, L., Fichefet,
T., Flavoni, S., Friedlingstein, P., Grandpeix, J.-Y., Guez, L., Guilyardi,
E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J., Joussaume, S.,
Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A., Lefebvre, M.-P.,
Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F., Madec, G., Mancip, M.,
Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J., Musat, I., Parouty, S.,
Polcher, J., Rio, C., Schulz, M., Swingedouw, D., Szopa, S., Talandier, C.,
Terray, P., Viovy, N., and Vuichard, N.: Climate change projections using the
IPSL-CM5 Earth System Model: from CMIP3 to CMIP5, Clim. Dynam., 40, 2123–2165,
https://doi.org/10.1007/s00382-012-1636-1, 2013. a, b, c, d
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Fernandez-Granja, J. A., Casanueva, A., Bedia, J., and Fernández, J.: Improved
atmospheric circulation over Europe by the new generation of CMIP6 earth
system models, Clim. Dynam., 56, 3527–3540,
https://doi.org/10.1007/s00382-021-05652-9, 2021. a, b
Fogli, P. G., Manzini, E., Vichi, M., Alessandri, A., Patara, L., Gualdi, S.,
Scoccimarro, E., Masina, S., and Navarra, A.: INGV-CMCC Carbon (ICC): A
carbon cycle Earth system model, SSRN Electronic Journal, CMCC Research Paper No. 61, 31 pp.,
https://doi.org/10.2139/ssrn.1517282, 2009. a
Gates, W.: AMIP – The Atmospheric Model Intercomparison Project, B. Am.
Meteorol. Soc., 73, 1962–1970,
https://doi.org/10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2, 1992. a, b
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z.-L., and Zhang, M.: The Community Climate System Model
Version 4, J. Climate, 24, 4973–4991, https://doi.org/10.1175/2011JCLI4083.1,
2011. a, b
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for
the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sy., 5, 572–597, https://doi.org/10.1002/jame.20038, 2013. a, b, c
Gourgue, O.: Normalized Taylor diagram Python module (Version 1.0), Zenodo [code],
https://doi.org/10.5281/zenodo.3715535, 2020. a, b
Griffies, S., Winton, M., Donner, L., Horowitz, L., Downes, S., Farneti, R.,
Gnanadesikan, A., Hurlin, W., Lee, H.-C., Liang, Z., Palter, J., Samuels, B.,
Wittenberg, A., Wyman, B., Yin, J., and Zadeh, N.: The GFDL-CM3 Coupled
Climate Model: Characteristics of the Ocean and Sea Ice Simulations, J. Climate, 24, 3520–3544, https://doi.org/10.1175/2011JCLI3964.1, 2011. a, b
Grotch, S. and MacCracken, M.: The Use of General Circulation Models to Predict
Regional Climatic Change, J. Climate, 4, 286–303,
https://doi.org/10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2, 1991. a
Gutiérrez, J. M., San-Martín, D., Brands, S., Manzanas, R., and Herrera, S.:
Reassessing Statistical Downscaling Techniques for Their Robust Application
under Climate Change Conditions, J. Climate, 26, 171–188,
https://doi.org/10.1175/JCLI-D-11-00687.1, 2013. a, b
Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q., Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger, W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J.-J., Mao, J., Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler, T., Small, J., and von Storch, J.-S.: High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/gmd-9-4185-2016, 2016. a
Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., Okajima, H., Ito, A., Takata, K., Ogochi, K., Watanabe, S., and Kawamiya, M.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks, Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, 2020. a, b
Harris, C., Millman, K., Walt, S., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N., Kern, R., Picus, M., Hoyer, S.,
Kerkwijk, M., Brett, M., Haldane, A., Río, J., Wiebe, M., Peterson, P., and
Oliphant, T.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hazeleger, W., Severijns, C., Semmler, T., Briceag, S., Yang, S., Wang, X.,
Wyser, K., Dutra, E., Baldasano, J., Bintanja, R., Bougeault, P., Caballero,
R., Ekman, A., Christensen, J., Hurk, B., Jimenez-Guerrero, P., Jones, C.,
Kallberg, P., Koenigk, T., and Willén, U.: EC-Earth: A Seamless Earth-System
Prediction Approach in Action, B. Am. Meteorol.
