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Abstract. For enhanced public safety and water resource
management, a three-dimensional operational lake hy-
drodynamic forecasting system, COASTLINES (Canadian
cOASTal and Lake forecastINg modEl System), was de-
veloped. The modeling system is built upon the three-
dimensional Aquatic Ecosystem Model (AEM3D) model,
with predictive simulation capabilities developed and tested
for a large lake (i.e., Lake Erie). The open-access work-
flow derives model forcing, code execution, post-processing,
and web-based visualization of the model outputs, includ-
ing water level elevations and temperatures, in near-real
time. COASTLINES also generates 240 h predictions us-
ing atmospheric forcing from 15 and 25 km horizontal-
resolution operational meteorological products from the En-
vironment Canada Global Deterministic Forecast System
(GDPS). Simulated water levels were validated against ob-
servations from six gauge stations, with model error in-
creasing with forecast horizon. Satellite images and lake
buoys were used to validate forecast lake surface tempera-
ture and the water column thermal stratification. The forecast
lake surface temperature is as accurate as hindcasts, with a
root-mean-square deviation <2 ◦C. COASTLINES predicted
storm surges and up-/downwelling events that are important
for coastal flooding and drinking water/fishery management,
respectively. Model forecasts are available in real time at
https://coastlines.engineering.queensu.ca/ (last access: Jan-
uary 2022). This study provides an example of the success-
ful development of an operational forecasting workflow, en-
tirely driven by open-access data, that may be easily adapted
to simulate aquatic systems or to drive other computational
models, as required for management and public safety.

1 Introduction

Lakes hold a large proportion of the global surface freshwa-
ter, which supports biodiversity and supplies water resources
for drinking, transportation, and recreation. However, an-
thropogenic stressors are causing significant changes in the
properties of lakes, such as rapid warming of surface wa-
ter (O’Reilly et al., 2015), large seasonal water level fluctu-
ations (Gronewold and Rood, 2019), increased frequency of
extreme events (Saber et al., 2020), and severe water quality
issues such as oxygen depletion (Rowe et al., 2019; Scavia
et al., 2014) and harmful algal blooms (Brookes and Carey,
2011; Watson et al., 2016). Effort has focused on investigat-
ing the long-term responses of physical processes in lakes
to climate change (O’Reilly et al., 2015; Woolway and Mer-
chant, 2019; Jabbari et al., 2021), but improving lake moni-
toring and developing short-term forecast models to predict
the occurrence of extreme events is also necessary (Woolway
et al., 2020). The biogeochemical cycles in lakes are com-
plex and often regulated by physical forcing; therefore, the
first step to model and forecast water quality issues, such as
harmful algal blooms (Paerl and Paul, 2012; O’Neil et al.,
2012) and hypoxia (Rao et al., 2008, 2014), is the develop-
ment of accurate hydrodynamic models.

Over the past several decades, many computer models
have been applied to hindcast (running models forced with
and validated against historically collected data) lake hy-
drodynamics to aid management. These range from one-
dimensional (1-D) models such as the Dynamics Reser-
voir Simulation Model (DYRESM) (Antenucci and Imerito,
2000), Simstrat (Gaudard et al., 2017), and GLM (Hipsey et
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al., 2014) to three-dimensional (3-D) models such as Delft3D
(Lesser et al., 2004), FVCOM (Chen et al., 2012; Rowe et al.,
2019), and the Estuary and Lake Computer Model (ELCOM)
(Hodges et al., 2000). Several of these hydrodynamic mod-
els may be coupled to biogeochemical models to allow for
prediction of water quality. In the case of hindcast applica-
tions, the complex and time-consuming setup and calibration
procedure of these models can result in a significant time lag
(months to years) between when a project is initiated and
when the model results are communicated to stakeholders.
This delay severely limits the utility of computational mod-
els for policy and management decision making. For better
application of these powerful computational tools, the ability
to obtain rapid monitoring and simulation forecasts should
be established.

In addition to the significant effort required to setup
and calibrate models, other hurdles exist, such as data-
sharing agreements between the agencies collecting forc-
ing/validation data and those running the models. For ex-
ample, the US National Oceanic and Atmospheric Admin-
istration (NOAA) Great Lakes Coastal Forecasting System
(GLCFS) (Chu et al., 2011; Anderson et al., 2018) is a com-
paratively large-budget multi-institutional (NOAA-GLERL
and U. Michigan-CIGLR) project that predicts water levels,
temperature profiles, currents, and wave heights over a 120 h
timeframe in the five Laurentian Great Lakes and connecting
channels, using FVCOM on a 3-D unstructured grid with 30–
2000 m horizontal resolution. Similarly, http://meteolakes.ch
(last access: December 2021) (Baracchini et al., 2020b) ap-
plies Delft3D for short-term 3-D forecasts (4.5 d) of four
Swiss lakes and http://simstrat.eawag.ch (last access: De-
cember 2021) (Gaudard et al., 2019) applies Simstrat for
near-real-time 1-D simulation of 54 Swiss lakes. These lat-
ter applications employ a data-sharing agreement between
Swiss Federal Institute of Aquatic Science and Technol-
ogy (EAWAG), École Polytechnique Fédérale de Lausanne
(EPFL) and MeteoSwiss.

Due to the present online proliferation of near-real-time
lake observation data (e.g., National Data Buoy Center
(NDBC; https://www.ndbc.noaa.gov/, last access: Decem-
ber 2021); Great Lakes Observation System (GLOS; http:
//www.glos.us/, last access: December 2021)) and high-
resolution meteorological forecasts (e.g., Global Deter-
ministic Prediction System, GDPS; http://dd.weather.gc.ca/
model_gem_global/, last access: December 2021; High Res-
olution Rapid Refresh, HRRR; http://rapidrefresh.noaa.gov/
hrrr/, last access: December 2021), the data-sharing agree-
ments and managed data transfer protocols are no longer re-
quired. When coupled with recent dramatic improvements in
workflow efficiency (e.g., Gaudard et al., 2019; Baracchini
et al., 2020b), near-real-time inclusion of forcing from me-
teorological forecasts allows for the development of specific
simulations tailored to meet diverse lake-management needs
(e.g., prediction of coastal flooding, spill modeling, fish habi-

tat, beach closures, and optimization of treatment or source
water monitoring strategies).

