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Abstract. This work presents ShellChron, a new model for
generating accurate internal age models for high-resolution
paleoclimate archives, such as corals, mollusk shells, and
speleothems. Reliable sub-annual age models form the back-
bone of high-resolution paleoclimate studies. In the absence
of independent sub-annual growth markers in many of these
archives, the most reliable method for determining the age
of samples is through age modeling based on stable oxy-
gen isotope or other seasonally controlled proxy records.
ShellChron expands on previous solutions to the age model
problem by fitting a combination of a growth rate and tem-
perature sinusoid to model seasonal variability in the proxy
record in a sliding window approach. This new approach cre-
ates smoother, more precise age–distance relationships for
multi-annual proxy records with the added benefit of allow-
ing assessment of the uncertainty in the modeled age. The
modular script of ShellChron allows the model to be tai-
lored to specific archives, without being limited to oxygen
isotope proxy records or carbonate archives, with high flex-
ibility in assigning the relationship between the input proxy
and the seasonal cycle. The performance of ShellChron in
terms of accuracy and computation time is tested on a set
of virtual seasonality records and real coral, mollusk, and
speleothem archives. The result shows that several key im-
provements in comparison to previous age model routines
enhance the accuracy of ShellChron on multi-annual records
while limiting its processing time. The current full work-
ing version of ShellChron enables the user to model the age
of 10-year-long high-resolution (16 samples yr−1) carbon-
ate records with monthly accuracy within 1 h of computation
time on a personal computer. The model is freely accessible
on the CRAN database and GitHub. Members of the commu-

nity are invited to contribute by adapting the model code to
suit their research topics and encouraged to cite the original
work of Judd et al. (2018) alongside this work when using
ShellChron in future studies.

1 Introduction

Fast-growing carbonate archives, such as coral skeletons,
mollusk shells, and speleothems, contain a wealth of infor-
mation about past and present climate and environment (e.g.,
Urban et al., 2000; Wang et al., 2001; Steuber et al., 2005;
Butler et al., 2013). Recent advances in analytical techniques
have improved our ability to extract this information and
obtain records of the conditions under which these carbon-
ates precipitated at high temporal resolutions, often beyond
the annual scale (Treble et al., 2007; Saenger et al., 2017;
Vansteenberge et al., 2020; de Winter et al., 2020a; Ivany
and Judd, 2022). Key to the interpretation of such records
is the development of reliable chemical or physical prox-
ies for climate and environmental conditions which can be
measured on a sufficiently fine scale to allow variability to
be reconstructed at the desired time resolution. Examples of
suitable proxies include observations of variability in carbon-
ate fabric and microstructure as well as in (trace) elemental
and isotopic composition (Frisia et al., 2000; Lough, 2010;
Ullmann et al., 2010; Schöne et al., 2011; Ullmann et al.,
2013; Van Rampelbergh et al., 2014; de Winter et al., 2017).
The unique preservation potential of carbonates in compari-
son with archives of climate variability at similar time reso-
lutions, such as tree ring records and ice cores, now allows us
to recover information about the climate and environment of
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the geological past from these proxies on the (sub-)seasonal
scale (Ivany and Runnegar, 2010; Ullmann and Korte, 2015;
Vansteenberge et al., 2016; de Winter et al., 2018, 2020b, c;
Mohr et al., 2020). The importance of this development can-
not be overstated because variability at high (daily and sea-
sonal) resolution constitutes the most significant component
of climate variability (Mitchell, 1976; Huybers and Curry,
2006; Zhu et al., 2019; von der Heydt et al., 2021). Accurate
reconstructions of this type of variability are therefore fun-
damental to our understanding of Earth’s climate system and
critical for projecting its behavior in the future under anthro-
pogenic global warming conditions (IPCC, 2021).

A reliable age model is crucial for the interpretation of
high-resolution carbonate records. An age model is defined
as a set of rules or markers that allows the translation of the
location of a measurement or observation on the archive to
the time at which the carbonate was precipitated. This trans-
lation is required for aligning records from multiple proxies
or archives on a common time axis. Age alignment enables
data to be intercomparable and to be interpreted in the con-
text of processes playing a role at similar timescales. Age
models are based on knowledge about the growth or accre-
tion rate of the archive through time. Many high-resolution
carbonate archives contain growth markers on which age
models can be based (e.g., Jones, 1983; Le Tissier et al.,
1994; Verheyden et al., 2006). These are especially valuable
in some mollusk species, in which growth lines demarcate
annual, daily, or even tidal cycles (e.g., Arctica islandica,
Schöne et al., 2005; Pecten maximus, Chauvaud et al., 2005;
and Cerastoderma edule, Mahé et al., 2010). However, in
many mollusk species and most carbonate archives, such in-
dependent growth indicators are absent or too infrequent to
(relatively) date high-resolution measurements (Judd et al.,
2018; Huyghe et al., 2019). In such cases, age models need
to be based on alternative indicators.

The oxygen isotope composition of carbonates (δ18Oc) is
closely dependent on the isotopic composition of the fluid
(δ18Ow) and the temperature at which the carbonate is pre-
cipitated (Urey, 1948; McCrea, 1950; Epstein et al., 1953). In
most natural surface environments, either one or both factors
is strongly dependent on the seasonal cycle, with one gener-
ally being dominant over the other. This causes carbonates
precipitated in these environments to display strong quasi-
sinusoidal variations in δ18Oc that record the seasonal cy-
cle (e.g., Dunbar and Wellington, 1981; Jones and Quitmyer,
1996; Baldini et al., 2008). Examples of this behavior in-
clude seasonal cyclicity in sea surface temperatures recorded
in the δ18Oc of corals and mollusks and seasonal cyclicity in
the δ18Ow of precipitation recorded in speleothems (Dunbar
and Wellington, 1981; Schöne et al., 2005; Van Rampelbergh
et al., 2014). This relationship is challenged in tropical lati-
tudes, where temperature seasonality is restricted. However,
in some tropical archives, the annual cycle of δ18Ow in pre-
cipitation still allows the annual cycle to be resolved from
δ18O records (e.g., Evans and Schrag, 2004). These proper-

ties make δ18Oc one of the most highly sought-after prox-
ies for climate variability, and high-resolution δ18Oc records
are abundant in the paleoclimate literature (e.g., Lachniet,
2009; Lough, 2010; Schöne and Gillikin, 2013, and refer-
ences therein).

The close relationship between δ18Oc records and the sea-
sonal cycle can also be exploited to estimate variability in
growth rate of the archive. This property of δ18Oc curves has
been recognized by previous authors, and attempts have been
made to quantify intra-annual growth rates from the shape
of δ18Oc profiles (Wilkinson and Ivany, 2002; Goodwin et
al., 2003; De Ridder et al., 2006; Goodwin et al., 2009; De
Brauwere et al., 2009; Müller et al., 2015; Judd et al., 2018).
Over time, these so-called “growth models” have improved
from fitting of sinusoids to δ18Oc data (Wilkinson and Ivany,
2002; De Ridder et al., 2006) to including increasingly com-
plicated (inter)annual growth rate curves to the model to fit
the shape of the δ18Oc data (Goodwin et al., 2003, 2009;
Müller et al., 2015; Judd et al., 2018). These later models
manage to fit the shape of δ18Oc records well, but they often
rely on detailed a priori knowledge of growth rate or temper-
ature patterns (e.g., Goodwin et al., 2003, 2009), which re-
quires measurements of one or more parameters in the envi-
ronment. These measurements are not available in studies on
carbonate archives from the archeological or geological past.
In contrast, the latest model by Judd et al. (2018; GRATAISS,
or Growth Rate and Temporal Alignment of Isotopic Serial
Samples) is based only on the assumption that growth and
temperature follow quasi-sinusoidal patterns and can there-
fore work with δ18Oc data alone, making it more widely
applicable. The simplified parameterization of temperature
and growth rate seasonality by Judd et al. (2018) using two
(skewed) sinusoids is demonstrated to approximate natural
circumstances very well.