Soc., 91, 1357–1363, https://doi.org/10.1175/2010bams2877.1, 2010. a
Hazeleger, W., Wang, X., Severijns, C., Briceag, S., Bintanja, R., Sterl, A.,
Wyser, K., Semmler, T., Yang, S., Hurk, B., Noije, T., Van der Linden, E.,
and van der Wiel, K.: EC-Earth V2.2: Description and validation of a new
seamless Earth system prediction model, Clim. Dynam., 39, 1–19,
https://doi.org/10.1007/s00382-011-1228-5, 2011. a, b
Held, I. M., Guo, H., Adcroft, A., Dunne, J. P., Horowitz, L. W., Krasting, J.,
Shevliakova, E., Winton, M., Zhao, M., Bushuk, M., Wittenberg, A. T., Wyman,
B., Xiang, B., Zhang, R., Anderson, W., Balaji, V., Donner, L., Dunne, K.,
Durachta, J., Gauthier, P. P. G., Ginoux, P., Golaz, J.-C., Griffies, S. M.,
Hallberg, R., Harris, L., Harrison, M., Hurlin, W., John, J., Lin, P., Lin,
S.-J., Malyshev, S., Menzel, R., Milly, P. C. D., Ming, Y., Naik, V.,
Paynter, D., Paulot, F., Rammaswamy, V., Reichl, B., Robinson, T., Rosati,
A., Seman, C., Silvers, L. G., Underwood, S., and Zadeh, N.: Structure and
Performance of GFDL's CM4.0 Climate Model, J. Adv. Model. Earth Sy., 11, 3691–3727, https://doi.org/10.1029/2019MS001829, 2019. a, b
Hourdin, F., Rio, C., Grandpeix, J.-Y., Madeleine, J.-B., Cheruy, F., Rochetin,
N., Jam, A., Musat, I., Idelkadi, A., Fairhead, L., Foujols, M.-A., Mellul,
L., Traore, A.-K., Dufresne, J.-L., Boucher, O., Lefebvre, M.-P., Millour,
E., Vignon, E., Jouhaud, J., Diallo, F. B., Lott, F., Gastineau, G., Caubel,
A., Meurdesoif, Y., and Ghattas, J.: LMDZ6A: The Atmospheric Component of the
IPSL Climate Model With Improved and Better Tuned Physics, J. Adv. Model. Earth Sy., 12, e2019MS001892,
https://doi.org/10.1029/2019MS001892, 2020. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python,
J. Open Res. Softw., 5, 10 pp., https://doi.org/10.5334/jors.148, 2017. a
Hoyer, S., Fitzgerald, C., Hamman, J., akleeman, Kluyver. T., Maussion, F., Roos, M., Markel, Helmus, J. J., Cable, P., Wolfram, P., Bovy, B., Abernathey, R., Noel, V., Kanmae, T., Miles, A., Hill, S., crusaderky, Sinclair, S., Filipe, Guedes, R., ebrevdo, chunweiyuan, Delley, Y., Wilson, R., Signell, J., Laliberte, F., Malevich, B., Hilboll, A., and Johnson, A.: pydata/xarray: v0.9.1 (v0.9.1), Zenodo [code], https://doi.org/10.5281/zenodo.264282, 2017. a
Hulme, M., Briffal, K., Jones, P., and Senior, C.: Validation of GCM control
simulations using indices of daily airflow types over British Isles, Clim.
Dynam., 9, 95–105, https://doi.org/10.1007/BF00210012, 1993. a, b
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci.
Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner,
P. J., Lamarque, J.-F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb,
W. H., Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P.,
Vavrus, S., Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl,
J., and Marshall, S.: The Community Earth System Model: A Framework for
Collaborative Research, B. Am. Meteorol. Soc., 94,
1339–1360, https://doi.org/10.1175/BAMS-D-12-00121.1, 2013. a, b, c
Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O., Bouwer, L.,
Braun, A., Colette, A., Déqué, M., Georgievski, G., Georgopoulou, E.,
Gobiet, A., Menut, L., Nikulin, G., Haensler, A., Hempelmann, N., Jones, C.,
Keuler, K., Kovats, S., and Yiou, P.: EURO-CORDEX: New high-resolution
climate change projections for European impact research, Reg.
Environ. Change, 14, 563–578, https://doi.org/10.1007/s10113-013-0499-2, 2014. a, b
Japan Meteorological Agency: JRA-55: Japanese 55-year Reanalysis, Daily 3-Hourly and 6-Hourly Data, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D6HH6H41, 2013. a
Jenkinson, A. and Collison, F.: An Initial Climatology of Gales over the North Sea, Synoptic Climatology Branch Memorandum, 62, Meteorological Office, Bracknell, UK, 1977. a
Jinjun, J.: A Climate-Vegetation Interaction Model: Simulating Physical and
Biological Processes at the Surface, J. Biogeogr., 22, 445–451,
1995. a
Jones, C. D.: So What Is in an Earth System Model?, J. Adv. Model. Earth Sy., 12, e2019MS001967,
https://doi.org/10.1029/2019MS001967, 2020. a, b
Jones, P. D., Hulme, M., and Briffa, K. R.: A comparison of Lamb circulation
types with an objective classification scheme, Int. J.