In the present study, we developed and tested the COAST-
LINES (Canadian cOASTal and Lake forecastINg modEl
System; http://coastlines.engineering.queensu.ca/, last ac-
cess: December 2021) lake-model application workflow that
rapidly accesses near-real-time online data (weather fore-
casts, water level, and temperature observations) for auto-
mated model forcing, execution, and validation. Hydrody-
namic forecasts are automatically post-processed and posted
on a web platform. We provide an overview of the COAST-
LINES system, including model implementation for Lake
Erie (Sect. 2: data and methods) and the accuracy of COAST-
LINES in forecasting water levels and temperature fields
over timescales of 24 and 240 h (Sect. 3: results). In the
discussion (Sect. 4), the predictive ability of COASTLINES
for decision making is showcased through prediction of hy-
drodynamic events associated with fish kills, hypoxia near
a drinking water intake, and coastal flooding from a storm
surge. We also discuss the relative advantages of COAST-
LINES in comparison to other model products, including
bias and uncertainty.

2 Data and methods

2.1 Study site

Lake Erie is the shallowest lake of the Great Lakes with
a mean depth of 19 m. Lake-wide hydrodynamics predom-
inantly exhibits free surface and current oscillations from
the 14 h barotropic seiche (Hamblin, 1987; Boegman et al.,
2001). The lake morphometry consists of distinct, yet inter-
connected western, central, and eastern basins (Fig. 1), each
with its own water quality concerns: the 11 m deep west-
ern basin is typically well mixed and has frequent harmful
algae blooms related to climate-driven meteorological forc-
ing (Michalak et al., 2013). The ephemeral stratification in
late summer (Loewen et al., 2007) regulates vertical bio-
geochemical fluxes (Boegman et al., 2008). The 20 m deep
central basin is prone to large-scale hypolimnetic hypoxia
(Scavia et al., 2014). Hydrodynamics are governed by an in-
ternal Poincaré wave (Bouffard et al., 2012; Valipour et al.,
2015) and a bowl-shaped depression of the summer thermo-
cline, which influence the oxygen budget (Beletsky et al.,
2012; Bouffard et al., 2014). The 65 m deep eastern basin has
nearshore water quality concerns from Cladophora (Higgins
et al., 2006) and ecosystem engineering by dreissenid mus-
sels (Hecky et al., 2004). Hydrodynamics of this region are
controlled by the coastal internal Kelvin wave (Valipour et
al., 2019).

2.2 Model description

COASTLINES applies the three-dimensional Aquatic
Ecosystem Model (AEM3D, version 1.1.1, HydroNumerics
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Figure 1. Map of Lake Erie showing the bathymetric depths and observation sites. The bathymetric map is at the resolution of the 500 m grid
applied in the model. The western, central, and eastern basins are labeled as WB, CB, and EB, respectively. Blue circles indicate lake buoys
and black squares indicate water level gauges.

Pty Ltd.). This model solves the unsteady 3-D Reynolds-
averaged Navier–Stokes equations for incompressible flow
employing the Boussinesq and hydrostatic approximations.
Momentum advection is based on the Euler–Lagrange
method with a conjugate-gradient solution for the free-
surface height (Casulli and Cheng, 1992) and a conservative
ULTIMATE QUICKEST discretization scheme for advec-
tion of scalars (Leonard, 1991). AEM3D is a parallel version
of the commonly applied ELCOM (Hodges et al., 2000).
ELCOM has been applied to Lake Erie to simulate currents
and seasonal circulation (León et al., 2005), the internal
Poincaré (Valipour et al., 2015) and Kelvin waves (Valipour
et al., 2019), ice cover (Oveisy et al., 2012), and the response
of the thermal structure, in Lake Erie, to air temperature and
wind speed changes (Liu et al., 2014). ELCOM has been
coupled with the biogeochemical the Computational Aquatic
Ecosystem Dynamics Model (CAEDYM) to simulate Lake
Erie phytoplankton and nutrients (León et al., 2011), and the
response of hypoxia (Bocaniov and Scavia, 2016) and algae
blooms (Scavia et al., 2016) to nutrient load reductions.
Recent applications of AEM3D include a study of the water
level in Lake Arrowhead, California (Saber et al., 2020),
ice cover in Lake Constance (Caramatti et al., 2019), and
pollutant transport in Lake St. Clair (Madani et al., 2020).

2.3 Model setup and meteorological forcing variables

To adequately resolve the coastal boundary layer (∼ 3 km
width (Rao and Murthy, 2001)) and basin-scale internal
waves (Poincaré (16.8 h) and Kelvin waves), the bathymetry
of Lake Erie (https://www.ngdc.noaa.gov/mgg/greatlakes/
erie.html, last access: January 2021) was discretized into a
500 m× 500 m horizontal grid, which is ∼ 10 % of the in-
ternal Rossby radius (Schwab and Beletsky, 1998). The lake

was discretized into 45 vertical layers, with fine resolution
(0.5 m) through the surface layer, metalimnion and bottom
of the central basin, and coarse layers (5 m) through the hy-
polimnion of the deeper eastern basin to the maximum depth
of 64 m.

The model was “cold started” on 8 April 2020 (day of
year 99) with an initial temperature field spatially interpo-
lated from observed water temperatures at stations 45142 and
MHRO1, a time when spring turnover causes thermal strati-
fication to be minimal. The model time step is dt = 300 s to
satisfy the Courant–Friedrichs–Lewy (CFL) of

√
2 condition

for internal waves (Hodges et al., 2000).
The model is forced by the surface meteorology (wind

speed, wind direction, air temperature, shortwave solar radi-
ation, relative humidity, air pressure, and net longwave ra-
diation), with net longwave radiation being computed in-
ternally within AEM3D from cloud cover and the modeled
surface temperature. In order to address the spatial variabil-
ity of meteorological conditions across the lake, the com-
putational domain was forced with meteorological data on
horizontal grids at 15 km (https://dd.weather.gc.ca/model_
gem_global/15km/, last access: January 2022) and 25 km
(https://dd.weather.gc.ca/model_gem_global/25km/, last ac-
cess: October 2021) resolution using meteorological fore-
casts from the Environment and Climate Change Canada
Global Deterministic Forecast System (GDPS). This resulted
in 31 and 23 meteorological sections for the 15 and 25 km
models, respectively. Wind speed, wind direction, air tem-
perature, relative humidity, air pressure, dew point, and cloud
cover are direct outputs from GDPS, with solar radiation cal-
culated based on dew point and air pressure (Meyers and
Dale, 1983; Appendix C in Gaudard et al., 2019). The mete-
orological forecast has an output time step of 3 h and a fore-
cast length of 240 h. The GRIB2 meteorological data were
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retrieved with the “urllib” library in Python and formatted
into AEM3D input files using the nctoolbox in MATLAB.