However, the GRATAISS model is still limited in its use
because it requires whole, individual growth years to be an-
alyzed separately, resulting in a discontinuous time series
when applied to records containing multiple years of δ18Oc
data and no solution for incomplete years. In addition, the
model has no option to supply information about the less
dominant factor that drives δ18Oc values (δ18Ow of seawater
in the case of mollusks and corals). Furthermore, only esti-
mates from aragonite records are supported, while the δ18Oc
value of the other dominant carbonate mineral, calcite, has
a different temperature relationship (Kim and O’Neil, 1997).
Finally, neither of the models highlighted above except for
the MoGroFun model by Goodwin et al. (2009) includes any
assessment of the uncertainty of the constructed age model.

Here, a new model for estimating ages of samples in sea-
sonal δ18Oc curves is presented which combines the advan-
tages of previous models while attempting to negate their
disadvantages. ShellChron combines a skewed growth rate
sinusoid with a sinusoidal temperature curve to model δ18Oc
using the Shuffled Complex Evolution model developed at
the University of Arizona (SCEUA; Duan et al., 1992; fol-
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lowing Judd et al., 2018). It applies this optimization us-
ing a sliding window through the dataset (as in Wilkinson
and Ivany, 2002) and includes the option to use a Monte
Carlo simulation approach to combine uncertainties in the
input (δ18Oc and sample distance measurements) and the
model routine (as in Goodwin et al., 2009). As a result,
ShellChron produces a continuous time series with a con-
fidence envelope, supports records from multiple carbonate
minerals, and allows the user to provide information on the
less dominant variable influencing δ18Oc (e.g., δ18Ow) if
available (see Sect. 2). The modular design of ShellChron’s
functional script allows parts of the model to be adapted
and interchanged, supporting a wide range of climate and
environmental archives. As a result, the initial design of
ShellChron for reconstructing age models in temperature-
dominated δ18Oc records from marine bio-archives (e.g.,
corals and mollusks) presented here can be easily modi-
fied for application to other types of records. The routine is
worked out into a ready-to-use package for the open-source
computational programming language R and is directly avail-
able without restrictions, allowing all interested parties to
freely modify and build on the base structure to adapt it to
their needs (R Core Team, 2020; full package code and doc-
umentation in Supplement SI1; see also the “Code and data
availability” section).

2 Scientific basis

The relationship between δ18Oc and the temperature of car-
bonate precipitation was first established by Urey (1948)
and later refined with additional measurements and theoreti-
cal models (e.g., Epstein et al., 1953; Tarutani et al., 1969;
Grossman and Ku, 1986; Kim and O’Neil, 1997; Coplen,
2007; Watkins et al., 2014; Daëron et al., 2019). Empirical
transfer functions for aragonite and calcite by Grossman and
Ku (1986; modified by Dettmann et al., 1999; Eq. 1) and Kim
and O’Neil (1997; Eq. 2, with VSMOW to VPDB scale con-
version following Brand et al., 2014; Eq. 3) have so far found
most frequent use in modern paleoclimate studies and are
therefore applied as default relationships in the ShellChron
model (see d18O_model function).
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[
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]
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·

(
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[
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]
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]
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(
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]
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)
(
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]
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δ18Ow
[
‰VPDB

]
= 0.97002

· δ18Ow
[
‰VSMOW

]
− 29.98 (3)

To apply these formulae, it is assumed that carbonate is pre-
cipitated in equilibrium with the precipitation fluid. Which
carbonates are precipitated in equilibrium has long been sub-
ject to debate, and the development of new techniques for
measuring the carbonate–water system (e.g., clumped and
dual-clumped isotope analyses; Daëron et al., 2019; Bajnai
et al., 2020) has led some authors to challenge the assump-
tion that equilibrium fractionation is the norm (see the Sup-
plement). The modular character of ShellChron allows the
empirical transfer function to be adapted to the δ18Oc record
or to the user’s preference for alternative transfer functions
by a small modification of the d18O_model function. Future
versions of the model will include more options for changing
the transfer function (see the “Model description” section).

As the name suggests, the ShellChron model was initially
developed for application to δ18Oc records from marine cal-
cifiers (e.g., mollusk shells and corals). ShellChron approxi-
mates the evolution of the calcification temperature at which
the carbonate is precipitated by a sinusoidal function (see
Eq. 4, Table 1, and Supplement SI4; temperature_curve func-
tion; visualized in Figs. 4a and S1), which is a good ap-
proximation of seasonal temperature fluctuations in most ma-
rine and terrestrial environments (Wilkinson and Ivany, 2002;
Ivany and Judd, 2022). Variability in δ18Ow is also com-
paratively limited in most marine environments (except for
regions with sea ice formation), making the model easy to
use in these settings (LeGrande and Schmidt, 2006; Rohling,
2013). Nevertheless, ShellChron includes the option to pro-
vide a priori knowledge about δ18Ow, ranging from annual
average values to detailed seasonal variability, enabling the
model to work in environments with more complex interac-
tion between δ18Ow and temperature in the δ18Oc record (see
Eqs. 1 and 2). These δ18Ow data can be provided either as a
vector (with the same length as the data) or a single value
(assuming constant δ18Ow) through the d18Ow parameter in
the run_model function.

T
[
◦C
]
= Tav+

Tamp

2
sin

2π ·
(
t [d]− Tpha+

Tper
4

)
Tper

 (4)

If marine δ18Oc records represent one extreme on the spec-
trum of temperature versus δ18Ow influence on the δ18Oc
record, cave environments, in which δ18Oc variability is pre-
dominantly driven by δ18Ow variability in the precipitation
fluid, represent the other extreme (Van Rampelbergh et al.,
2014). In its current form, ShellChron takes δ18Ow as a
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Table 1. Overview of model parameters.

Name Description Unit Range

Tav Average temperature ◦C Variable, generally 0–30 ◦C
Tamp Temperature range (2· amplitude) ◦C Variable, generally < 20 ◦C
Tpha Phase of temperature sinusoid d 0–365 d
Tper Period of temperature sinusoid d 365 d by default
Gav Average growth rate µmd−1 Variable, generally 0–100 µmd−1

Gamp Range of growth rates µmd−1 Variable, generally < 200 µmd−1

Gpha Phase of growth rate sinusoid d 0–365 d
Gper Period of growth rate sinusoid d 365 d by default
Gskw Skewness factor of GR sinusoid – 0–100, with 50 meaning no skew
D Distance along the record µm Depends on archive
t Age d Depends on archive
Lwin Length of sampling window # Depends on sampling resolution
w Weighting factor on sample – 0–1
i Position relative to model window – 0–Li
I Intercept of sinusoid (Tav or Gav) ◦C or µmd−1

A Amplitude of sinusoid (Tamp
2 or Gamp

2 ) ◦C or µmd−1

P Period of sinusoid (Tper or Gper) d
ϕ Phase of sinusoid (Tpha or Gpha) d

user-supplied parameter to model temperature and growth
rate variability, but future versions will allow temperature
to be fixed, while δ18Ow becomes the modeled variable.
ShellChron’s modular character makes it possible to imple-
ment this update without changing the structure of the model.
Application of ShellChron to δ18Oc records from cave de-
posits will have to be treated with caution, since drip wa-
ter δ18Ow seasonality (if present) cannot always be approxi-
mated by a sinusoidal function and equilibrium fractionation
in cave deposits is less common than in bio-archives (Bal-
dini et al., 2008; Daëron et al., 2011; Van Rampelbergh et
al., 2014).