Climatol., 13, 655–663, https://doi.org/10.1002/joc.3370130606, 1993. a, b
Jones, P. D., Harpham, C., and Briffa, K. R.: Lamb weather types derived from
reanalysis products, Int. J. Climatol., 33, 1129–1139,
https://doi.org/10.1002/joc.3498, 2013. a, b, c, d
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model. Earth Sy., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a
Kelley, M., Schmidt, G. A., Nazarenko, L. S., Bauer, S. E., Ruedy, R., Russell,
G. L., Ackerman, A. S., Aleinov, I., Bauer, M., Bleck, R., Canuto, V.,
Cesana, G., Cheng, Y., Clune, T. L., Cook, B. I., Cruz, C. A., Del Genio,
A. D., Elsaesser, G. S., Faluvegi, G., Kiang, N. Y., Kim, D., Lacis, A. A.,
Leboissetier, A., LeGrande, A. N., Lo, K. K., Marshall, J., Matthews, E. E.,
McDermid, S., Mezuman, K., Miller, R. L., Murray, L. T., Oinas, V., Orbe, C.,
García-Pando, C. P., Perlwitz, J. P., Puma, M. J., Rind, D., Romanou, A.,
Shindell, D. T., Sun, S., Tausnev, N., Tsigaridis, K., Tselioudis, G., Weng,
E., Wu, J., and Yao, M.-S.: GISS-E2.1: Configurations and Climatology,
J. Adv. Model. Earth Sy., 12, e2019MS002025,
https://doi.org/10.1029/2019MS002025, 2020. a, b
Kirkevag, A., Iversen, T., Øyvind Seland, Debernard, J. B., Storelvmo, T., and
Kristjánsson, J. E.: Aerosol-cloud-climate interactions in the climate model
CAM-Oslo, Tellus A, 60, 492–512,
https://doi.org/10.1111/j.1600-0870.2007.00313.x, 2008. a
Knutti, R., Sedláček, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., and
Eyring, V.: A climate model projection weighting scheme accounting for
performance and interdependence, Geophys. Res. Lett., 44,
1909–1918,https://doi.org/10.1002/2016GL072012, 2017. a
Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda, H., Onogi,
K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: General Specifications and Basic Characteristics,
J. Meteorol. Soc. Jpn. Ser. II, 93, 5–48,
https://doi.org/10.2151/jmsj.2015-001, 2015. a
Lee, W.-L., Wang, Y.-C., Shiu, C.-J., Tsai, I., Tu, C.-Y., Lan, Y.-Y., Chen, J.-P., Pan, H.-L., and Hsu, H.-H.: Taiwan Earth System Model Version 1: description and evaluation of mean state, Geosci. Model Dev., 13, 3887–3904, https://doi.org/10.5194/gmd-13-3887-2020, 2020. a, b
Li, L., Lin, P., Yu, Y.-Q., Zhou, T., Liu, L., Liu, J., Bao, Q., Xu, S., Huang,
W., Xia, K., Pu, Y., Dong, L., Shen, S., Liu, Y., Hu, N., Liu, M., Sun, W.,
Shi, X., and Qiao, F.-L.: The flexible global ocean-atmosphere-land system
model, Grid-point Version 2: FGOALS-g2, Adv. Atmos. Sci., 30,
543–560, https://doi.org/10.1007/s00376-012-2140-6, 2013. a, b
Li, L., Yu, Y., Tang, Y., Lin, P., Xie, J., Song, M., Dong, L., Zhou, T., Liu,
L., Wang, L., Pu, Y., Chen, X., Chen, L., Xie, Z., Liu, H., Zhang, L., Huang,
X., Feng, T., Zheng, W., Xia, K., Liu, H., Liu, J., Wang, Y., Wang, L., Jia,
B., Xie, F., Wang, B., Zhao, S., Yu, Z., Zhao, B., and Wei, J.: The Flexible
Global Ocean-Atmosphere-Land System Model Grid-Point Version 3 (FGOALS-g3):
Description and Evaluation, J. Adv. Model. Earth Sy.,
12, e2019MS002012, https://doi.org/10.1029/2019MS002012,
2020. a, b
Lorenzo, M. N., Taboada, J. J., and Gimeno, L.: Links between circulation
weather types and teleconnection patterns and their influence on
precipitation patterns in Galicia (NW Spain), Int. J.
Climatol. 28, 1493–1505, https://doi.org/10.1002/joc.1646, 2008. a
Lurton, T., Balkanski, Y., Bastrikov, V., Bekki, S., Bopp, L., Braconnot, P.,
Brockmann, P., Cadule, P., Contoux, C., Cozic, A., Cugnet, D., Dufresne,
J.-L., Éthé, C., Foujols, M.-A., Ghattas, J., Hauglustaine, D., Hu, R.-M.,
Kageyama, M., Khodri, M., Lebas, N., Levavasseur, G., Marchand, M., Ottlé,
C., Peylin, P., Sima, A., Szopa, S., Thiéblemont, R., Vuichard, N., and
Boucher, O.: Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR
Model, J. Adv. Model. Earth Sy., 12, e2019MS001940,
https://doi.org/10.1029/2019MS001940, 2020. a
Madec, G.: NEMO ocean engine, Note du Pôle de modélisation, Institut
Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288-1619, 2008. a
Madec, G., Delécluse, P., Imbard, M., and Lévy, C.: OPA 8.1 Ocean General
Circulation Model reference manual, Notes du pôle de modélisation,
laboratoire d’océanographie dynamique et de climatologie, Institut Pierre
Simon Laplace des sciences de l’environnement global, 11, 91 pp., 1998. a
Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J.,
Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themeßl, M., Venema, V.