In this pilot application, the Lake Erie inflows and out-
flows, which roughly balance, are neglected; however, evap-
oration and precipitation are accounted for in the water bal-
ance. Over short timescales (<10 d), the contributions from
evaporation and precipitation to water level change are mi-
nor, with water level oscillations resulting from storm surges
and surface seiches (Trebitz, 2006).

2.4 Observations, implementation, and model
validation

The water levels and temperatures simulated by COAST-
LINES were validated using both in situ and satellite ob-
servations. Near-real-time water level data were used from
six stations along the Canadian coastline, which reported
hourly observations (Bar Point, Kingsville, Erieau, Port Stan-
ley, Port Dover, and Port Colborne; Fig. 1; Table 1), retrieved
from Fisheries and Oceans Canada (https://marees.gc.ca/eng/
find/zone/44, last access: January 2022). The data are parsed
using the “BeautifulSoup” library in Python and saved as
.csv files to be read with MATLAB for model validation.
The observations showed higher fluctuations in the western
(Bar Point and Kingsville) and eastern (Port Dover and Port
Colborne) basins (Fig. 1). Thus, we quantify the water level
forecast capability and uncertainty in terms of the root-mean-
square deviation (RMSD) and relative error (RE):

RMSD=
[

1
N

∑N

i=1
(xi − yi)

2
]1/2

, (1)

RE= 100
RMSD

log . mean(daily range)
, (2)

where xi and yi(i = 1, 2, 3, . . . N ) are the model and ob-
served water level time series and N is the number of sam-
ples. RMSD is the absolute error of the model against the
observation. The difference between the observed daily min-
imum and maximum value was defined as the daily water
level fluctuation range, where RE is the ratio between the
RMSD and lognormal mean of daily range over April to
September 2020. Given that our study focuses on a 240 h
forecast, RE can characterize the forecast bias regardless of
the instantaneous water level position. Here, forecast uncer-
tainty is in the evaluation statistic from combining forecast
dates – not actual uncertainty in an individual forecast.

Eight in situ lake buoys, distributed over the nearshore
areas of the three basins (Fig. 1; Table 1), provided near-
real-time model validation data through the Great Lakes
Observing System (GLOS: http://www.glos.us/, last access:
January 2022) and National Data Buoy Center (NDBC:
https://www.ndbc.noaa.gov/, last access: January 2022) por-
tals. For each station, the text-based NDBC observations are
parsed using the “BeautifulSoup” Python library, and the
GLOS observations are retrieved using “webdriver” from

the “selenium” Python library. All the lake buoy observa-
tions are saved as .csv files and read into MATLAB for post-
processing. Attempts to retrieve missing variables would re-
sult in run-time errors.

The lake buoys are deployed from April or May to
mid-October, spanning the spring/fall turnover and seasonal
summer stratification periods. However, due to COVID-19-
related delays in instrument deployments in 2020, only two
buoys located offshore of Cleveland, near the water intake
crib (station 45176 and station 45164), were equipped with
thermistor chains to monitor temperature profiles. The other
six buoys provide air and lake surface temperature as well
as wind speed and direction observations for hydrodynamic
and meteorological forecast validation. Satellite-based ob-
servations of lake surface temperature were obtained from
the Great Lakes Surface Environmental Analysis (GLSEA2),
which is derived from NOAA CoastWatch AVHRR (Ad-
vanced Very High-Resolution Radiometer) imagery and up-
dated on NOAA GLERL website (https://coastwatch.glerl.
noaa.gov/erddap/files/GLSEA_GCS/, last access: Deccem-
ber 2021). GLSEA2 produced daily observations, with
2.6 km resolution, from the cloud-free portions of the satellite
images (Schwab et al., 1999). The NetCDF data are retrieved
using the “BeautifulSoup” library and “webdriver” from “se-
lenium”.

We quantified the temperature forecast capability using the
statistical measures of RMSD (Eq. 1) and mean bias devia-
tion (MBD):

MBD= 100
1
N

∑N
i=1(xi − yi)

1
N

∑N
i=1yi

. (3)

For the spatial MBD and RMSD (s-MBD and s-RMSD), xi

and yi are the model and observed temperature in each grid,
and N is the total number of grids. For time series MBD and
RMSD (t-MBD and t-RMSD), xi and yi are the model and
observed temperature at each sample time, and N is the total
number of samples.

2.5 System operation

The COASTLINES operational forecast system is run on a
local server supported by Queen’s University ITS (Kingston,
Canada). The COASTLINES workflow is presented in Fig. 2.
The system consists of input data acquisition and prepara-
tion, 24 h hydrodynamic simulations, 240 h hydrodynamic
simulations, validation against in situ observations, and up-
loading the model forecasts and validation to the web plat-
form. Given that the standard deviations of meteorological
forecast variables increase with forecast lead time (Buehner
et al., 2015), we performed separate 24 and 240 h forecast
simulations each day. The model advances every day accord-
ing to the 24 h forecast simulation and terminates by gen-
erating “restart” files. These files are then used to hot start
the 240 h forecast simulation and the 24 h simulations for the
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Table 1. Details of field stations with water level gauges and lake buoys.

Station Parameter Sampling interval (min) Depth of measurement (m)

Bar Point Water level 60 Surface
Kingsville Water level 60 Surface
Erieau Water level 60 Surface
Port Stanley Water level 60 Surface
Port Dover Water level 60 Surface
Port Colborne Water level 60 Surface
TWCO1 Temperature 10 Surface
45005 Temperature 10 Surface
45176 Temperature 10 1, 3, 4, 6, 7, 9, 10, 12, 14, 15
45169 Temperature 30 Surface
45164 Temperature 60 1, 2, 4, 6, 8, 10
45132 Temperature 60 Surface
45167 Temperature 10 Surface
45142 Temperature 60 Surface

next day. The input files for the 240 h forecast simulations are
iteratively replaced by the new 240 h meteorological forecast
generated each day. The 24 and 240 h forecast model outputs
are compared against observations to evaluate the forecast
performance against forecast lead time.

