Articles | Volume 15, issue 3
https://doi.org/10.5194/gmd-15-1247-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-15-1247-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ShellChron 0.4.0: a new tool for constructing chronologies in accretionary carbonate archives from stable oxygen isotope profiles
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
AMGC research group, Vrije Universiteit Brussel, Brussels, Belgium
Related authors
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308, https://doi.org/10.5194/egusphere-2025-2308, 2025
Short summary
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Rute Coimbra, Niels de Winter, Maria Ríos, Rui Bernardino, Darío Estraviz-López, Priscila Lohmann, Roberta Martino, Aurora Grandal-d'Anglade, Fernando Rocha, and Philippe Claeys
EGUsphere, https://doi.org/10.5194/egusphere-2025-1770, https://doi.org/10.5194/egusphere-2025-1770, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
To understand human impact on climate and biodiversity, we studied fossil teeth of Gomphotherium from Miocene Portugal. Chemical patterns, like those in modern elephants, show seasonal diet changes and geophagy during dry periods. This suggests dry seasons shaped animal behavior and ecosystems, offering insights into how land life responded to past warming—and how it might react to future climate change.
Niels J. de Winter, Najat al Fudhaili, Iris Arndt, Philippe Claeys, René Fraaije, Steven Goderis, John Jagt, Matthias López Correa, Axel Munnecke, Jarosław Stolarski, and Martin Ziegler
EGUsphere, https://doi.org/10.5194/egusphere-2025-2308, https://doi.org/10.5194/egusphere-2025-2308, 2025
Short summary
Short summary
To test the tolerance of past shallow marine ecosystems to extreme climates, we collected and compiled stable and clumped isotope data from rudist bivalves that lived in tropical shallow marine waters in present-day Oman during the Campanian (75 million years ago). Our dataset shows that these animals were able to withstand exceptionally warm temperatures, exceeding 40 °C, during hot summers. Our finding highlights how seasonal climate extremes impact marine biodiversity.
Johan Vellekoop, Daan Vanhove, Inge Jelu, Philippe Claeys, Linda C. Ivany, Niels J. de Winter, Robert P. Speijer, and Etienne Steurbaut
EGUsphere, https://doi.org/10.5194/egusphere-2024-298, https://doi.org/10.5194/egusphere-2024-298, 2024
Preprint archived
Short summary
Short summary
Stable oxygen and carbon isotope analyses of fossil bivalves, gastropods and fish ear bones (otoliths) is frequently used for seasonality reconstructions of past climates. We measured stable isotope compositions in multiple specimens of two bivalve species, a gastropod species, and two species of otoliths, from two early Eocene (49.2 million year old) shell layers. Our study demonstrates considerable variability between different taxa, which has implications for seasonality reconstructions.
Niels J. de Winter, Daniel Killam, Lukas Fröhlich, Lennart de Nooijer, Wim Boer, Bernd R. Schöne, Julien Thébault, and Gert-Jan Reichart
Biogeosciences, 20, 3027–3052, https://doi.org/10.5194/bg-20-3027-2023, https://doi.org/10.5194/bg-20-3027-2023, 2023
Short summary
Short summary
Mollusk shells are valuable recorders of climate and environmental changes of the past down to a daily resolution. To explore this potential, we measured changes in the composition of shells of two types of bivalves recorded at the hourly scale: the king scallop Pecten maximus and giant clams (Tridacna) that engaged in photosymbiosis. We find that photosymbiosis produces more day–night fluctuation in shell chemistry but that most of the variation is not periodic, perhaps recording weather.
Nina M. A. Wichern, Niels J. de Winter, Andrew L. A. Johnson, Stijn Goolaerts, Frank Wesselingh, Maartje F. Hamers, Pim Kaskes, Philippe Claeys, and Martin Ziegler
Biogeosciences, 20, 2317–2345, https://doi.org/10.5194/bg-20-2317-2023, https://doi.org/10.5194/bg-20-2317-2023, 2023
Short summary
Short summary
Fossil bivalves are an excellent climate archive due to their rapidly forming growth increments and long lifespan. Here, we show that the extinct bivalve species Angulus benedeni benedeni can be used to reconstruct past temperatures using oxygen and clumped isotopes. This species has the potential to provide seasonally resolved temperature data for the Pliocene to Oligocene sediments of the North Sea basin. In turn, these past climates can improve our understanding of future climate change.