K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and
Thiele-Eich, I.: Precipitation downscaling under climate change: Recent
developments to bridge the gap between dynamical models and the end user,
Reviews of Geophysics, 48, RG3003, https://doi.org/10.1029/2009RG000314, 2010. a
Maraun, D., Shepherd, T., Widmann, M., Zappa, G., Walton, D., Gutiérrez, J.,
Hagemann, S., Richter, I., Soares, P., Hall, A., and Mearns, L.: Towards
process-informed bias correction of climate change simulations, Nat.
Clim. Change, 7, 764–773, https://doi.org/10.1038/nclimate3418, 2017. a, b
Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R.,
Brovkin, V., Claussen, M., Crueger, T., Esch, M., Fast, I., Fiedler, S.,
Fläschner, D., Gayler, V., Giorgetta, M., Goll, D. S., Haak, H., Hagemann,
S., Hedemann, C., Hohenegger, C., Ilyina, T., Jahns, T., Jimenéz-de-la
Cuesta, D., Jungclaus, J., Kleinen, T., Kloster, S., Kracher, D., Kinne, S.,
Kleberg, D., Lasslop, G., Kornblueh, L., Marotzke, J., Matei, D., Meraner,
K., Mikolajewicz, U., Modali, K., Möbis, B., Müller, W. A., Nabel, J. E.
M. S., Nam, C. C. W., Notz, D., Nyawira, S.-S., Paulsen, H., Peters, K.,
Pincus, R., Pohlmann, H., Pongratz, J., Popp, M., Raddatz, T. J., Rast, S.,
Redler, R., Reick, C. H., Rohrschneider, T., Schemann, V., Schmidt, H.,
Schnur, R., Schulzweida, U., Six, K. D., Stein, L., Stemmler, I., Stevens,
B., von Storch, J.-S., Tian, F., Voigt, A., Vrese, P., Wieners, K.-H.,
Wilkenskjeld, S., Winkler, A., and Roeckner, E.: Developments in the MPI-M
Earth System Model version 1.2 (MPI-ESM1.2) and Its Response to Increasing
CO2, J. Adv. Model. Earth Sy., 11, 998–1038,
https://doi.org/10.1029/2018MS001400, 2019. a, b, c, d, e
McKinney, W.: Data Structures for Statistical Computing in
Python, in: Proceedings of the 9th Python in Science Conference,
edited by: van der Walt, S. and Millman, J., 56 – 61,
https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Mearns, L., Giorgi, F., Whetton, P., Pabón Caicedo, J. D., Hulme, M., and Lal,
M.: Guidelines for Use of Climate Scenarios Developed from Regional Climate
Model Experiments (version 1.0.0), 38 pp., Zenodo, https://doi.org/10.5281/zenodo.1421091,
2003. a
Müller, W. A., Jungclaus, J. H., Mauritsen, T., Baehr, J., Bittner, M.,
Budich, R., Bunzel, F., Esch, M., Ghosh, R., Haak, H., Ilyina, T., Kleine,
T., Kornblueh, L., Li, H., Modali, K., Notz, D., Pohlmann, H., Roeckner, E.,
Stemmler, I., Tian, F., and Marotzke, J.: A Higher-resolution Version of the
Max Planck Institute Earth System Model (MPI-ESM1.2-HR), J. Adv.
Model. Earth Sy., 10, 1383–1413, https://doi.org/10.1029/2017MS001217, 2018. a
Osborn, T., Conway, D., Hulme, M., Gregory, J., and Jones, P.: Air flow
influences on local climate: Observed and simulated mean relationships for
the United Kingdom, Clim. Res., 13, 173–191, https://doi.org/10.3354/cr013173,
1999. a
Otero, N., Sillmann, J., and Butler, T.: Assessment of an extended version of
the Jenkinson-Collison classification on CMIP5 models over Europe, Clim.