The long-term stability of employing daily “hot” restarts
can be seen in a comparison between simulated temperature
profiles from a continuous run and that from stitching to-
gether the 24 h hot-start simulations (Appendix A; Fig. A1).
At present, the initial water level cannot be modified using
the AEM3D restart files. Therefore, to account for long-term
drift in surface water level, we used real-time gauge observa-
tions as the datum point for water level forecasts (automat-
ically performed by MATLAB in post-processing) and only
consider errors resulting from simulation of storm surges and
seiches, as opposed to those from seasonal changes in mean
lake level. Automation of the processing tasks in the work-
flow is performed by Python scripts triggered by the Win-
dows Task Scheduler every 24 h at midnight. The online me-
teorological forecast data are retrieved from GDPS once up-
dated at 03:00 EST. Forcing variables are then formatted in
MATLAB, called by the Python scripts once the meteoro-
logical forecast data have been retrieved. The AEM3D pre-
compiled executable is then run as a black-box code, trig-
gered by Python. The 24 and 240 h simulations take 0.5 and
4 h to complete, respectively. The observed data, including
water levels from gauge stations, water temperatures from
lake buoys, and satellite images, are scraped with Python
at 08:00 EST, followed by post-processing in MATLAB to
validate model output, calculate statistical metrics (RMSD,
MBD), and generate figures. The results are exported to
Google sheets and published to the COASTLINES website
(e.g., Appendix B). The authors (supervisors of COAST-
LINES) and Queen’s ITS monitor forecast results and main-
tain system operation.

Global coverage of the GDPS forecasts enables this op-
erational system to be readily implemented at other sites
where lake bathymetry, boundary flows, and in situ valida-
tion data are available. The workflow may be easily modi-
fied to include additional meteorological forecasts or other
black-box hydrodynamic drivers (e.g., HRRR and Delft3D,
respectively; Rey and Mulligan, 2021). This would require
simple modification of the COASTLINES MATLAB-based
write statements to meet the formatting requirements of a
particular driver.

3 Results

The COASTLINES water level and temperature forecasts
have been operational since April and July 2020, respec-
tively. The 24 and 240 h forecast water levels from the 15
and 25 km resolution models were validated against real-time
gauge station observations. The water level statistical met-
rics (RMSD and RE) were averaged over April to Septem-
ber 2020. The 24 and the 240 h forecast lake surface temper-
ature and temperature profiles, from the models, were also
validated against real-time lake buoy data and daily aver-
aged satellite imagery. The time series and spatial MBD and
RMSD (t-RMSD, t-MBD and s-RMSD, s-MBD) were aver-
aged over July to September 2020.

3.1 Water level

The RE of the forecast water level increases with forecast
time when averaged over April to September 2020; the 24 h
forecast error being ∼ 40 % at all six gauge stations (Fig. 3a,
c, e, g, i, k). Given the large water level fluctuation at Port
Colborne (Fig. 3l), the 240 h forecast RE is highest at this
station, exceeding 70 % (Fig. 3k). Of the six gauge sta-
tions reported in this study, those at the western (Bar Point
and Kingsville) and eastern (Port Dover and Port Colborne)
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Figure 2. Daily workflow and automated processes in the COASTLINES operational system as performed on the local server.

ends of Lake Erie longitudinal axis had the largest water
level fluctuations, resulting from the predominant southwest-
erly winds generating strong wind setup and surface seiches
(Fig. 3b, d, f, h, j, l). The lognormal means of the daily range
in water level at the six gauge stations are 0.21 (Bar Point),
0.16 (Kingsville), 0.07 (Erieau), 0.10 (Port Stanley), 0.15
(Port Dover), and 0.17 cm (Port Colborne).

The 24 h forecasts show qualitative agreement with obser-
vations in phase and magnitude (Fig. 4). The 24 h forecasts
reproduce the dramatic surface seiches induced by westerly
winds >15 m s−1 (Fig. C2) on day 251 (RMSD <0.1 cm),
especially the obvious water level fluctuations at stations in
the western and eastern basins (Fig. 4a, b, e). However, the
prediction of water level at Bar Point showed a large bias
(Fig. 4f), with the model overestimating the water level fluc-
tuation. The uncertainty in the model forecast, which in-
creased with the range of the daily fluctuation, was captured
by the 24 h forecast RE over April to September (the shaded
areas in Fig. 4). Overall, the confidence interval of the 24 h
forecast included most of the discrepancies between the ob-
servations and the model results.

Time series validations for the 240 h model forecast
(Fig. 5) include confidence intervals from the RE (Fig. 3).
As shown, the forecast began 6 d in advance of the large
surface seiche event on day 251 and predicted the seiche to
crest at Port Colborne 1–2 h ahead of the observations, and to
trough at Kingsville 1–2 h behind the observations (Fig. 5a,
c). Damping of the seiche oscillations (∼ 144 h in the future)
was excessive, with the water levels being underestimated
and the phase shifted by approximately 12 h (Fig. 5a, b). De-
spite the wide confidence intervals, due to the increasing RE

with forecast time, large bias existed after the seiche event
(forecast time >168 h). When the forecast was initiated close
to the event (3 d before), the prediction of seiche phase was
more accurate (Fig. 5d, e, f); however, the seiche decay still
had a 12 h phase shift. The discrepancies in seiche amplitude
(<0.1 m) were within the confidence intervals of the models.

3.2 Water temperature

3.2.1 Lake surface temperature

Using satellite-based and lake-buoy-based observations, we
evaluated the lake surface temperature forecast (Fig. 6). The
24 h forecast captured the seasonal variation of lake surface
temperature, particularly the rapid increase in temperature
on days 180–190, and the gradual decrease in temperature
after day 240, at all eight stations. However, the forecast
overestimated the lake surface temperature in July by 3–5 ◦C
(days 180–210), particularly at stations (STNs) 45167 and
45142. Due to the 3 h output interval associated with the me-
teorological forecast data, the forecast model was insensi-
tive to temperature fluctuations over shorter timescales, as
recorded by the lake buoys, and it underestimated the sud-
den decrease in temperature near days 220 and 255 at STN
45005.