Besides temperature (or δ18Ow) seasonality, ShellChron
models the growth rate of the archive to approximate the
δ18Oc record (see Eq. 5, Table 1, and Supplement SI4;
growth_rate_curve function; visualized in Figs. 4b and S2).
Since the growth rate in many carbonate archives varies sea-
sonally, a quasi-sinusoidal model for growth rate seems plau-
sible (e.g., Le Tissier et al., 1994; Baldini et al., 2008; Judd
et al., 2018). However, as discussed in Judd et al. (2018), the
occurrence of growth cessations (growth rate: 0) and skew-
ness in seasonal growth patterns call for a more complex
growth rate model that can take these properties into account.
Therefore, ShellChron uses a slightly modified version of
the skewed sinusoidal growth function described by Judd et
al. (2018; Eq. 5). Note that the added complexity of this func-
tion does not preclude the modeling of growth rate functions
described by a simple sinusoid (no skewness; Gskw = 50) or
even constant growth through the year (Gamp = 0; see Ta-

ble 1).

G
[
mmyr−1

]
=Gav+

Gamp

2

· sin

(
2π ·

(
t [d]−Gpha+Gper · S

)
P

)
with

S =

{ 100−Gskw
50 , if t [d]−Gpha <Gper

100−Gskw
100

Gskw
50 , if t [d]−Gpha ≥Gper

100−Gskw
100

(5)

Contrary to previous δ18Oc growth models, ShellChron al-
lows uncertainties in the input variables (sampling distance
and δ18Oc measurements) as well as uncertainties of the full
modeling approach to be propagated, providing confidence
envelopes around the chronology. Uncertainty propagation is
optional and can be skipped without compromising model
accuracy. Standard deviations of uncertainties in input vari-
ables (sampling distance and δ18Oc) can be provided by the
user, while model uncertainties are calculated from the vari-
ability in model results of the same data point obtained from
overlapping simulation windows (see growth_model func-
tion). Measurement errors are combined by projecting Monte
Carlo simulated values for sampling distance and δ18Oc mea-
surements on the modeled δ18Oc curve through an orthog-
onal projection (Eq. 6; mc_err_orth function; visualized in
Fig. S3). The measurement uncertainty projected on the dis-
tance domain is then combined with the model uncertainty
to obtain pooled uncertainties in the distance domain, which
are propagated through the modeled δ18Oc record to obtain
uncertainties in the model result in the age domain. As a re-
sult of the sliding window approach in ShellChron, model
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results for data points situated at the edges of windows are
more sensitive to small changes in the modeled parameters
and therefore possess a larger model uncertainty. To prevent
these least certain model estimates from affecting the stabil-
ity of the model, model results are given more weight the
closer they are situated towards the center of the model win-
dow (see Eq. 7 in export_results function; see also Fig. S4).
This weighting is also incorporated in uncertainty propaga-
tion through a weighted standard deviation (see Eq. 8 from
the sd_wt function). Note that, despite the weighting solu-
tion, the size of uncertainties in the first and last positions in
the δ18Oc record remains uncertain since they are based on a
smaller number of overlapping windows (see, e.g., Fig. 3).

σmeas =

√√√√(Dsim−Dsim

σD

)2

+

(
δ18Osim− δ18Osim

σδ18O

)2

(6)

w [i]= 1−
∣∣∣∣ 2i
Lwindow

− 1 (7)

σweighted, i =

√√√√wi · (xi −w)
2∑

w [i] · N−1
N

(8)

3 Model description

ShellChron is organized as a series of functions that describe
the step-by-step modeling process. A schematic overview of
the model is given in Fig. 1. A short test case is used to il-
lustrate the modeling steps in ShellChron. Figure 2 shows
how the virtual test case was created from randomly gen-
erated seasonal growth rate, δ18Ow and temperature curves
using the seasonalclumped R package (de Winter et al.,
2021a; see Fig. 2 and Supplement SI2). A wrapper function
(wrap_function) is included, which carries out all steps of the
model procedure in succession to promote ease of use.

Data are imported through the data_import function,
which takes a comma-separated value (CSV) text file with
the input data. Data files need to contain columns containing
sampling distance (D, in µm) and δ18Oc data (in ‰ VPDB), a
column marking years in the record (yearmarkers), and two
optional columns containing uncertainties in sampling dis-
tance (σ(D), 1 standard deviation; µm) and δ18Oc (σ(δ18Oc),
1 standard deviation; ‰) (see example in SI2 and Fig. 3). The
function uses the year markers (third column) as guidelines
for defining the minimum length of the model windows to
ensure that all windows contain at least 1 year of growth. By
default, consecutive windows are shifted by one data point,
yielding a total number of windows equal to the sample size
minus the length of the last window. While year markers are
required for ShellChron to run (otherwise no windows can be
defined), the result of the model does not otherwise depend
on user-provided year markers, instead basing the age result
purely on simulations of the δ18Oc data.

The core of the model consists of simulations of over-
lapping subsamples (windows) of the sampling distance
and δ18Oc data described by the run_model function (see
Figs. 1 and 3). Data and window sizes are passed from
data_import to run_model along with user-provided param-
eters (e.g., δ18Ow information; see Fig. 1). The run_model
function loops through the data windows and calls the
growth_model function, which fits a modeled δ18Oc vs. dis-
tance curve through the data using the SCEUA optimization
algorithm (see Duan et al., 1992; see example in Fig. 4).
The simulated δ18Oc curve is produced through a combi-
nation of a temperature sinusoid (temperature_curve func-
tion; see Eq. 4, Figs. 4a and S1) and a skewed growth rate
sinusoid (growth_rate_curve; see Eq. 5, Figs. 4b and S2),
with temperature data converted to δ18Oc data through the
d18O_model function (Eqs. 1 and 2; Fig. 4a).

By default, starting values for the parameters describing
temperature and growth rate curves are obtained by estimat-
ing the annual period (P ) through a spectral density estima-
tion and applying a linearized sinusoidal regression through
the δ18Oc data (sinreg function; see Eq. 9). It is possible to
skip this sinusoidal modeling step through the sinfit parame-
ter in the run_model function, in which case the starting value
for the annual period is set equal to the width of the model
window. In addition, growth_model takes a series of param-
eters describing the method for SCEUA optimization (see
Duan et al., 1992; Judd et al., 2018) and the upper and lower
bounds for parameters describing temperature and growth
rate curves (see SI4). Parameters for the SCEUA algorithm
(iniflg, ngs, maxn, kstop, pcento, and peps) in the run_model
function may be modified by the user to reach more desirable
optimization outcomes. The effect of changing the SCEUA
parameters on the model result for the test case is illustrated
in Sect. 4.1 (see Fig. 5). If uncertainties in sampling dis-
tance and δ18Oc data are provided, growth_model calls the
mc_err_orth function to propagate these errors through the
model result (see Eq. 6 and Fig. S3).