Dynam., 50, 1559–1579, https://doi.org/10.1007/s00382-017-3705-y, 2017. a, b, c
Pak, G., Noh, Y., Lee, M.-I., Yeh, S.-W., Kim, D., Kim, S.-Y., Lee, J.-L., Lee,
H. J., Hyun, S.-H., Lee, K.-Y., Lee, J.-H., Park, Y.-G., Jin, H., Park, H.,
and Kim, Y. H.: Korea Institute of Ocean Science and Technology Earth System
Model and Its Simulation Characteristics, Ocean Sci. J., 56, 18–45,
https://doi.org/10.1007/s12601-021-00001-7, 2021. a, b
Palmer, T. and Stevens, B.: The scientific challenge of understanding and
estimating climate change, P. Natl. Acad. Sci. USA,
116, 24390–24395, https://doi.org/10.1073/pnas.1906691116, 2019. a
Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A., and Rodwell, M. J.: Toward
Seamless Prediction: Calibration of Climate Change Projections Using Seasonal
Forecasts, B. Am. Meteorol. Soc., 89, 459–470,
https://doi.org/10.1175/BAMS-89-4-459, 2008. a, b
Park, S., Shin, J., Kim, S., Oh, E., and Kim, Y.: Global Climate Simulated by
the Seoul National University Atmosphere Model Version 0 with a Unified
Convection Scheme (SAM0-UNICON), J. Climate, 32, 2917–2949,
https://doi.org/10.1175/JCLI-D-18-0796.1, 2019. a, b, c
Perez, J., Menendez, M., Mendez, F., and Losada, I.: Evaluating the performance
of CMIP3 and CMIP5 global climate models over the north-east Atlantic region,
Clim. Dynam., 43, 2663–2680, https://doi.org/10.1007/s00382-014-2078-8, 2014. a, b, c
Perry, A. and Mayes, J.: The Lamb weather type catalogue, Weather, 53,
222–229, https://doi.org/10.1002/j.1477-8696.1998.tb06387.x, 1998. a
Prein, A. F., Bukovsky, M. S., Mearns, L. O., Bruyère, C. L., and Done, J. M.:
Simulating North American Weather Types With Regional Climate Models,
Front. Environ. Sci., 7, 36, https://doi.org/10.3389/fenvs.2019.00036,
2019. a
Reback, J., jbrockmendel, McKinney, W., Van den Bossche, J., Augspurger, T., Cloud, P., Hawkins, S., Roeschke, M.; gfyoung; Sinhrks; Klein, A., Hoefler, P., Petersen, T., Tratner, J., She, C., Ayd, W., Naveh, S., Garcia, M., Darbyshire, JHM, Schendel J., Shadrach R., Hayden, A., Saxton, D., Gorelli, M. E., Li, F., Zeitlin, M., Jancauskas, V., McMaster, A., Battiston, P., and Seabold S.: pandas-dev/pandas: Pandas 1.4.0, Zenodo [code], https://doi.org/10.5281/zenodo.3509134, 2022. a
Roberts, M. J., Baker, A., Blockley, E. W., Calvert, D., Coward, A., Hewitt, H. T., Jackson, L. C., Kuhlbrodt, T., Mathiot, P., Roberts, C. D., Schiemann, R., Seddon, J., Vannière, B., and Vidale, P. L.: Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments, Geosci. Model Dev., 12, 4999–5028, https://doi.org/10.5194/gmd-12-4999-2019, 2019. a, b, c
San-Martín, D., Manzanas, R., Brands, S., Herrera, S., and Gutiérrez, J. M.:
Reassessing Model Uncertainty for Regional Projections of Precipitation with
an Ensemble of Statistical Downscaling Methods, J. Climate, 30,
203–223, https://doi.org/10.1175/JCLI-D-16-0366.1, 2016. a, b
Schmidt, G. A., Kelley, M., Nazarenko, L., Ruedy, R., Russell, G. L., Aleinov,
I., Bauer, M., Bauer, S. E., Bhat, M. K., Bleck, R., Canuto, V., Chen, Y.-H.,
Cheng, Y., Clune, T. L., Del Genio, A., de Fainchtein, R., Faluvegi, G.,
Hansen, J. E., Healy, R. J., Kiang, N. Y., Koch, D., Lacis, A. A., LeGrande,
A. N., Lerner, J., Lo, K. K., Matthews, E. E., Menon, S., Miller, R. L.,
Oinas, V., Oloso, A. O., Perlwitz, J. P., Puma, M. J., Putman, W. M., Rind,
D., Romanou, A., Sato, M., Shindell, D. T., Sun, S., Syed, R. A., Tausnev,
N., Tsigaridis, K., Unger, N., Voulgarakis, A., Yao, M.-S., and Zhang, J.:
Configuration and assessment of the GISS ModelE2 contributions to the CMIP5
archive, J. Adv. Model. Earth Sy., 6, 141–184,
https://doi.org/10.1002/2013MS000265, 2014. a, b, c
Schubert, S. D., Stewart, R. E., Wang, H., Barlow, M., Berbery, E. H., Cai, W.,
Hoerling, M. P., Kanikicharla, K. K., Koster, R. D., Lyon, B., Mariotti, A.,
Mechoso, C. R., Müller, O. V., Rodriguez-Fonseca, B., Seager, R.,
Seneviratne, S. I., Zhang, L., and Zhou, T.: Global Meteorological Drought: A
Synthesis of Current Understanding with a Focus on SST Drivers of
Precipitation Deficits, J. Climate, 29, 3989–4019,
https://doi.org/10.1175/JCLI-D-15-0452.1, 2016. a
Scoccimarro, E., Gualdi, S., Bellucci, A., Sanna, A., Giuseppe Fogli, P.,
Manzini, E., Vichi, M., Oddo, P., and Navarra, A.: Effects of Tropical