Overall, the t-MBD and t-RMSD, over these eight stations,
were ∼ 6 % and 1.4 ◦C (15 km model) and ∼ 5 % 1.3 ◦C
(25 km model) for the 24 h forecast, respectively (Table 2).
The average s-MBD and s-RMSD over the 50 d from July–
September were ∼ 4 % and 1.2 ◦C, respectively, for both 15
and 25 km resolution models.
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Figure 3. Relative error (RE) in water level predictions against forecast time at six stations (a, c, e, g, i, k). Panels (b), (d), (f), (h), (j), and
(l) are the corresponding frequency distribution of lognormal means of the daily water level fluctuation range (x axes, unit: meters) at Bar
Point, Kingsville, Erieau, Stanley, Port Dover, and Port Colborne, respectively.

Figure 4. Comparison between observed and stitched 24 h forecast modeled water level at (a) Port Colborne, (b) Port Dover, (c) Port Stanley,
(d) Erieau, (e) Kingsville, and (f) Bar Point. The shaded areas show the confidence interval of the 15 km model (red shading) and the 25 km
model (blue shading), as given by the 24 h RE in Fig. 3.

The 240 h forecast MBD and RMSD, surprisingly, do not
show an increase in error with forecast time (Fig. 7a, b). Both
t-MBD and s-MBD, over the 240 h forecast, are ∼ 4 %–5 %,
with s-MBD 0.5 %–1 % higher than t-MBD. Although both
240 h s- and t-RMSD are under 2 ◦C, the t-RMSD show the
error with forecast time to be higher than s-RMSD. Both time
series observations from lake buoys and daily averaged ob-
servations from satellite imagery fall into the forecast confi-
dence interval based on the 240 h t-RMSD (Fig. 7c–f).

Spatial comparisons of satellite-based observations to the
24, 48, 120, and 168 h surface temperature forecasts illustrate

that the forecast system (with 15 km meteorological data)
predicted the cooler water mass along the northwest shore-
line of the central basin with a cold bias ∼ 2 ◦C (Fig. 8);
this may be upwelling hypolimnetic water (see following
Sect. 4.2). The model also predicted lower surface temper-
atures in coastal regions of the western basin with a cold
bias∼ 2 ◦C (Fig. 8m–t); the bias presumably was induced by
neglecting riverine inflows (e.g., Detroit River and Maumee
River; see also Sect. 4.3), which are typically near the air
temperature and several degrees warmer than the lake surface
(Wang and Boegman, 2021). Further comparisons between
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Figure 5. Comparison between the observed water level and 240 h forecast hot started on day 245 (a, b, c) and day 248 (d, e, f) at Port
Colborne, Port Dover, and Kingsville, respectively. The shaded areas show the confidence interval of the 15 km model (red shading) and the
25 km model (blue shading), as given by the 240 h RE in Fig. 4.

Figure 6. Comparison between the stitched 24 h forecast and observed lake surface temperature at eight stations (a) TWCO1, (b) 45164, (c)
45005, (d) 45132, (e) 45176, (f) 45167, (g) 45169, and (h) 45142. The green lines are time series observations from lake buoys; the black
lines are daily observations derived from satellite imagery.

model predictions and satellite-based observations of lake
surface temperature can be found in Appendix D (Figs. D1–
D2).

3.2.2 Thermal structure

The 3-D AEM3D model structure applied in COASTLINES
enables the prediction of the thermal profiles in the lake. On
15 June 2020 (day 168), a rapid drop (∼ 6 ◦C) in surface tem-
perature was recorded by the thermistor at STN 45176 and
predicted by the stitched 24 h COASTLINES model (15 km

meteorological input) (Fig. 9a, b). The timing and intensity of
this upwelling event were accurately forecast, but before and
after the upwelling event, the mixed layer depth was mod-
eled to be deeper than observed, which is perhaps a result of
spurious numerical diffusion resulting from the thermocline
swashing along the stair-step z-level grid at the lake perime-
ter. The 240 h forecast model was not yet operational at this
time.

Both the 240 h 15 and 25 km resolution forecasts predicted
the downwelling event on 11 July 2020 (day 193) at STN
45176 (Fig. 10). The forecasts were hot started 7 d before
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Table 2. Statistical measures of t-MBD (MBD) and t-RMSD (RMSD) between the 24 h forecast model and observations of water temperature.

Station RMSD (◦C) MBD (%)

15 km model 25 km model 15 km model 25 km model

45176 2.6 2.6 6.8 6.8
45164 1.8 2.1 2.2 2.3
45132 1.5 1.5 5.5 5.7
45142 2.4 2.1 9.9 8.8
45167 1.2 1.1 4.6 4.0
45169 1.3 1.2 4.7 4.6
TWCO1 1.0 1.0 3 1.9
45005 1.2 1.1 8.2 7.9

Figure 7. (a) MBD against forecast time; (b) RMSD against forecast time. (c–f) Time series of 240 h forecast and observed lake surface
temperature at stations 45164, 45167, 45169, and 45176, respectively, and daily averaged satellite lake surface temperature (black asterisks).
The confidence interval (shaded areas) in panels (c)–(f) represents the uncertainty of the 240 h forecast model through the time series RMSD
with the forecast time (panel b).

the event (day 187), successfully predicting when warm sur-
face water downwelled toward the bed displacing the ther-
mocline (Fig. 10b, c), but the 15 km resolution underesti-
mated the intensity of downwelling, predicting thermocline
recovery on day 193. The forecast hot started 5 d before the
event (day 189) gave a more accurate prediction with the
downwelling persisting over 2 d (Fig. 10d, e) – as observed
(Fig. 10a).

4 Discussion

4.1 Prediction of coastal upwelling for fishery and
drinking water management

The central basin of Lake Erie is vulnerable to hypoxia
in summer from near-bed thermal stratification and the
relatively large ratio of sediment area to hypolimnetic
volume (Bouffard et al., 2013; Nakhaei et al., 2021). As-
sociated fish-kill events (tens of thousands) are regularly
reported, including an event on north shore of the central
basin in the late summer of 2012, which was presumably
was caused by upwelling of cold anoxic water from the
hypolimnion (MOE, 2014; Rao et al., 2014). Similarly,
thousands of freshwater drum were killed in a rapid
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Figure 8. Comparison of lake surface temperature from (a–d) satellite observations, (e–h) 15 km model forecast, and (i–l) 25 km model
forecast during late summer. The models were hot started on day 251. The differences between observations and models are shown in
panels (m)–(t).