δ18Oc
[
‰ VPDB

]
= I +

A

2
sin

(
2π ·

(
D−ϕ+ P

4

)
P

)
linearized as

δ18Oc
[
‰ VPDB

]
= a+ b sin

(
2π
P
·D

)
+ ccos

(
2π
P
·D

)
with

I = a; A=
√
b2+ c2 and ϕ = P ·

(
0.25−

cos−1 ( b
A

)
2π

)
(9)

The run_model function returns an array listing day of the
year (1–365), temperature, δ18Oc, growth rate, and (option-
ally) their uncertainty standard deviations as propagated from
uncertainties in the input data (“result array”; see Fig. 3 and
SI5). Note that the default length of the year (Tper and Gper)
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Figure 1. Schematic overview of ShellChron. Names in italics refer to functions (encapsulated in rounded rectangular boxes) and operations
within functions. Rectangular boxes represent data. Arrows represent the flow of information between model components. Note that some
operations are encapsulated in functions (e.g., Error propagation in export results) and that some functions are only used within other
functions (e.g., peakid in cumulative_day). All data structures outside wrap_function represent input and output of the model. Detailed
documentation of all functions and operations in ShellChron is provided in SI1 (see also the “Code and data availability” section).

is set at 365 d, but these parameters can be modified by the
user in run_model. In addition, a matrix containing the op-
timized parameters of temperature and growth rate curves is
provided, yielding information about the evolution of mean
values, phases, amplitudes, and skewness of seasonality in
temperature and growth rate along the record (“parameter
matrix”; see Fig. 1 and SI6). To construct an age model for
the entire record, the modeled timing of growth data, ex-
pressed as day relative to the 365 d year, is converted into
a cumulative time series listing the number of days relative
to the start of the first year represented in the record (rather
than relative to the start of the year in which the data point
is found). This requires year transitions (transitions from
day 365 to day 1) to be recognized in all the model results.
The cumulative_day function achieves this by aggregating
information about places where the beginning and end of the
year are recorded in individual window simulations and ap-
plying a peak identification algorithm (peakid function) to
find places in the record where year transitions occur (see
the Supplement). Results of the timing of growth for each
sample (in day of the year) are converted to a cumulative

timescale using their positions relative to these recognized
year transitions (Supplement).

In a final step (described by the export_results function),
the results from overlapping individual modeling windows
are combined to obtain mean values and 95 % confidence
envelopes of the result variables (age, δ18Oc, δ18Oc-based
temperatures, and growth rates) for each sample in the input
data. If uncertainties in the input variables were provided,
these are combined with uncertainties in the modeling result
calculated from results of the same data point on overlapping
data windows by pooling the variance of the uncertainties
(Eq. 10). Throughout this merging of data from overlapping
windows, results from data points on the edge of windows
are given less weight than those from data points near the
center of a window (see Eq. 7 and Fig. S4). This weight-
ing procedure corrects for the fact that data points near the
edge of a window are more susceptible to small changes in
the model parameters and are therefore less reliable than re-
sults in the center of the window. Finally, summaries of the
simulation results and the model parameters including their
confidence intervals are exported as comma-separated value
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Figure 2. (a) Plots of the growth rate (light green), δ18Ow (blue), and temperature (red) records (in time domain) from which the test case
was produced. Black triangles on the bottom of the temperature plot indicate the ages of the samples taken from the record. (b) The δ18Oc
record for the test case generated after equidistant sampling using the seasonalclumped package (de Winter et al., 2021a) with a sampling
interval of 0.5 mm. Error bars on sampling distance (0.1 mm) and δ18Oc (0.1 ‰) fall within the symbols. Vertical grey dashed lines indicate
user-provided year markers, and the blue bar on top of this plot shows an example of the width of a modeling window. See the Supplement
for details on producing the test case δ18Oc record and SI3 for the R script used to generate the data.

(CSV) files. In addition, export_results supports optional ex-
ports of figures displaying the model results and files contain-
ing raw data from all individual model windows (equivalent
to sheets of the result array; see Fig. 3 and SI5):

VARpooled =

∑
i

((Ni − 1) ·VARi ·wi)∑
i

(Ni)− n
, (10)

in which w is the weight of the individual reconstructions,
N is the sample size, and n is the number of reconstructions
(indexed by i) that are combined.

4 Model performance

The performance of ShellChron was first tested on three vir-
tual datasets:

1. the short test case used to illustrate the model steps
above (see Figs. 2 and 4; SI7),

2. a δ18Oc record constructed from a simulated tempera-
ture sinusoid with added stochastic noise (Case 1; SI8),
and

3. a record based on a known high-resolution sea surface
temperature and salinity record measured on the coast of
Texel island in the tidal basin of the Wadden Sea (north-
ern Netherlands; Texel, see details in SI9 and de Winter
et al., 2021a, as well as the Supplement).

Firstly, the effect of varying parameters in the SCEUA al-
gorithm is tested on the test case (Fig. 5). Then, full model
runs on Case 1 and Texel are evaluated in terms of model
performance (Fig. 6). In addition to the three test cases, three
modern carbonate δ18Oc records were internally dated using
ShellChron (see Fig. 7): a tropical stony coral (Porites lutea;
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Figure 3. Schematic overview of the structure of the result array in which ShellChron stores the raw results of each model window. Data are
stored in three dimensions: the sample number (rows in the figure), the window number (columns in the figure), and the number of modeled
parameters (represented by the stacked table “sheets” in the figure). Note that the first five columns of each sheet represent the user-provided
input data (see example in SI2) and that the model result data start from column 6. The window length is determined by the user-provided
indication of year transitions (column 3). Rows of dots in the figure are placeholders for (input or result) values. Shading of these dots in
the window columns indicates differential weighting of modeled values as a function of their location relative to the sliding window. The
horizontal box shows how these weighting factors within each sample window (in vertical direction) result in weighting of different estimates
of modeled parameters for the same data point (in horizontal direction). The shading of input data and window number towards the bottom
and right edge of the figure, respectively, indicates that the number of input values (and thus simulation windows) is only limited to the length
of the input table and may therefore continue indefinitely (at the expense of longer computation times; see Fig. 8 in the “Model performance”
section).

hereafter: coral) from the Pandora Reef (Great barrier Reef,
NE Australia; Gagan et al., 1994; see SI10), a Pacific oyster
shell (Crassostrea gigas; hereafter: oyster) from List Basin in
Denmark (Ullmann et al., 2010; see SI10), and a temperate-
zone speleothem from Han-sur-Lesse cave (Belgium; here-
after: speleothem; see Vansteenberge et al., 2020; see SI10).
Finally, ShellChron’s performance in terms of computation
time and accuracy is compared to that of the most com-
prehensive pre-existing δ18Oc-based age model (GRATAISS
model by Judd et al., 2018) on simulated temperature sinu-
soids of various length and sampling resolutions to which
stochastic noise was added (sensu Case 1; de Winter et al.,
2021a; see Fig. 8 and SI11). The latter also demonstrates the
scalability of ShellChron and its application to a variety of

datasets. Timing comparisons were carried out using a mod-
ern laptop (Dell XPS13–7390; Dell Inc., Round Rock, Tx,
USA) with an Intel Core i7 processor (8 MB cache, 4.1 GHz
clock speed, four cores, Intel Corporation, Santa Clara, CA,
USA), 16 GB LPDDR3 RAM and an SSD drive running
Windows 10. Note that ShellChron was built and tested suc-
cessfully on Mac OS, Fedora Linux, and Ubuntu Linux as
well.