Cyclones on Ocean Heat Transport in a High-Resolution Coupled General
Circulation Model, J. Climate, 24, 4368–4384,
https://doi.org/10.1175/2011JCLI4104.1, 2011. a, b
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. a, b, c
Semmler, T., Danilov, S., Gierz, P., Goessling, H. F., Hegewald, J., Hinrichs,
C., Koldunov, N., Khosravi, N., Mu, L., Rackow, T., Sein, D. V., Sidorenko,
D., Wang, Q., and Jung, T.: Simulations for CMIP6 With the AWI Climate Model
AWI-CM-1-1, J. Adv. Model. Earth Sy., 12,
e2019MS002009, https://doi.org/10.1029/2019MS002009, 2020. a, b
Soares, P. M. M., Maraun, D., Brands, S., Jury, M. W., Gutiérrez, J. M.,
San-Martín, D., Hertig, E., Huth, R., Belušić Vozila, A., Cardoso, R. M.,
Kotlarski, S., Drobinski, P., and Obermann-Hellhund, A.: Process-based
evaluation of the VALUE perfect predictor experiment of statistical
downscaling methods, Int. J. Climatol., 39, 3868–3893,
https://doi.org/10.1002/joc.5911, 2019. a
Spellman, G.: An assessment of the Jenkinson and Collison synoptic
classification to a continental mid-latitude location, Theor.
Appl. Climatol., 128, 731–744, https://doi.org/10.1007/s00704-015-1711-8, 2016. a
Stainforth, D. A., Allen, M. R., Tredger, E. R., and Smith, L. A.: Confidence,
uncertainty and decision-support relevance in climate predictions, Philos.
T. R. Soc. A, 365, 2145–2161,
https://doi.org/10.1098/rsta.2007.2074, 2007. a
Sterl, A.: On the (In)Homogeneity of Reanalysis Products, J. Climate,
17, 3866–3873, https://doi.org/10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2,
2004. a
Stryhal, J. and Huth, R.: Classifications of winter atmospheric circulation
patterns: validation of CMIP5 GCMs over Europe and the North Atlantic,
Clim. Dynam., 52, 3575–3598, https://doi.org/10.1007/s00382-018-4344-7, 2018. a
Swapna, P., Koll, R., Aparna, K., Kulkarni, K., Ag, P., Ashok, K., Raghavan,
K., Moorthi, S., Kumar, A., and Goswami, B. N.: The IITM Earth System Model:
Transformation of a Seasonal Prediction Model to a Long Term Climate Model,
B. Am. Meteorol. Soc., 96, 1351–1367,
https://doi.org/10.1175/BAMS-D-13-00276.1, 2015. a, b
Séférian, R., Nabat, P., Michou, M., Saint-Martin, D., Voldoire, A., Colin,
J., Decharme, B., Delire, C., Berthet, S., Chevallier, M., Sénési, S.,
Franchisteguy, L., Vial, J., Mallet, M., Joetzjer, E., Geoffroy, O.,
Guérémy, J.-F., Moine, M.-P., Msadek, R., Ribes, A., Rocher, M., Roehrig,
R., Salas-y Mélia, D., Sanchez, E., Terray, L., Valcke, S., Waldman, R.,
Aumont, O., Bopp, L., Deshayes, J., Éthé, C., and Madec, G.: Evaluation of
CNRM Earth System Model, CNRM-ESM2-1: Role of Earth System Processes in
Present-Day and Future Climate, J. Adv. Model. Earth Sy., 11, 4182–4227, https://doi.org/10.1029/2019MS001791, 2019. a, b, c
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L., Tagliabue, A.,
Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen, M., Ilyina,
T., John, J., Li, H., Long, M., Luo, J., Nakano, H., Romanou, A., Schwinger,
J., and Yamamoto, A.: Tracking Improvement in Simulated Marine
Biogeochemistry Between CMIP5 and CMIP6, Current Climate Change Reports, 6,
95–119, https://doi.org/10.1007/s40641-020-00160-0, 2020. a, b
Tatebe, H., Ogura, T., Nitta, T., Komuro, Y., Ogochi, K., Takemura, T., Sudo, K., Sekiguchi, M., Abe, M., Saito, F., Chikira, M., Watanabe, S., Mori, M., Hirota, N., Kawatani, Y., Mochizuki, T., Yoshimura, K., Takata, K., O'ishi, R., Yamazaki, D., Suzuki, T., Kurogi, M., Kataoka, T., Watanabe, M., and Kimoto, M.: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6, Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, 2019. a, b
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a, b
Tegen, I., Neubauer, D., Ferrachat, S., Siegenthaler-Le Drian, C., Bey, I., Schutgens, N., Stier, P., Watson-Parris, D., Stanelle, T., Schmidt, H., Rast, S., Kokkola, H., Schultz, M., Schroeder, S., Daskalakis, N., Barthel, S., Heinold, B., and Lohmann, U.: The global aerosol–climate model ECHAM6.3–HAM2.3 – Part 1: Aerosol evaluation, Geosci. Model Dev., 12, 1643–1677, https://doi.org/10.5194/gmd-12-1643-2019, 2019. a
The HadGEM2 Development Team: Martin, G. M., Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011. a
Trigo, R. M. and DaCamara, C. C.: Circulation weather types and their influence
on the precipitation regime in Portugal, Int. J.