Figure 9. Temperature profile comparisons between (a) observations and (b) stitched daily 24 h forecasts from the 15 km resolution model
at station 45176. (c) Observed dissolved oxygen concentration at station 45164 from lake buoy (http://www.glos.us/, last access: Decem-
ber 2021). The inset image shows the bathymetry and locations of lake buoys. The black square indicates the timing of the upwelling event.

warming event (∼ 5 ◦C per week) in the western basin
in 2020 (https://www.13abc.com/content/news/Hundreds-
of-dead-fish-wash-up-in-Sandusky-Bay-571025541.html,
last access: June 2020). Similarly, shoreward advection
of hypoxic water, from upwelling or internal waves, also
adversely affects source water quality at drinking water
intakes (https://epa.ohio.gov, last access: August 2020),
whereby high Fe and Mn or low pH, associated with hypoxic
water, requires adjustment of treatment processes. This is
a particular issue along the Ohio coast of the central basin
(Ruberg et al., 2008; Rowe et al., 2019).

The ability to predict these movements of hypolimnion
water would aid management of both Lake Erie fisheries
and drinking water treatment. Here, we test the ability of

the model to predict upwelling of cold bottom water in
the region where the fish kill was observed in 2012. On
days 249–253 in 2020 (Fig. 8), strong southwesterly winds
(∼ 12 m s−1; Fig. C2) were modeled and observed to create
upwelling along the north shore, as expected from Ekman
drift of the surface layer (Jabbari et al., 2019). The upwelled
cold hypolimnetic water is shown near the coast of Erieau
in the satellite observations and the 15 km resolution model
(Fig. 8a, b, e, f). The depth-averaged water temperature and
current circulation in the forecast show upwelling to persist
for several days (Fig. 11), with cold hypolimnetic water ac-
cumulating along the north shore and strong eastward cur-
rents along the northern shoreline of the east-central basin.
The upwelling region matched that shown in a 2013 hindcast
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Figure 10. Comparisons of (a) observed temperature profile, (b, d) 240 h 15 km resolution modeled, and (c, e) 240 h 25 km resolution
modeled temperature profiles at STN 45176. The forecast models were hot started on day 187 (b, c) and day 189 (d, e). The black square
indicates the downwelling event.

simulation (Valipour et al., 2019), revealing the hotspots of
vertical transport of nutrients and anoxic hypolimnetic water.

Another upwelling event occurred near the Cleveland
drinking water intake crib on days 167–170 (Fig. 9). This
event was accompanied by simultaneous ∼ 8 mg L−1 os-
cillations in the observed dissolved oxygen concentration
(Fig. 9c) at STN 45164 (∼ 20 km away from STN 45176),
followed by the dissolved oxygen concentration becoming
locally hypoxic (<2 mg L−1) for ∼ 2 d. The COASTLINES
model predicted this event (Sect. 3.2.2), which would have
provided sufficient notice for drinking water plane operators
to implement the additional treatment required for hypoxic
water (Rowe et al., 2019). Future work, using the coupled
iWaterQuality biogeochemical module (formerly CAEDYM)
could extend COASTLINES to forecast water quality in Lake
Erie (León et al., 2011), including dissolved oxygen con-
centrations and formation of algae blooms (Bocaniov et al.,
2020).

4.2 Prediction of storm-surge events for public safety

Due to its shallowness and long fetch aligned with
the predominant southwest winds (Hamblin, 1979), Lake
Erie has the largest daily range of water level amongst
the Great Lakes (Trebitz, 2006); these water level fluc-
tuations are mainly due to storm surges and surface
seiches (Mortimer, 1987). In every month of 2020,
Lake Erie set new mean water level records (https://
www.tides.gc.ca/C&A/bulletin-eng.html, last access: De-
cember 2020), causing the shoreline to be exposed to
high risk from erosion and flooding and making the

shoreline communities susceptible to costly damage and
economic loss (e.g., https://www.lowerthames-conservation.
on.ca/flood-forecasting/flood-notices/, last access: Decem-
ber 2020). Given the ability of COASTLINES to predict wa-
ter level fluctuations induced by storm surges and seiches
(Figs. 3, 5), we tested the ability of the model to act as a
coastal flooding warning system. Due to the unpredictability
and severity of water level fluctuations in Lake Erie, there
is currently a need to improve short-term water level fore-
casts and water level warning systems (Gronewold and Rood,
2019). This would assist early decision-making during natu-
ral hazards (Gronewold and Rood, 2019).

We forecast the storm event on 15 November 2020,
which generated a wind-induced storm surge (∼ 1–1.5 m)
in the eastern basin with associated strong surface currents
(Fig. 12). The inset image, taken during the event, shows
the coastal flooding from this event. COASTLINES success-
fully predicted the high-water-level phase at Port Dover 72 h
in advance but underestimated the water level increase by
0.5 m. The hot-start forecast 24 h in advance was more accu-
rate in predicting the water level prediction, with a difference
<0.5 m from the observations (Fig. 12d). Note that both fore-
casts missed the small (∼ 0.5 m) seiche before the significant
increase at the end of day 320, presumably due to the low
temporal resolution of the meteorological forecast input or
local topography near the gauge. The overall wind-induced
tilt of the free surface was lower from the 72 h hot start rel-
ative to the 24 h hot start (Fig. E1), which predicted a larger
local storm surge (Fig. 12d).
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Figure 11. Color maps showing the forecast depth-averaged temperature throughout the lake. The red arrows represent forecast depth-
averaged currents. The model results are from the 240 h forecast model hot started on day 247.

Figure 12. Color maps showing the water level change compared to 15 November at 00:00 EST from (a) 12 h, (b) 15 h, and (c) 18 h forecasts
from the 15 km resolution model. The black arrows are depth-averaged mean current fields. Panel (d) shows a comparison between forecast
and observed water level at Port Dover. The upper panel shows the forecast hot started on 15 November 2020 (day 320), and the lower
panel shows the forecast hot started on 12 November 2020 (day 317). The shaded region indicates the confidence interval. The inset image
(extracted from a footage by Jason Homewood from Lower Thames Valley Conservation Authority) shows the flooding induced by the
dramatic water level increase during this event. The two cottages shown in the images were destroyed later in the afternoon.
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The impacts of coastal flooding could be improved by
including simulation of wind waves through enabling the
coupled surface wave model SWAN (Booij et al., 1999) in
AEM3D. Similarly coupled Delft3D-SWAN models have re-
cently been applied in the development of a real-time predic-
tive system for the coastal ocean and large estuaries (Rey and
Mulligan, 2021).