4.1 Testing model parameters

Testing different combinations of modeling parameters
(Fig. 5) shows that, while the results of ShellChron can
improve beyond the default SCEUA parameters and sinu-
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Figure 4. Showing the steps taken to simulate δ18Oc data in the run_model function on the test case. (a) Temperature sinusoid used to
approximate δ18Oc data in the first modeling window (see panel d), produced using a combination of temperature_curve and d18O_model
functions. Symbols indicate the positions of δ18Oc samples on the temperature curve, with estimated δ18Oc values shown on the secondary
axis (right). (b) Skewed growth rate sinusoid fit to the δ18Oc data using the growth_rate_curve function. Note the shift towards steeper
growth rate increase around the 300th model day (autumn season in this example). See Fig. S2 for a detailed description of the growth
rate sinusoid. (c) The modeled age–distance relationship for this window after fitting δ18Oc data, resulting from aligning the estimated age
of samples (x axes in panel a) with the distance in sampling direction (x axis in panel d) using the cumulative growth rate function (b).
(d) δ18Oc profile of the test case (green) with the δ18Oc curve of the first modeling window (red), which results from the combination of
temperature (a) and growth rate (b) sinusoids, plotted on top (growth_model function). (e) Result after simulating the full δ18Oc profile of
the test case (green) using run_model, with the δ18Oc curves of individual modeling windows shown in red.

soidal regression, care must be taken to evaluate the effect
of changing modeling parameters on both the δ18Oc fit and
the age–distance relationship. Comparative testing on the test
case (Fig. 5) shows that sinusoidal regression has a negligi-
ble influence on the success of ShellChron fitting the δ18Oc
curve (Fig. 5a and b; standard deviation for δ18Oc is 0.49 ‰
with sinusoidal regression and 0.50 ‰ without). However,
ShellChron with sinusoidal regression performs better in
terms of age approximation, with a mean age offset of only
7± 32 d with sinusoidal regression against 32± 35 d with-
out (Fig. 5c and d). Age–distance plots (Fig. 5c) show that
the model without sinusoidal fit shows a phase offset with
respect to the known age–distance relationship, resulting in
overestimation of the age for much of the record. Sinusoidal

regression probably results in better initial parameter estima-
tion, which helps to avoid phase offsets like the one shown
in Fig. 5. For the remainder of the tests, sinusoidal regression
was enabled.

The remainder of the tests show that the main bottleneck
towards better δ18Oc fit optimization is the maximum num-
ber of function evaluations allowed within a single modeling
cycle (maxn; see Fig. 5). Increasing the other SCEUA param-
eters, such as the number of complexes in the SCEUA routine
(ngs), the number of shuffling loops that should show a sig-
nificant change before convergence (kstop), and the thresh-
olds for significant change in parameter value (peps) or result
value (pcento), does not improve the result if the SCEUA al-
gorithm is not allowed more processing time (maxn). In fact,
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Figure 5. Result of testing ShellChron with various combinations of SCEUA parameters and sinusoidal regression on the test case dataset
(see Fig. 2). The leftmost plots illustrate performance of ShellChron under default SCEUA parameters. Plots to the right show various
combinations of parameters that deviate from the default (see labels on top and bottom of plot). (a) Fits of the model δ18Oc curves (red) with
the data (black). (b) Violin plots showing the distribution of modeled δ18Oc offset from the data. (c) Age–distance plots showing modeled
(red) and known (black) age–depth relationships for each scenario. (d) Violin plots showing the distribution of age offsets from the known
age–depth relationship. SD: standard deviation, N : number of data points, sinres: sinusoidal regression; maxn, ngs, kstop, peps, and pcento
are SCEUA parameters (see Duan et al., 1992, and explanation in Sect. 4.1). Data on test results are provided in SI11.

Fig. 5 shows that increasing these SCEUA parameters can ac-
tually result in a deterioration of the δ18Oc fit and higher un-
certainty in the age result (Fig. 5b and d). A fivefold increase
in maxn (maxn= 50 000) almost halves the standard devia-
tion of δ18Oc residuals (from 0.49 ‰ to 0.29 ‰; Fig. 5b) and
decreases the standard deviation of the age model offset from
32 to 26 d (Fig. 5d). A combination of a 10-fold increase in
function evaluations with an equal multiplication of the num-
ber of complexes in the SCEUA routine (ngs; see details in
Duan et al., 1992) results in a further reduction of standard
deviations of δ18Oc (0.23 ‰) and age results (12 d). These
tests show that returns in terms of model precision quickly
diminish with increasing processing time. Since the total
modeling time linearly scales with the number of function
evaluations, this trade-off towards a lower standard deviation
of the modeling result is costly. These function evaluations
are repeated in each modeling window, so the cost in terms
of extra processing time can increase quickly, especially for
larger δ18Oc datasets. In addition, in this situation the mean

model offset (accuracy of the model; 7, 28 and 14 d for maxn
of 1.0× 104, 5.0× 104 and 1.0× 105, respectively; Fig. 5d)
does not significantly improve with an increasing number
of function evaluations. Based on these results, the default
maxn parameter in ShellChron was set to 104 to compro-
mise between keeping modeling times short while retaining
high model accuracy. However, specific datasets may benefit
from an increase in modeling time, so case-by-case assess-
ment of the optimal SCEUA parameters is recommended. A
detailed evaluation of the total modeling time in a typical
δ18Oc dataset is discussed in Sect. 4.4.

4.2 Artificial carbonate records

Results of running ShellChron on the test case (Fig. 4),
Case 1, and Texel datasets (Fig. 6) show that modeled δ18Oc
records in individual windows closely match the data. On
the level of individual windows, interannual growth rate vari-
ability is more difficult to model than the temperature sinu-
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Figure 6. Result of applying ShellChron to two virtual datasets: Case 1 (top, see SI8) and Texel (bottom, see SI9). Leftmost panels (a,
d) show the model fit of individual sample windows (red) on the data (black, including horizontal and vertical error bars), with Spearman’s
correlation coefficients (ρ) in the top left and standard deviations of the δ18Oc estimate (σest). Middle panels (b, e) show the resulting age
model (red, including shaded 95 % confidence level) compared with the known age–distance relationship of both records. Histograms in
the top left of age–distance plots show the offset between modeled and measured δ18Oc (as visualized in panels a and d) with standard
deviations of the δ18Oc offset (σoff) and offset averages (µ). Histograms in the bottom right of age–distance plots show the offset between
modeled and known ages (in days) of each data point, including standard deviations of the age accuracy (σacc) and mean age offset (µ).
Rightmost panels (c, f) highlight age offsets binned in 12 monthly time bins based on their position relative to the annual cycle to illustrate
how accuracy varies over the seasons. Grey envelopes indicate 95 % confidence levels for the monthly age offset within these monthly time
bins. The horizontal red dashed line indicates no offset (modeled age is equal to the known age of the sample).