Niels J. de Winter, Tobias Agterhuis, and Martin Ziegler
Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, https://doi.org/10.5194/cp-17-1315-2021, 2021
Short summary
Short summary
Climate researchers often need to compromise in their sampling between increasing the number of measurements to obtain higher time resolution and combining measurements to improve the reliability of climate reconstructions. In this study, we test several methods for achieving the optimal balance between these competing interests by simulating seasonality reconstructions using stable and clumped isotopes. Our results inform sampling strategies for climate reconstructions in general.
Cited articles
Bajnai, D., Guo, W., Spötl, C., Coplen, T. B., Methner, K., Löffler, N.,
Krsnik, E., Gischler, E., Hansen, M., Henkel, D., Price, G. D., Raddatz, J.,
Scholz, D., and Fiebig, J.: Dual clumped isotope thermometry resolves
kinetic biases in carbonate formation temperatures, Nat. Commun., 11, 4005, https://doi.org/10.1038/s41467-020-17501-0, 2020.
Baker, A., Mariethoz, G., Comas-Bru, L., Hartmann, A., Frisia, S., Borsato, A.,
Treble, P. C., and Asrat, A.: The Properties of Annually Laminated
Stalagmites-A Global Synthesis, Rev. Geophys., 59, e2020RG000722, https://doi.org/10.1029/2020RG000722, 2021.
Baldini, J. U. L., McDermott, F., Hoffmann, D. L., Richards, D. A., and Clipson,
N.: Very high-frequency and seasonal cave atmosphere PCO2 variability:
Implications for stalagmite growth and oxygen isotope-based paleoclimate
records, Earth Planet. Sc. Lett., 272, 118–129, 2008.
Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M., and Prohaska, T.:
Assessment of international reference materials for isotope-ratio analysis
(IUPAC Technical Report), Pure Appl. Chem., 86, 425–467, 2014.
Butler, P. G., Wanamaker, A. D., Scourse, J. D., Richardson, C. A., and Reynolds
D. J.: Variability of marine climate on the North Icelandic Shelf in a
1357-year proxy archive based on growth increments in the bivalve Arctica
islandica, Palaeogeogr. Palaeocl., 373, 141–151, 2013.
Chauvaud, L., Lorrain, A., Dunbar, R. B., Paulet, Y.-M., Thouzeau, G., Jean, F.,
Guarini, J.-M., and Mucciarone, D.: Shell of the Great Scallop Pecten
maximus as a high-frequency archive of paleoenvironmental changes,
Geochem. Geophys. Geosyst., 6, 1–15, 2005.
Coplen, T. B.: Calibration of the calcite–water oxygen-isotope
geothermometer at Devils Hole, Nevada, a natural laboratory, Geochim. Cosmochim. Ac., 71,
3948–3957, 2007.
Daëron, M., Guo, W., Eiler, J., Genty, D., Blamart, D., Boch, R., Drysdale, R.,
Maire, R., Wainer, K., and Zanchetta, G.: 13C18O clumping in speleothems:
Observations from natural caves and precipitation experiments, Geochim. Cosmochim. Ac., 75,
3303–3317, 2011.
Daëron, M., Drysdale, R. N., Peral, M., Huyghe, D., Blamart, D., Coplen, T.
B., Lartaud, F., and Zanchetta, G.: Most Earth-surface calcites
precipitate out of isotopic equilibrium, Nat. Commun., 10, 429, https://doi.org/10.1038/s41467-019-08336-5, 2019.
de Brauwere, A., De Ridder, F., Pintelon, R., Schoukens, J., and Dehairs, F.: A comparative study of methods to reconstruct a periodic time series
from an environmental proxy record, Earth-Sci. Rev., 95, 97–118,
2009.
De Ridder, F., de Brauwere, A., Pintelon, R., Schoukens, J., Dehairs, F., Baeyens,
W., and Wilkinson, B. H.: Comment on: Paleoclimatic inference from
stable isotope profiles of accretionary biogenic hardparts – a quantitative
approach to the evaluation of incomplete data, Palaeogeogr. Palaeocl., 248, 473–476, 2007.