Climatol., 20, 1559–1581, https://doi.org/10.1002/1097-0088, 2000. a
Turco, M., Quintana-Seguí, P., Llasat, M. C., Herrera, S., and Gutiérrez,
J. M.: Testing MOS precipitation downscaling for ENSEMBLES regional climate
models over Spain, J. Geophys. Res.-Atmos., 116, D18109,
https://doi.org/10.1029/2011JD016166, 2011. a
Virtanen, P., Gommers, R. Oliphant, T. E., Cournapeau, D., Burovski, E., Weckesser, W., alexbrc, Peterson, P., wnbell, mattknox_ca, endolith, van der Walt, S., Laxalde, D., Brett, M., Millman, J., Lars, Mayorov, N., eric-jones, Kern, R., Moore, E., GM, P., Schofield, E., Leslie, T., Perktold, J., cookedm, Griffith, B., Nelson, A., Eads, D., Vanderplas, J., Carey, C. J., Waite, T., Wilson, J., Escalante, A., Falck R., fullung, Larson, E., Smith, D. B., Harris, C., Archibald, A., Molden, S., Cimrman, R., Henriksen, I., Hilboll, A., Berkenkamp, F., Feng, Y., Burns, C., Taylor, J., Schnell, I., Tsai, R., Nothman, J., Reimer, J., Quintero, E., Nowaczyk, N., Reddy, T., Taylor, J., prabhu, Stevenson, J., Seabold, S., Hochberg, T., Pedregosa, F., Teichmann, M., Bourquin, R., McIntyre, A., Warde-Farley, D., Ingold,G.-L., Kroshko, D., Varilly, P., Gohlke,C., Young, G., Probst, I., Nation, P., Fulton, C., Perez, F., Kulick, J., Vankerschaver, J., Kerr, C., fred.mailhot, Nandana, M., Scopatz, A., Vaught, T., jtravs, van Foreest, N., Robitaille, T., Lee, A., Venthur, B., Boulogne, F., Brodtkorb, P., and Bunch, P., Wettinger, R., Grigorievskiy, A., Gaul, A., Silterra, J., chanley, and weinbe58: scipy/scipy: SciPy 0.18.1, Zenodo [code], https://doi.org/10.5281/zenodo.154391, 2016. a
Virtanen, P., Gommers, R., Oliphant, T., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S., Brett,
M., Wilson, J., Millman, K., Mayorov, N., Nelson, A., Jones, E., Kern, R.,
and Larson, E.: SciPy 1.0: fundamental algorithms for scientific computing in
Python, Nature Methods, 17, 1–12, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Voldoire, A., Sanchez-Gomez, E., Salas y Melia, D., Decharme, B., Cassou, C.,
Senesi, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Deque, M.,
Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine,
M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R.,
Belamari, S., Braun, A., Coquart, L., and Chauvin, F.: The CNRM-CM5.1 global
climate model: description and basic evaluation, Clim. Dyn., 40, 2091–2121,
https://doi.org/10.1007/s00382-011-1259-y, 2013. a, b
Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A.,
Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., Moine, M.-P., Nabat,
P., Roehrig, R., Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I.,
Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville,
H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G.,
Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and
Waldman, R.: Evaluation of CMIP6 DECK Experiments With CNRM-CM6-1, J.