soid, especially when sampling resolution is limited and at
the beginning and end of the record (Fig. 4b). However, after
overlapping multiple windows, the accuracy of ShellChron
improves significantly (Fig. 4e). Note that in Fig. 4a–c, the
length of the first model window (difference in age between
first and 11th data point) is less than 365 d because the 12th
data point, which occurs exactly 1 year after the first point,
is not part of the window. A summary of ShellChron perfor-
mance statistics is given in Table 2. In all virtual datasets,
δ18Oc estimates are equally distributed above and below the
δ18Oc data (118Oc = 0.0‰; Spearman’s ρ of 0.94, 0.98, and
0.92 for the test case, Case 1, and Texel datasets, respec-
tively). Age offsets vary slightly over the seasons, but the
difference between monthly time bins is not statistically sig-
nificant on a 95 % confidence level (Fig. 6c and f; see also
SI12). The fact that seasonal bias in age offset is absent in the
Texel dataset, which is skewed towards growth in the winter
season and includes relatively strong seasonal variability in
δ18Ow, shows that ShellChron is not sensitive to such sub-
tle (though common) variability in growth rate or δ18Ow.
In general, ShellChron’s mean age assignment is accurate
on a monthly scale (age offsets of 4± 12 d and +30± 24 d

for Case 1 and Texel datasets, respectively). However, age
results in individual months do sometimes show significant
offsets from the known value (e.g., Fig. 6c and f). This is
most notable in Case 1, for which the accuracy of the age
model decreases near the extreme values of the δ18Oc curve
(Fig. 6b and c). This occurs because in these places the model
is most sensitive to stochastic noise (simulated uncertainty)
in the δ18Oc value. A small random change in the δ18Oc value
at the minima or maxima of the δ18Oc curve thus results in
a large change in the model fit of the δ18Oc curve, result-
ing in a seasonally nonuniform decrease in the accuracy of
the model, as is evident from the skewed 118Oc distribu-
tion in Fig. 6b and c. The sampling resolution in the Texel
data decreases near the end of the record (see SI9), but this
does not result in reduced age model accuracy. If anything,
the age of Texel samples is better approximated near the end
of the record, and age offsets are larger in the central part
of the record (∼ 30–50 mm; Fig. 6e). The lower accuracy in
the third to fifth year of the Texel record is likely a result
of the sub-annual variability in the record that is superim-
posed on the seasonal cycle. The lower sampling resolution
later in the record mutes this variability and illustrates that
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Figure 7. Overview of model results for the three test datasets from real carbonate archives: (a) coral, (b) oyster, and (c) speleothem. Lower
panels indicate the fit of individual model windows (in red) with the data (in black), while upper panels show the age model (in red) compared
to the “true” age–distance relationship with histograms showing model accuracy (in days, top left) and model fit (δ18Oc offset in ‰, bottom
right). Color scheme follows Fig. 3. Note that the true age–distance relationship is not known for these natural records but is estimated
using known growth seasonality (coral), comparison with in situ temperature and salinity measurements (oyster), or simply by interpolating
between annual growth lines (speleothem). See the Supplement for details and SI10 for raw data.

Table 2. Overview of datasets and model results.

Dataset Resolution Length δ18Oc seasonal range Complications

Test case 7–12 yr−1 5 years ∼ 5 ‰ Variable δ18Ow,
Variable GR

Case 1 50 yr−1 6 years ∼ 4.3 ‰ None
Texel 26–45 yr−1 10 years ∼ 4 ‰ Variable δ18Ow,

Variable GR
Coral 30–49 yr−1 6 years ∼ 1.7 ‰ Variable GR
Oyster 23–45 yr−1 3.5 years ∼ 3 ‰ Variable δ18Ow,

Variable GR
Speleothem 4–13 yr−1 14 years ∼ 0.5 ‰ Variable δ18Ow,

Variable GR,
Non-sinusoidal δ18Oc forcing

Dataset δ18Oc offset (±1σ ) Age offset (±1σ ) Spearman’s ρ Observations

Test case 0.0± 0.49 ‰ 7± 32 d 0.94 Slightly out of phase
Case 1 0.0± 0.27 ‰ 4± 12 d 0.98 –
Texel 0.0± 0.41 ‰ 30± 24 d 0.92 –
Coral 0.0± 0.14 ‰ 12± 28 d 0.97 –
Oyster 0.0± 0.39 ‰ −15± 43 d 0.91 Reduced accuracy near growth stops
Speleothem 0.0± 0.08 ‰ −114± 59 d 0.92 Susceptible to phase offsets;

only reliable on interannual scale

higher sampling resolutions do not necessarily result in bet-
ter age models. The constant offset of the modeled age of the
Texel sample from the known age is a result of the way the
model result was aligned to start at zero for comparison with
the known age (Fig. 6f). This was done by adding the offset

from zero of the modeled age of the first data point in the
record to the entire record, thereby defining an arbitrary ref-
erence point which is sensitive to the uncertainty in the age
of the first sample (see also oyster and speleothem results in
Fig. 7b and c). Note that this alignment issue does not play a
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Figure 8. Overview of the result of timing ShellChron and the GRATAISS model on the same datasets (a), comparing the accuracies of
both models (b), and comparing the accuracy as calculated by ShellChron with the known offset in the age model (c). In (a) and (b), low-
resolution datasets are plotted in dark blue (ShellChron) and dark green (GRATAISS), while high-resolution datasets are plotted in light
blue (ShellChron) and light green (GRATAISS). Solid lines represent ShellChron, and dashed lines show the performance of the GRATAISS
model. Green dotted lines in (b) show the accuracies of the GRATAISS model on a year-by-year basis (without accumulating error due to
linking consecutive years). The black box in (a) and (b) highlights the dataset used in (c). In (c), dark blue lines, bars, and box plot indicate
true offset of the model from the actual sample age, while light blue lines, bars, and box plot show the accuracy of the model as calculated
from the propagated errors in model and input data. Raw data are provided in SI11.

role in fossil data, for which model results can be aligned to
growth marks in the carbonate (e.g., shell growth breaks or
laminae), and that it does not affect the seasonal alignment
of the proxy binned into monthly sample bins.

4.3 Natural carbonate records

Results of modeling natural carbonate records (Fig. 7; Ta-
ble 2; see also SI10) illustrate the effectiveness of ShellChron
for various types of records. Performance clearly depends on