Dettman, D. L., Reische, A. K., and Lohmann, K. C.: Controls on the stable
isotope composition of seasonal growth bands in aragonitic fresh-water
bivalves (Unionidae), Geochim. Cosmochim. Ac., 63, 1049–1057, 1999.
de Villiers, S., Nelson, B. K., and Chivas, A. R.: Biological controls on
coral and δ18O reconstructions of sea surface temperatures, Science, 269, 1247, https://doi.org/10.1126/science.269.5228.1247, 1995.
de Winter, N. J.: ShellChron: Builds Chronologies from Oxygen Isotope Profiles in Shells, 2021, CRAN [code], https://CRAN.R-project.org/package=ShellChron (last access: 9 February 2022), 2021a.
de Winter, N. J.: Supplement to: “ShellChron: A new tool for constructing chronologies in accretionary carbonate archives from stable oxygen isotope profiles” by Niels J. de Winter, Zenodo [data set], https://doi.org/10.5281/zenodo.5061861, 2021b.
de Winter, N. J.: ShellChron (0.4.0), Zenodo [code], https://doi.org/10.5281/zenodo.6023364, 2022.
de Winter, N. J., Goderis, S., Dehairs, F., Jagt, J. W., Fraaije, R. H., Van
Malderen, S. J., Vanhaecke, F., and Claeys, P.: Tropical seasonality in
the late Campanian (late Cretaceous): Comparison between multiproxy records
from three bivalve taxa from Oman, Palaeogeogr. Palaeocl., 485, 740–760, 2017.
de Winter, N. J., Vellekoop, J., Vorsselmans, R., Golreihan, A., Soete, J., Petersen, S. V., Meyer, K. W., Casadio, S., Speijer, R. P., and Claeys, P.: An assessment of latest Cretaceous Pycnodonte vesicularis (Lamarck, 1806) shells as records for palaeoseasonality: a multi-proxy investigation, Clim. Past, 14, 725–749, https://doi.org/10.5194/cp-14-725-2018, 2018.
de Winter, N. J., Goderis, S., Malderen, S. J. M. V., Sinnesael, M.,
Vansteenberge, S., Snoeck, C., Belza, J., Vanhaecke, F., and Claeys, P.:
Subdaily-Scale Chemical Variability in a Torreites Sanchezi Rudist Shell:
Implications for Rudist Paleobiology and the Cretaceous Day-Night Cycle,
Paleoceanogr. Paleocl., 35, e2019PA003723, https://doi.org/10.1029/2019PA003723, 2020a.
de Winter, N. J., Ullmann, C. V., Sørensen, A. M., Thibault, N., Goderis, S., Van Malderen, S. J. M., Snoeck, C., Goolaerts, S., Vanhaecke, F., and Claeys, P.: Shell chemistry of the boreal Campanian bivalve Rastellum diluvianum (Linnaeus, 1767) reveals temperature seasonality, growth rates and life cycle of an extinct Cretaceous oyster, Biogeosciences, 17, 2897–2922, https://doi.org/10.5194/bg-17-2897-2020, 2020b.
de Winter, N. J., Vellekoop, J., Clark, A. J., Stassen, P., Speijer, R. P., and
Claeys, P.: The giant marine gastropod Campanile giganteum (Lamarck,
1804) as a high-resolution archive of seasonality in the Eocene greenhouse
world, Geochem. Geophys. Geosyst., 21, e2019GC008794, https://doi.org/10.1029/2019GC008794, 2020c.
de Winter, N. J., Agterhuis, T., and Ziegler, M.: Optimizing sampling strategies in high-resolution paleoclimate records, Clim. Past, 17, 1315–1340, https://doi.org/10.5194/cp-17-1315-2021, 2021.
de Winter, N. J., Dämmer, L. K., Falkenroth, M., Reichart, G.-J.,
Moretti, S., Martínez-García, A., Höche, N., Schöne, B.
R., Rodiouchkina, K., Goderis, S., Vanhaecke, F., van Leeuwen, S. M., and
Ziegler, M.: Multi-isotopic and trace element evidence against
different formation pathways for oyster microstructures, Geochim.
Cosmochim. Ac., 308, 326–352, https://doi.org/10.1016/j.gca.2021.06.012, 2021b.
Duan, Q., Sorooshian, S., and Gupta, V.: Effective and efficient global
optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015–1031, 1992.
Dunbar, R. B. and Wellington, G. M.: Stable isotopes in a branching
coral monitor seasonal temperature variation, Nature, 293, 453–455, 1981.