4.3 Bias and uncertainty

The AEM3D model (formerly ELCOM) employed in
COASTLINES has shown skill in temperature hindcasts in
the Great Lakes with RMSD ∼ 0.9–3 ◦C in Lake Erie (Liu et
al., 2014; Oveisy et al., 2012) and 1.5–1.9 ◦C in Lake Ontario
(Paturi et al., 2012). Similarly, the 24 h COASTLINES fore-
cast predicted water temperatures with an average s-RMSD
and t-RMSD <2 ◦C at the surface (Table 2). Therefore, the
forecasts are within ∼ 1 ◦C RMSD in comparison to hind-
casts, showing sufficient model skill for predictive simula-
tions to aid lake management (movements of hypoxic wa-
ter, fish thermal habitat, etc.). The accuracy of the COAST-
LINES forecasts may result from the high spatial resolution
and coverage of meteorological forecast compensating for
the inherent inaccuracies in the weather forecast data. Errors
in forcing data may be compensated for using data assimila-
tion (Baracchini et al., 2020b). In the hindcast models, Liu
et al. (2014) applied uniform Lake Erie meteorological forc-
ing over four zones and Valipour et al. (2019) utilized six
zones, each spanning ∼ 100 km. These included land-based
observations, when there was no available lake buoy data,
which induce error, especially in large shallow lakes (Ham-
blin, 1987). The comparatively high-resolution GDPS mete-
orological forecast was 4–5 times higher in horizontal reso-
lution than used in the hindcast simulations, improving the
representation of regional meteorological and climatological
conditions.

Compared to other operational lake forecast systems, the
240 h COASTLINES forecast is longer (e.g., GLCFS fore-
casts 120 h and meteolakes.ch forecasts 108 h) and is the
only one forced with open-access meteorological data that
have global coverage. The GLCFS provided 48 h water
level forecasts with RMSD ∼ 0.12 m at the Buffalo gauge
and ∼ 0.14 m at the Toledo gauge, corresponding to RE
∼ 60 % and 51 %, respectively (O’Connor et al., 1999; Treb-
itz, 2006), using the older 4 km grid Princeton Ocean Model
implementation, as opposed to the newer unstructured grid
FVCOM GLCFS. COASTLINES gives better 48 h water
level forecast performance (RE∼ 40 %) at six gauge stations.
For temperature, benefitting from a smaller domain, finer-
resolution meteorological input (∼ 2.2 km), and data assim-
ilation, the 4.5 d lake surface temperature predicted by me-
teolakes.ch has a RMSD= 0.8 ◦C (Baracchini et al., 2020b),
whereas COASTLINES predicted the 120 h (5 d) lake sur-
face temperature with RMSD ∼ 1.7 ◦C. COASTLINES also
outperforms 1-D climatological hindcasts (e.g., Freshwater

Lake; FLake), with 2–4 ◦C RMSD over a 120 h lake surface
temperature forecast (Lv et al., 2019; Gu et al., 2015) and
has similar error to the 3-D Princeton Ocean Model (Kelley
et al., 1998), with 0.6–0.9 ◦C mean absolute error in the 36 h
lake surface temperature forecast at station 45005.

The uncertainty and bias in the COASTLINES forecast
result from error induced by the initial conditions at each
hot start, error in the meteorological forecasts, and error in
the numerical methods. These errors could be reduced by
improving model calibration through data assimilation. For
example, Baracchini et al. (2020b) reduced the RMSE tem-
perature simulation of Lake Geneva from ∼ 2 to ∼ 1 ◦C by
employing a sequential data assimilation routine; this would
correspond to a <5 % improvement in simulation of Lake
Erie summer surface temperature. In AEM3D, sequential
data assimilation could be implemented through modifica-
tion of the restart files (aem3d_restart_v3_type.f90); how-
ever, this is beyond the scope of the present study. Future
work will focus on adding real-time model calibration (e.g.,
Gaudard et al., 2019), which is not presently included in the
COASTLINES forecast workflow. For example, Baracchini
et al. (2020a) employed OpenDA as a black-box wrapper to
calibrate Delft3D for Lake Geneva.

The errors induced by hot starting were shown to be neg-
ligible (Figs. 4, 6, 7a, b, A1). However, uncertainty from
boundary conditions, especially the meteorological forcing,
may introduce error. The 23 to 31 meteorological zones
from the forecast wind field provides spatial variability re-
quired to simulate the mean surface circulation (Laval et al.,
2003), water level (Trebitz, 2006), and thermocline motions
(Valipour et al., 2015, 2019). However, the 3 h time interval
between GDPS forecast dataset updates is much less than the
10 min interval associated with meteorological data observed
at lake buoys (typically one to six) used to drive hindcasts
(e.g., León et al., 2005) and so the coarse temporal resolu-
tion in the GDPS forecast may alias temporal events, such as
wind gusts (Fig. C1). This is of particular concern in large
shallow lakes, such as Lake Erie, where winds play the dom-
inant role in driving hydrodynamics. The rapid response of
the water level to windstorms (Hamblin, 1987) could result
in the effects of aliasing and forecast error being passed to
the water level, leading to the growth of RE against forecast
time (Fig. 3). The meteorological forecast from the 15 and
25 km GDPS models did not show discrepancies (Figs. C2–
C5) and the evaluation metrics indicate that forecast results
were largely insensitive to the meteorological inputs in Lake
Erie (Figs. 3, 7). However, the 15 km model better predicted
the mesoscale upwelling event (Figs. 8, 9, D2). The 24 h
air temperature and wind speed forecasts had ∼ 1.5 ◦C and
∼ 2 m s−1 RMSDs, respectively. However, bias in the 240 h
forecast increases with forecast time (Buehner et al., 2015).
The 168 h forecast meteorological data overestimated wind
speeds by up to 10 m s−1 (Fig. C4), and bias in the air tem-
perature forecast (Fig. C5) may cause the consistent warm
bias (up to 3 ◦C) in forecast lake surface temperature (Fig. 8).
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These errors may be corrected through real-time calibration
using data assimilation (Baracchini et al., 2020a, b). The
growing bias in air temperature, with forecast time, does not
affect the lake surface temperature (Fig. 7), presumably due
to the buffer effect of surface mixing layer (Schertzer et al.,
1987).