the resolution of the record and the regularity of seasonal
variability contained within. As in the virtual datasets, mod-
eled δ18Oc successfully mimics δ18Oc data in all records
(118Oc = 0.0; Spearman’s ρ of 0.97, 0.91, and 0.92 for
coral, oyster, and speleothem, respectively). No consistent
seasonal bias is observed in 118Oc and model accuracy
(p > 0.05; see Table 2 and SI12), despite significant (sea-
sonal and interannual) variability contained in the records
(especially in oyster and speleothem records). When com-
paring the accuracy of these records, it must be noted that the
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“known” age of the samples in these natural carbonates is not
known. Model results are instead compared with age models
constructed using conventional techniques such as matching
δ18Oc profiles with local temperature and/or δ18Ow variabil-
ity (oyster and coral records) or even merely by linear inter-
polation between annual markers in the record (speleothem
record; see the Supplement). Despite this caveat, testing re-
sults clearly show that the least complicated record (coral;
Fig. 7A), characterized by minimal variability in δ18Ow and
growth rate as well as a high sampling density, has the
best overall model result (118Oc = 0.0±0.14 compared to a
∼ 1.7 ‰ seasonal range; ρ = 0.97; 1t = 12± 28 d; see Ta-
ble 2). The oyster record (Fig. 7b), which has strong seasonal
variability in growth rate and δ18Osw, also yields a reliable
age model (118Oc = 0.0± 0.39 compared to a ∼ 3 ‰ sea-
sonal range; ρ = 0.91; 1t =−15± 43 d; see Table 2). On
closer inspection, the age within the oyster record is clearly
more difficult to model than within the coral, due in part to
the higher variability of δ18Oc values superimposed on the
seasonal cycle, the sharp growth cessations in the winters
(high δ18Oc values), and the variability in sampling resolu-
tion within the record. The latter causes the first growth year
of the oyster record to be less accurately modeled (Fig. 7b),
while the variability in δ18Oc causes the edges of some
modeling windows to predict steep increases or decreases
in δ18Oc (vertical “offshoots” in modeled δ18Oc; Fig. 7b).
Note that the low weighting of the edges of modeling win-
dows combined with the high overall sampling resolution in
the oyster record minimizes the effect of these offshoots on
the accuracy of the model. The speleothem record (Fig. 7c),
plagued by lower sampling resolution, large interannual
δ18Oc variability, restricted δ18Oc seasonality, and a lack of
clearly seasonal δ18Oc forcing, yields the least reliable model
result (118Oc = 0.0± 0.08 ‰ compared to a ∼ 0.5 ‰ sea-
sonal range; ρ = 0.92;1t =−114±59 d; see Table 2). Note
that the accuracy figure provided for the speleothem record
is based on comparison with an age model relying on lin-
ear interpolation between annual growth lines. This assump-
tion of the age–distance relationship is almost certainly erro-
neous, since drip water supply to (and therefore growth in)
speleothems has been shown to vary seasonally (e.g., Bal-
dini et al., 2008), including at the very site the speleothem
data derive from (Han-sur-Lesse cave, Belgium; Van Ram-
pelbergh et al., 2014; Vansteenberge et al., 2020). However,
since no reliable information is available on sub-annual vari-
ability in growth rates in this record, ShellChron results can-
not be validated at the sub-annual scale in this case. The high
age offset (−114 d) in the speleothem model result is a conse-
quence of the assumption in ShellChron that the highest tem-
perature (lowest δ18Oc value) recorded in each growth year
happens halfway through the year (day 183) and the align-
ment of the modeled age with the known age for this record
(see discussion of Texel results in Sect. 4.2). While the as-
sumption about the phase of the temperature sinusoid is ap-
proximately valid for temperature-controlled δ18Oc records

(see Figs. 6 and 7), it is problematic for speleothems, in
which δ18Oc is often dominated by the δ18Ow of drip water,
which may not be lowest during the summer season (see Van
Rampelbergh et al., 2014). The timing of the δ18Oc minimum
can be set in the run_model function using the t_maxtemp pa-
rameter. Note that changing t_maxtemp does not affect rela-
tive dating within the δ18Oc record but, if set correctly, results
in a phase shift of the age model result into better alignment
with the seasonal cycle.

4.4 Modeling time

The performance of both ShellChron and GRATAISS in
terms of computation time linearly increases with the length
of the record (in years; see Figs. 8, S5 and SI11). Compu-
tation time of ShellChron for the high-resolution test dataset
(50 samples yr−1) increases very steeply with the length of
the record in years (∼ 20 min per additional year), while the
low-resolution dataset (16 samples yr−1) shows a slower in-
crease (∼ 3 min per additional year; Fig. 5a). This contrasts
with GRATAISS, which requires only slightly more time
for high-resolution data than low-resolution datasets (∼ 7
and ∼ 10 min per additional year, respectively). The differ-
ence is explained by the sliding window approach applied
in ShellChron, which requires more SCEUA optimization
runs per year in high-resolution datasets than in low reso-
lution datasets. When plotted against the number of calcula-
tion windows or samples in the dataset, running ShellChron
on low-resolution and high-resolution datasets require a sim-
ilar increase in computation time (∼ 0.4 min, or 24 s, per ad-
ditional sample or window; Fig. S5) under default SCEUA
conditions. ShellChron outcompetes GRATAISS in terms of
computation time in datasets with fewer than ∼ 20 sam-
ples yr−1, even though more SCEUA optimizations are re-
quired.

A key computational improvement in ShellChron is the
application of a sinusoidal regression before each SCEUA
optimization to estimate the initial values of the modeled pa-
rameters (sinreg function; see Eq. 9 and Fig. 1 in Model de-
scription). Since carbonate archives are rarely sampled for
stable isotope measurements above 20 samples yr−1 (e.g.,
Goodwin et al., 2003; Schöne et al., 2005; Lough, 2010,
and references therein), the disadvantage of a steep compu-
tational increase for very high-resolution archives is, in prac-
tice, a favorable trade-off for the added control on model
and measurement uncertainty as well as smoother inter-year
transitions ShellChron offers in comparison to previous mod-
els. The similarity of ShellChron’s accuracy in the low- and
high-resolution datasets demonstrates its robustness across
datasets with various sampling resolutions (see also Table 2
and Fig. 7).

Longer computation times in GRATAISS result in slightly
better accuracy for the modeled age compared to ShellChron
on the scale of individual data points in low-resolution
datasets (see Fig. 8b). However, this advantage is rapidly
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lost when records containing multiple years are considered
(Fig. 8b). The advantage of the ShellChron model is its appli-
cation of overlapping model windows, which smooth out the
transitions between modeled years and eliminate accumula-
tions of model inaccuracies when records grow longer. In ad-
dition, contrary to previous models, ShellChron does not rely
on user-defined year boundaries, which may introduce mis-
matches between subsequent years to be propagated through
the age model, even in ideal datasets such as Case 1 (Fig. 8b;
see also the Supplement). By comparison, the overall accu-
racy of ShellChron is much more stable within and between
datasets of different length, while rarely introducing offsets
of more than a month. It must be noted here that the cu-
mulative multiyear age uncertainty in the GRATAISS model
(Fig. 8b) was calculated by combining the results of consec-
utive growth years in the record, which GRATAISS models
separately, while avoiding age inversions and retaining the
seasonal phase of the model results. This procedure causes
gaps in time to be introduced in the cumulative age modeled
by GRATAISS whenever the results of two consecutive, in-
dividually modeled growth years do not align, explaining the
sharp increases in age uncertainty of the GRATAISS model
result (Fig. 8b). These cumulative uncertainties are therefore
not theoretically part of the model result (see year-by-year
uncertainty in Fig. 8b) but are a necessary consequence of
the way GRATAISS approximates growth years separately.
If only within-year inaccuracies are compared, GRATAISS
results are roughly equally as accurate as ShellChron results
(see dotted lines in Fig. 8b).

While ShellChron considers the uncertainty in input pa-
rameters, this uncertainty is not considered in most pre-
vious models (the MoGroFun model of Goodwin et al.,
2003, being the exception). The added uncertainty caused
by input error is higher in less regular (sinusoidal) δ18Oc
records and in records with lower sampling resolution, caus-
ing the uncertainties in GRATAISS reported here for the
ideal high-resolution Case 1 dataset to be overly optimistic.
If ShellChron’s model accuracy is insufficient, its modular
character allows the user to run the SCEUA algorithm to
within more precise optimization criteria by changing the
model parameters (see Sect. 4.1). However, this adaptation
comes at a cost of longer computation times.