Durham, S. R., Gillikin, D. P., Goodwin, D. H., and Dietl, G. P.: Rapid
determination of oyster lifespans and growth rates using LA-ICP-MS line
scans of shell ratios, Palaeogeogr. Palaeocl., 485, 201–209, 2017.
Epstein, S., Buchsbaum, R., Lowenstam, H. A., and Urey, H. C.: Revised
carbonate-water isotopic temperature scale, Geolog. Soc. Am. B., 64, 1315–1326, 1953.
Evans, M. N. and Schrag, D. P.: A stable isotope-based approach to
tropical dendroclimatology, edited by: Lea, D. W., Geochim. Cosmochim. Ac., 68, 3295–3305, 2004.
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., and
McDermott, F.: Modification and preservation of
environmental signals in speleothems, Earth-Sci. Rev., 75, 105–153, 2006.
Feng, W., Casteel, R. C., Banner, J. L., and Heinze-Fry, A.: Oxygen isotope
variations in rainfall, drip-water and speleothem calcite from a
well-ventilated cave in Texas, USA: Assessing a new speleothem temperature
proxy, Geochim. Cosmochim. Ac., 127, 233–250, 2014.
Frisia, S., Borsato, A., Fairchild, I. J., and McDermott, F.: Calcite
fabrics, growth mechanisms, and environments of formation in speleothems
from the Italian Alps and southwestern Ireland, J. Sediment. Res., 70, 1183–1196, 2000.
Gagan, M. K., Chivas, A. R., and Isdale, P. J.: High-resolution isotopic
records from corals using ocean temperature and mass-spawning chronometers, Earth Planet. Sc. Lett., 121, 549–558, 1994.
Goodwin, D. H., Schöne, B. R., and Dettman, D. L.: Resolution and
Fidelity of Oxygen Isotopes as Paleotemperature Proxies in Bivalve Mollusk
Shells: Models and Observations, PALAIOS, 18, 110–125, 2003.
Goodwin, D. H., Paul, P., and Wissink, C. L.: MoGroFunGen: A numerical
model for reconstructing intra-annual growth rates of bivalve molluscs, Palaeogeogr. Palaeocl., 276, 47–55, 2009.
Grossman, E. L. and Ku, T.-L.: Oxygen and carbon isotope fractionation
in biogenic aragonite: temperature effects, Chem. Geol.-Isotope Geoscience section, 59, 59–74, 1986.
Huybers, P. and Curry, W.: Links between annual, Milankovitch and
continuum temperature variability, Nature, 441, 329–332, 2006.
Huyghe, D., de Rafelis, M., Ropert, M., Mouchi, V., Emmanuel, L., Renard, M. and
Lartaud, F.: New insights into oyster high-resolution hinge growth
patterns, Mar. Biol., 166, 48, https://doi.org/10.1007/s00227-019-3496-2, 2019.
IPCC: Climate Change 2021:
The Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield,
T., Yelekçi, Ö., Yu, R., and Zhou, B.,
Cambridge University Press, ISBN 978-92-9169-158-6, 2021.
Ivany, L. C. and Judd, E. J.: Deciphering Temperature Seasonality in Earth's
Ancient Oceans, Annu. Rev. Earth, 50, 123–152,
https://doi.org/10.1146/annurev-earth-032320-095156, 2022.
Ivany, L. C. and Runnegar, B.: Early
Permian seasonality from bivalve δ18O and implications for the
oxygen isotopic composition of seawater, Geology, 38, 1027–1030, 2010.
Jones, D. S.: Sclerochronology: Reading the Record of the Molluscan
Shell: Annual growth increments in the shells of bivalve molluscs record
marine climatic changes and reveal surprising longevity, Am. Scientist, 71, 384–391, 1983.
Jones, D. S. and Quitmyer, I. R.: Marking Time with Bivalve Shells:
Oxygen Isotopes and Season of Annual Increment Formation, PALAIOS, 11, 340–346, 1996.
Judd, E. J., Wilkinson, B. H., and Ivany, L. C.: The life and time of
clams: Derivation of intra-annual growth rates from high-resolution oxygen
isotope profiles, Palaeogeogr. Palaeocl., 490, 70–83, 2018.
Judd, E. J., Ivany, L. C., DeConto, R. M., Halberstadt, A. R. W., Miklus, N.
