Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1331-2022
https://doi.org/10.5194/gmd-15-1331-2022
Model description paper
 | 
16 Feb 2022
Model description paper |  | 16 Feb 2022

An automatic lake-model application using near-real-time data forcing: development of an operational forecast workflow (COASTLINES) for Lake Erie

Shuqi Lin, Leon Boegman, Shiliang Shan, and Ryan Mulligan

Related authors

Prediction of algal blooms via data-driven machine learning models: an evaluation using data from a well-monitored mesotrophic lake
Shuqi Lin, Donald C. Pierson, and Jorrit P. Mesman
Geosci. Model Dev., 16, 35–46, https://doi.org/10.5194/gmd-16-35-2023,https://doi.org/10.5194/gmd-16-35-2023, 2023
Short summary

Cited articles

Anderson, E. J., Fujisaki-Manome, A., Kessler, J., Lang, G. A., Chu, P. Y., Kelly, J. G. W., Chen, Y., and Wang, J.: Ice forecasting in the next-generation Great Lakes Operational Forecast System (GLOFS), J. Mar. Sci. Eng., 6, 123, https://doi.org/10.3390/jmse6040123, 2018. 
Antenucci, J., and Imerito, A.: The CWR dynamic reservoir simulation model DYRESM: Science Manual, Center for Water Research: The University of Western Australia, Perth, Australia, 2000. 
Baracchini, T., Hummel, S., Verlaan, M., Cimatoribus, A., Wüest, A., and Bouffard, D.: An automated calibration framework and open source tools for 3D lake hydrodynamic models, Environ. Modell. Softw., 134, 104787, https://doi.org/10.1016/j.envsoft.2020.104787, 2020a. 
Baracchini, T., Wüest, A., and Bouffard, D.: Meteolakes: An operational online three-dimensional forecasting platform for lake hydrodynamics, Water Res., 172, 115529, https://doi.org/10.1016/j.watres.2020.115529, 2020b. 
Beletsky, D., Hawley, N., Rao, Y. R., Vanderploeg, H. A., Beletsky, R., Schwab, D. J., and Ruberg, S. A.: Summer thermal structure and anticyclonic circulation of Lake Erie, Geophys. Res. Lett., 39, L06605, https://doi.org/10.1029/2012GL051002, 2012. 
Download
Short summary
An operational hydrodynamics forecast system, COASTLINES, using the Windows Task Scheduler, Python, and MATLAB scripts, to automate application of a 3-D model (AEM3D) in Lake Erie was developed. The system predicted storm-surge and up-/downwelling events that are important for flood water and drinking water/fishery management. This example of the successful development of an operational forecast system can be adapted to simulate aquatic systems as required for management and public safety.
Share