Neglecting the inflows and outflows in the predictive sim-
ulation could induce bias in the forecast. The overestimation
of water level fluctuation range near Bar Point (Fig. 4f) may
result from neglecting the large Detroit River inflow, which
regulates the seiche magnitude. The inflows also adjust more
rapidly to air temperatures compared to deep lake waters.
Thus, the up-to-2 ◦C cold bias in coastal regions of the west-
ern basin (Figs. 8m–t, D2) could be induced by neglecting
the heated flux from two major inflows (i.e., Detroit River
and Maumee River) of Lake Erie.

In addition to inaccuracy in initial and boundary condi-
tions, the discrepancies in simulating temperature profiles
forecast may result from numerical diffusion arising due to
the discrete nature of the vertical and horizontal grids. The
simulated thermocline depth is overestimated (Figs. 9, 10),
as in applications of ELCOM with both higher (Nakhaei
et al., 2019) and lower resolution (Paturi et al., 2012).
COASTLINES has the potential to predictively simulate
mesoscale physical processes, such as Kelvin waves (Bouf-
fard and Lemmin, 2013) and nearshore–offshore exchange
(Valipour et al., 2019); however, model performance is poor
in nearshore areas, where topographic features remain poorly
resolved.

5 Conclusions

We developed an operational forecast system, COAST-
LINES, using the Windows Task Scheduler, Python-based
data scrapping/formatting, and MATLAB data processing
scripts, to automate application of a black-box hydrodynamic
driver (AEM3D) to Lake Erie as an operational forecast tool.
The resulting real-time and predictive lake modeling sys-
tem used meteorological forecasts to generate 240 h fore-
casts of the lake surface level and 3-D temperature and cur-
rent fields on a 500 m× 500 m (horizontal)×∼ 1 m (verti-
cal) grid, compares model output with near-real-time obser-
vations, and publishes the model output on a web-based plat-
form.

The favorable agreement between forecast model results
and observed physical variables (e.g., water level RE∼ 40 %
and temperature t-RMSD and s-RMSD <2 ◦C) in Lake Erie
demonstrates the ability of the forecast system to make pre-
dictions of hydrodynamic processes on time horizons up to
240 h that are as accurate as traditional hindcast simulations
using directly observed meteorological forcing. This enables
the near-real-time updates to the web platform to be used as
a communication tool that rapidly disseminate forecast re-
sults to managers and stakeholders. Examples include >24 h
prediction of (i) up- and downwelling events leading to fish
kills; (ii) upwelling events transporting hypoxic water to a
drinking water intake; and (iii) coastal flooding events from
storm surges.

This operational system shows the feasibility of apply-
ing freely available meteorological forecasts (e.g., GDPS,
HRRR), in situ buoy data, and satellite images to drive
and validate any computational lake model (e.g., AEM3D,
Delft3D, GLM), without modifying the source code. The
global coverage of the weather model allows generalization
of model application to lake or coastal domain. To facili-
tate further development of open-access predictive model-
ing systems, agencies are encouraged to share model valida-
tion observations, in real time, through organizations such as
GLEON (https://gleon.org/, last access: December 2021) and
GLOS (http://www.glos.us, last access: December 2021).
This will enable extension of COASTLINES to include pre-
diction of the physical–biogeochemical variables that drive
sediment transport, hypoxia, and harmful algal blooms.
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Appendix A: Comparison of 24 h model run with restart
files and model run with continuous files

Figure A1. Temperature profile comparison between (a) stitched 24 h model run with restart files and (b) the model run with continuous
input files.

Appendix B: COASTLINES website snapshot

Figure B1. Snapshot of water level forecast validation web page displayed on the COASTLINES online platform: https://coastlines.
engineering.queensu.ca/erie/water-level-forecast (last access: December 2021) (status on 23 September 2020).
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Appendix C: Validation of meteorological input
variables

Figure C1. Comparisons of stitched GDPS wind forecast with 3 h delivery interval and lake-buoy-measured wind speed at (a) station
45005 (10 min sampling interval) and (b) station 45142 (1 h sampling interval). The wind gusts on day 327 at station 45005 and day 324 at
station 45142 were missed by the wind forecast.

Figure C2. Comparisons of 24 h meteorological forecast and lake buoy observations of wind speed (a, b) and wind direction (c, d). The gray
rectangle indicates the storm that led to upwelling along northern shoreline on days 248–253.
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Figure C3. Comparisons of 24 h air temperature forecast and lake buoy observations of air temperature.

Figure C4. Comparisons of 240 h meteorological forecast and lake buoy observations of wind speed (a, b) and wind direction (c, d).
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Figure C5. Comparisons of 240 h air temperature forecast and lake buoy observations.

Appendix D: Temperature validation against satellite
observations

Figure D1. Comparisons of (a–d) satellite observations, (e–h) 15 km model 240 h forecast, and (i–l) 25 km model 240 h forecast during
summer. The models were hot started on day 215. The differences between observations and models are shown in panels (m)–(t).
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Figure D2. Comparisons of (a–d) satellite observations, (e–h) 15 km model 240 h forecast, and (i–l) 25 km model 240 h forecast during late
summer. The models were hot started on day 244. The differences between observations and models are shown in panels (m)–(t).

Appendix E: Water level change during the windstorm
on 15 November 2020

Figure E1. Spatial distribution of water level change from forecasts hot started on 15 November (a, b) and 12 November (c, d). The water
level on 15 November at 00:00 EST is the reference level. The black arrows are depth-averaged mean current fields. The black squares in the
upper right corners of each map indicate the location of Port Dover (Fig. 12d).
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Code and data availability. The observed data and meteorological
forcing used in this study are openly accessible online, as cited in
the text. The COASTLINES model output is archived on the server
and can be obtained by contacting the corresponding author. The
Python and MATLAB scripts as well as the timeline set in Win-
dows Task Scheduler are archived in the Scholars Portal Dataverse
(https://doi.org/10.5683/SP2/VTN7WC, Lin, 2021). The AEM3D
executable was used as a black-box hydrodynamic transport code.
The executable used in COASTLINES is available for a nomi-
nal license fee from HydroNumerics (https://www.hydronumerics.
com.au/, last access: December 2021, HydroNumerics, 2022). The
AEM3D source code was not modified in this application but is
available with permission from HydroNumerics.
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