M., Junium, C. K., and Uveges, B. T.: Seasonally resolved proxy data from
the Antarctic Peninsula support a heterogeneous middle Eocene Southern
Ocean, Paleoceanogr. Paleocl., 34, 787–799, 2019.
Kim, S.-T. and O'Neil, J. R.: Equilibrium and nonequilibrium oxygen
isotope effects in synthetic carbonates, Geochim. Cosmochim. Ac., 61, 3461–3475, 1997.
Knoben, W. J. M., Woods, R. A., and Freer, J. E.: Global bimodal
precipitation seasonality: A systematic overview, Int. J. Climatol., 39, 558–567, 2019.
Lachniet, M. S.: Climatic and environmental controls on speleothem
oxygen-isotope values, Quaternary Sci. Rev., 28, 412–432, 2009.
LeGrande, A. N. and Schmidt, G. A.: Global gridded data set of the
oxygen isotopic composition in seawater, Geophys. Res. Lett., 33, 1–5, 2006.
Le Tissier, M. D. A., Clayton, B., Brown, B. E., and Davis, P. S.: Skeletal
correlates of coral density banding and an evaluation of radiography as used
in sclerochronology, Mar. Ecol. Prog. Ser., 110, 29–44, 1994.
Lough, J. M.: Climate records from corals, WIREs Climate Change, 1, 318–331, 2010.
Mahé, K., Bellamy, E., Lartaud, F., and de Rafélis, M.: Calcein and
manganese experiments for marking the shell of the common cockle
(Cerastoderma edule): tidal rhythm validation of increments formation,
Aquat. Living Resour., 23, 239–245, 2010.
Mattey, D., Lowry, D., Duffet, J., Fisher, R., Hodge, E., and Frisia, S.: A
53 year seasonally resolved oxygen and carbon isotope record from a modern
Gibraltar speleothem: Reconstructed drip water and relationship to local
precipitation, Earth Planet. Sc. Lett., 269, 80–95, 2008.
McCrea, J. M.: On the Isotopic Chemistry of Carbonates and a
Paleotemperature Scale, J. Chem. Phys., 18, 849–857, 1950.
Mitchell Jr., J. M.: An overview of climatic variability and its causal
mechanisms, Quaternary Res., 6, 481–493, 1976.
Mohr, R. C., Tobin, T. S., Petersen, S. V., Dutton, A., and Oliphant, E.:
Subannual stable isotope records reveal climate warming and seasonal anoxia
associated with two extinction intervals across the Cretaceous-Paleogene
boundary on Seymour Island, Antarctica, Geology, 48, 1131–1136, 2020.
Müller, P., Taylor, M. H., Klicpera, A., Wu, H. C., Michel, J., and Westphal,
H.: Food for thought: Mathematical approaches for the conversion of
high-resolution sclerochronological oxygen isotope records into sub-annually
resolved time series, Palaeogeogr. Palaeocl., 440, 763–776, 2015.
O'Donnell, M. S. and Ignizio, D. A.: Bioclimatic predictors for
supporting ecological applications in the conterminous United States, US Geological Survey Data Series, 691, 1–17, 2012.
Poussart, P. M., Myneni, S. C. B., and Lanzirotti, A.: Tropical
dendrochemistry: A novel approach to estimate age and growth from ringless
trees, Geophys. Res. Lett., 33, 1–5, https://doi.org/10.1029/2006GL026929, 2006.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria, https://www.R-project.org/ (last access: 9 February 2022), 2020.
Rohling, E. J.: Oxygen isotope composition of seawater, The Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2, 915–922, 2013.
Saenger, C., Gabitov, R. I., Farmer, J., Watkins, J. M., and Stone, R.:
Linear correlations in bamboo coral δ13C and δ18O sampled by
SIMS and micromill: Evaluating paleoceanographic potential and
biomineralization mechanisms using δ11B and Δ47 composition, Chem. Geol., 454, 1–14, 2017.
Sano, Y., Kobayashi, S., Shirai, K., Takahata, N., Matsumoto, K., Watanabe, T.,
Sowa, K., and Iwai, K.: Past daily light cycle recorded in the
strontium/calcium ratios of giant clam shells, Nat. Commun., 3, 761, https://doi.org/10.1038/ncomms1763, 2012.
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J.,
Johnson, A. L., Dreyer, W., and Oschmann, W.: Climate records from a
bivalved Methuselah (Arctica islandica, Mollusca; Iceland), Palaeogeogr. Palaeocl., 228, 130–148, 2005.