Adva. Model. Earth Sy., 11, 2177–2213,
https://doi.org/10.1029/2019MS001683, 2019. a, b, c
Volodin, E., Diansky, N., and Gusev, A.: Simulating present-day climate with
the INMCM4.0 coupled model of the atmospheric and oceanic general
circulations, Izvestiya, Atmos. Ocean. Phys., 46, 414–431,
https://doi.org/10.1134/S000143381004002X, 2010. a, b
Waliser, D., Gleckler, P. J., Ferraro, R., Taylor, K. E., Ames, S., Biard, J., Bosilovich, M. G., Brown, O., Chepfer, H., Cinquini, L., Durack, P. J., Eyring, V., Mathieu, P.-P., Lee, T., Pinnock, S., Potter, G. L., Rixen, M., Saunders, R., Schulz, J., Thépaut, J.-N., and Tuma, M.: Observations for Model Intercomparison Project (Obs4MIPs): status for CMIP6, Geosci. Model Dev., 13, 2945–2958, https://doi.org/10.5194/gmd-13-2945-2020, 2020. a
Walters, D., Baran, A. J., Boutle, I., Brooks, M., Earnshaw, P., Edwards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette, C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant, W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M., Browse, J., Bushell, A., Carslaw, K., Dalvi, M., Essery, R., Gedney, N., Hardiman, S., Johnson, B., Johnson, C., Jones, A., Jones, C., Mann, G., Milton, S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams, K., and Zerroukat, M.: The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., 12, 1909–1963, https://doi.org/10.5194/gmd-12-1909-2019, 2019. a
Wang, N., Zhu, L., Yang, H., and Han, L.: Classification of Synoptic
Circulation Patterns for Fog in the Urumqi Airport, Atmospheric and Climate
Sciences, 07, 352–366, https://doi.org/10.4236/acs.2017.73026, 2017. a, b
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki,
D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H., and Kimoto, M.:
Improved Climate Simulation by MIROC5: Mean States, Variability, and Climate
Sensitivity, J. Climate, 23, 6312–6335,
https://doi.org/10.1175/2010JCLI3679.1, 2010. a, b
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., Kawase, H., Abe, M., Yokohata, T., Ise, T., Sato, H., Kato, E., Takata, K., Emori, S., and Kawamiya, M.: MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments, Geosci. Model Dev., 4, 845–872, https://doi.org/10.5194/gmd-4-845-2011, 2011.
a, b, c
Wilby, R. L. and Quinn, N. W.: Reconstructing multi-decadal variations in
fluvial flood risk using atmospheric circulation patterns, J.
Hydrol., 487, 109–121,
https://doi.org/10.1016/j.jhydrol.2013.02.038, 2013. a
Wu, T., Yu, R., and Zhang, F.: A Modified Dynamic Framework for the Atmospheric
Spectral Model and Its Application, J. Atmos. Sci., 65,
2235–2253, https://doi.org/10.1175/2007JAS2514.1, 2008. a
Wu, T., Li, W., Ji, J., Xin, X., Li, L., Wang, Z., Zhang, Y., Li, J., Zhang,
F., Wei, M., Shi, X., Wu, F., Zhang, L., Chu, M., Jie, W., Liu, Y., Wang, F.,
Liu, X., Li, Q., Dong, M., Liang, X., Gao, Y., and Zhang, J.: Global carbon
budgets simulated by the Beijing Climate Center Climate System Model for the
last century, J. Geophys. Res.-Atmos., 118, 4326–4347,
https://doi.org/10.1002/jgrd.50320, 2013. a
Wu, T., Song, L., Li, W., Wang, Z., Zhang, H., Xin, X., Zhang, Y., Zhang, L.,
Li, J., Wu, F., Liu, Y., Zhang, F., Shi, X., Chu, M., Zhang, J., Fang, Y.,
Wang, F., Lu, Y., Liu, X., and Zhou, M.: An Overview of BCC Climate System
Model Development and Application for Climate Change Studies, Acta
Meteorol. Sin., 28, 34–56, https://doi.org/10.1007/s13351-014-3041-7, 2014. a
Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X.: The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6, Geosci. Model Dev., 12, 1573–1600, https://doi.org/10.5194/gmd-12-1573-2019, 2019. a, b
Yukimoto, S., Yoshimura, H., Hosaka, M., Sakami, T., Tsujino, H., Hirabara, M.,
Tanaka, T., Deushi, M., Obata, A., Nakano, H., Adachi, Y., Shindo, E., Yabu,
S., Ose, T., and Kitoh, A.: Meteorological Research Institute-Earth System
Model Version 1 (MRI-ESM1) – Model Description, Technical Reports of
the Meteorological Research Institute, 64, 1–96, 2011. a, b, c, d, e
Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S.,
Tsujino, H., Deushi, M., Tanaka, T., Hosaka, M., Yabu, S., Yoshimura, H.,
Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The
Meteorological Research Institute Earth System Model Version 2.0, MRI-ESM2.0:
Description and Basic Evaluation of the Physical Component, J.
Meteorol. Soc. Jpn. Ser. II, 97, 931–965,
https://doi.org/10.2151/jmsj.2019-051, 2019. a, b
Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M.,
Stevens, L., Wang, Y.-P., and Srbinovsky, J.: The Australian Earth System
Model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems Science,
70, 193–214, https://doi.org/10.1071/ES19035, 2020. a, b
Short summary
The present study evaluates the last two global climate model generations in terms of their capability to reproduce recurrent regional atmospheric circulation patterns in the Northern Hemisphere mid-to-high latitudes under present climate conditions. These patterns are linked with many environmental variables on the local scale and thus provide an overarching concept for model verification. The results are expected to be of interest for model developers and regional climate scientists.
The present study evaluates the last two global climate model generations in terms of their...