Schöne, B. R., Zhang, Z., Radermacher, P., Thébault, J., Jacob, D. E.,
Nunn, E. V., and Maurer, A.-F.: and ratios of ontogenetically
old, long-lived bivalve shells (Arctica islandica) and their function as
paleotemperature proxies, Palaeogeogr. Palaeocl., 302, 52–64, 2011.
Schöne, B. R. and Gillikin, D. P.: Unraveling environmental
histories from skeletal diaries – Advances in sclerochronology, Palaeogeogr. Palaeocl., 373, 1–5, 2013.
Sinnesael, M., De Vleeschouwer, D., Zeeden, C., Batenburg, S. J., Da Silva,
A.-C., de Winter, N. J., Dinarès-Turell, J., Drury, A. J., Gambacorta, G.
and Hilgen, F. J.: The Cyclostratigraphy Intercomparison Project (CIP):
consistency, merits and pitfalls, Earth-Sci. Rev., 199, 102965, https://doi.org/10.1016/j.earscirev.2019.102965, 2019.
Sosdian, S., Gentry, D. K., Lear, C. H., Grossman, E. L., Hicks, D., and Rosenthal,
Y.: Strontium to calcium ratios in the marine gastropod Conus
ermineus: Growth rate effects and temperature calibration, Geochem. Geophys. Geosyst., 7, 1–17, https://doi.org/10.1029/2005GC001233, 2006.
Steuber, T., Rauch, M., Masse, J.-P., Graaf, J., and Malkoč, M.:
Low-latitude seasonality of Cretaceous temperatures in warm and cold
episodes, Nature, 437, 1341–1344, 2005.
Superville, P.-J., De Winter, N., Phung, A. T., Proix, N., Baeyens, W., and Gao, Y.: Radial metal concentration profiles in trees growing on highly
contaminated soils, Chemosphere, 172, 80–88,
2017.
Tarutani, T., Clayton, R. N., and Mayeda, T. K.: The effect of
polymorphism and magnesium substitution on oxygen isotope fractionation
between calcium carbonate and water, Geochim. Cosmochim. Ac., 33, 987–996, 1969.
Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng,
R., Ford, H. L., Hönisch, B., Inglis, G. N., Petersen, S. V., Sagoo, N.,
Tabor, C. R., Thirumalai, K., Zhu, J., Burls, N. J., Foster, G. L.,
Goddéris, Y., Huber, B. T., Ivany, L. C., Turner, S. K., Lunt, D. J.,
McElwain, J. C., Mills, B. J. W., Otto-Bliesner, B. L., Ridgwell, A., and
Zhang, Y. G.: Past climates inform our future, Science, 370, https://doi.org/10.1126/science.aay3701, 2020.
Treble, P. C., Schmitt, A. K., Edwards, R. L., McKeegan, K. D., Harrison, T. M.,
Grove, M., Cheng, H., and Wang, Y. J.: High resolution Secondary
Ionisation Mass Spectrometry (SIMS) δ18O analyses of Hulu Cave
speleothem at the time of Heinrich Event 1, Chem. Geol., 238, 197–212, 2007.
Ullmann, C. V. and Korte, C.: Diagenetic alteration in low-Mg calcite
from macrofossils: a review, Geol. Quarterly, 59, 3–20, 2015.
Ullmann, C. V., Wiechert, U., and Korte, C.: Oxygen isotope fluctuations
in a modern North Sea oyster (Crassostrea gigas) compared with annual
variations in seawater temperature: Implications for palaeoclimate studies, Chem. Geol., 277, 160–166, 2010.
Ullmann, C. V., Böhm, F., Rickaby, R. E., Wiechert, U., and Korte, C.:
The Giant Pacific Oyster (Crassostrea gigas) as a modern analog for fossil
ostreoids: isotopic (Ca, O, C) and elemental ( , , ) proxies,
Geochem. Geophys. Geosyst., 14, 4109–4120, 2013.
Urban, F. E., Cole, J. E., and Overpeck, J. T.: Influence of mean climate
change on climate variability from a 155-year tropical Pacific coral record,
Nature, 407, 989–993, 2000.
Urey, H. C.: Oxygen Isotopes in Nature and in the Laboratory, Science, 108,
489–496, 1948.
van Ommen, T. D. and Morgan, V.: Calibrating the ice core
paleothermometer using seasonality, J. Geophys. Res.-Atmos., 102, 9351–9357, 1997.
Van Rampelbergh, M., Verheyden, S., Allan, M., Quinif, Y., Keppens, E., and Claeys, P.: Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium deposition of the seasonal δ18O and δ13C signals in the calcite, Clim. Past, 10, 1871–1885, https://doi.org/10.5194/cp-10-1871-2014, 2014.
Vansteenberge, S., Verheyden, S., Cheng, H., Edwards, R. L., Keppens, E., and Claeys, P.: Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): insights from a Belgian speleothem, Clim. Past, 12, 1445–1458, https://doi.org/10.5194/cp-12-1445-2016, 2016.
Vansteenberge, S., de Winter, N. J., Sinnesael, M., Verheyden, S., Goderis, S., Van Malderen, S. J. M., Vanhaecke, F., and Claeys, P.: Reconstructing seasonality through stable-isotope and trace-element analyses of the Proserpine stalagmite, Han-sur-Lesse cave, Belgium: indications for climate-driven changes during the last 400 years, Clim. Past, 16, 141–160, https://doi.org/10.5194/cp-16-141-2020, 2020.
Verheyden, S., Baele, J.-M., Keppens, E., Genty, D., Cattani, O., Cheng, H.,
Lawrence, E., Zhang, H., Van Strijdonck, M., and Quinif, Y.: The Proserpine
stalagmite (Han-Sur-Lesse Cave, Belgium): preliminary environmental
interpretation of the last 1000 years as recorded in a layered speleothem,
Geol. Belgica, 9/3–4, 245–256, 2006.
von der Heydt, A. S., Ashwin, P., Camp, C. D., Crucifix, M., Dijkstra, H.
A., Ditlevsen, P., and Lenton, T. M.: Quantification and interpretation of
the climate variability record, Global Planet. Change, 197, 103399,
https://doi.org/10.1016/j.gloplacha.2020.103399, 2021.
Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C.-C., and
Dorale, J. A.: A High-Resolution Absolute-Dated Late Pleistocene
Monsoon Record from Hulu Cave, China, Science, 294, 2345–2348, 2001.
Watkins, J. M., Hunt, J. D., Ryerson, F. J., and DePaolo, D. J.: The
influence of temperature, pH, and growth rate on the δ18O
composition of inorganically precipitated calcite, Earth Planet. Sc. Lett., 404, 332–343, 2014.
Wilkinson, B. H. and Ivany, L. C.: Paleoclimatic inference from stable
isotope profiles of accretionary biogenic hardparts – a quantitative
approach to the evaluation of incomplete data, Palaeogeogr. Palaeocl., 185, 95–114, 2002.
Xu, C., Zheng, H., Nakatsuka, T., Sano, M., Li, Z., and Ge, J.: Inter-and
intra-annual tree-ring cellulose oxygen isotope variability in response to
precipitation in Southeast China, Trees, 30, 785–794, 2016.
Yan, H., Liu, C., An, Z., Yang, W., Yang, Y., Huang, P., Qiu, S., Zhou, P.,
Zhao, N., Fei, H., Ma, X., Shi, G., Dodson, J., Hao, J., Yu, K., Wei, G., Yang,
Y., Jin, Z., and Zhou, W.: Extreme weather events recorded by daily to
hourly resolution biogeochemical proxies of marine giant clam shells, P. Natl. Acad. Sci. USA, 117,
7038–7043, 2020.
Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D., Ault, T. R.,
Steig, E. J., Dee, S., and Kirchner, J. W.: Climate models can correctly
simulate the continuum of global-average temperature variability, P. Natl. Acad. Sci. USA, 116,
8728–8733, 2019.
Download
The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.
- Article
(6099 KB) - Full-text XML
- Corrigendum
-
Supplement
(939 KB) - BibTeX
- EndNote
Short summary
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives based on the seasonal variability in temperature and salinity or precipitation recorded in stable oxygen isotope measurements. The model allows dating of fossil archives within a year, which is important for climate reconstructions on the sub-seasonal to decadal scale. In this paper, I introduce ShellChron and test it on a range of real and virtual datasets to demonstrate its use.
ShellChron is a tool for determining the relative age of samples in carbonate (climate) archives...