The estimated uncertainty envelope (95 % confidence in-
terval) for the modeled age calculated by the error propaga-
tion algorithm in ShellChron (4.7±6.5 d) on average slightly
underestimates the actual offset between modeled age and
known age in the Case 1 record (9.3± 13.1 d; Fig. 8c). The
foremost difference between modeled and known uncertainty
in the result is that the modeled uncertainty yields a more
smoothed record of uncertainty compared to the record of
actual offset of the model (Fig. 8c). ShellChron’s uncer-
tainty calculations are partly based on comparing overlap-
ping model windows, thereby smoothing out short-term vari-
ations in model offset. The uncertainty of the model result
(both known and modeled) shows regular variability with a

period of half a year (Fig. 8c). Comparing this variability
with the phase of the record (6 years of which are plotted
in Fig. 6a) reveals that the uncertainty of the model is nega-
tively correlated with the slope of the δ18Oc record. This is
expected because in parts of the record with extreme values
in the δ18Oc curve, the local age model result is more sensi-
tive to small changes in the sampling distance, caused either
by uncertainty in the model fit or propagated uncertainty in
the sampling distance defined by the user (see discussion in
Sect. 4.2). The slight seasonal variability in model accuracy
in Case 1 is also shown in Fig. 6c and comprises a difference
in uncertainty of up to 10 d depending on the time of year in
which the data point is found.

5 Applications and discussion

Its new features compared to previous age model routines
make ShellChron a versatile package for creating age mod-
els in a range of high-resolution paleoclimate records. The
discussion above demonstrates that ShellChron can recon-
struct the age of individual δ18Oc samples with monthly pre-
cision. This level of precision is sufficient for accurate recon-
structions of seasonality, defined as the difference between
warmest and coldest month (following USGS definitions;
O’Donnell and Ignizio, 2012). While an improvement on
this uncertainty could be of potential interest for ultrahigh-
resolution paleoclimate studies (e.g., sub-daily variability;
see Sano et al., 2012; Yan et al., 2020; de Winter et al.,
2020a), the increase in computation time and the sampling
resolution such detailed age models demand render age
modeling from δ18Oc records inefficient for this purpose
(see Sect. 4.1 and 4.4). The sampling resolution for high-
resolution carbonate δ18Oc records in the literature does not
typically exceed 100 µm due to limitations in sampling ac-
quisition (e.g., micromilling), which even in fast-growing
archives limits the resolution of these records to several days
at best (see Gagan et al., 1994; Van Rampelbergh et al.,
2014; de Winter et al., 2020c). While in some archives, high-
resolution (< 100 µm) trace element records could be used
to capture variability beyond this limit, the monthly age res-
olution of ShellChron is sufficient for most typical high-
resolution paleoclimate studies.

The ability to produce uninterrupted age models from mul-
tiyear records while considering both variability in δ18Ow
and uncertainties in input parameters represents major ad-
vantages of ShellChron over previous age modeling solu-
tions. As a result, ShellChron can be applied to a wide range
of carbonate archives (see Fig. 7 and Table 2). However,
testing ShellChron on different records highlights the lim-
itations of the model inherited through its underlying as-
sumptions. The most accurate model results are obtained
for records with minimal growth rate and δ18Ow variability
as well as a nearly sinusoidal δ18Oc record, such as trop-
ical coral records (Fig. 7a; Gagan et al., 1994). In records
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wherein large seasonal variability in growth rate and δ18Ow
does occur, such as in intertidal oyster shells, ShellChron’s
accuracy slightly decreases, especially near growth hiatuses
in the record (see Fig. 7b; Ullmann et al., 2010). A worst-
case scenario is represented by the speleothem record, which
not only suffers from much slower and more unpredictable
growth rates and contains a comparatively small annual range
in δ18Oc, but it also responds to δ18Ow variability in drip
water in the cave rather than temperature seasonality, which
is one of the assumptions underlying the current version
of ShellChron (Fig. 7c; Vansteenberghe et al., 2019). De-
spite these problems, ShellChron yields an age model that
is remarkably accurate on an annual timescale, which is as
good as, or better than, the best age model that can be ob-
tained by applying layer counting to the most clearly lami-
nated parts of the speleothem (e.g., Verheyden et al., 2006).
It must be noted that, while the close fit between modeled
δ18Oc and speleothem δ18Oc data (ρ = 0.92; σ = 0.08 ‰)
is encouraging, a major reason for the model’s success is
the fact that the Proserpine speleothem used in this exam-
ple is known to receive significantly seasonal (though not si-
nusoidal) drip water volumes and concentrations (Van Ram-
pelbergh et al., 2014). Variability in drip water properties
and cave temperatures is known to differ strongly between
cave systems (Fairchild et al., 2006; Lachniet, 2009). For
ShellChron (or any other δ18Oc-based age model) to work
reliably in speleothem records, consistent seasonal variabil-
ity in either temperature or δ18Ow should be demonstrated
to significantly influence the δ18Oc variability in the record.
In practice, these constraints make ShellChron applicable in
speleothems for which the cave environment varies in re-
sponse to the seasonal cycle, such as localities overlain by
thin epikarst, well-ventilated caves, or speleothems situated
close to the cave entrance (Verheyden et al., 2006; Feng et
al., 2014; Baker et al., 2021).

ShellChron’s ability to model multiyear records with
smooth transitions between the years does not compromise
the accuracy of its age determination on the seasonal scale
(e.g., Figs. 6 and 7). Many paleoclimatology studies investi-
gating the seasonal cycle rely on stacking of seasonal vari-
ability relative to the annual cycle, thereby combining sea-
sonal information from multiple years to obtain a precise re-
construction of seasonal variability in the past (e.g., de Win-
ter et al., 2018; Judd et al., 2019; Tierney et al., 2020). While
this can be achieved using age models of individual years
(e.g., Judd et al., 2018), seasonally resolved archives dated
using ShellChron can also be stacked along a common sea-
sonal axis while retaining information about the multi-annual
record, allowing, for example, comparison between consec-
utive years dated using the same age model including uncer-
tainty in the age determination.

The difficulty of applying age model routines to
speleothem records highlights one of the main advantages of
ShellChron over pre-existing age model routines, namely its
modular character. Since δ18Oc records from some carbonate

archives, such as speleothems, cannot be described by the
standard combination of temperature and growth rate sinu-
soids on which ShellChron is based (in its current version),
the possibility to adapt the “building block” functions used
to approximate these δ18Oc records (d18O_model, tempera-
ture_curve, and growth_rate_curve; see Fig. 1) while leaving
the core structure of ShellChron intact greatly augments the
versatility of the model. The freedom to adapt the building
blocks used to approximate the δ18Oc record theoretically en-
ables ShellChron to model sub-annual age–distance relation-
ships in any record if the seasonal variability in the variables
used to model the input data are predictable and can be rep-
resented by a function. For example, since speleothem δ18Oc
records often depend on variability in the δ18Ow value of
the drip water, a function describing this variability through
the year can replace the temperature_curve function to cre-
ate more accurate sub-annual age models for speleothems
(e.g., Mattey et al., 2008; Lachniet, 2009; Van Rampelbergh
et al., 2014). Similarly, the growth_rate_curve function can
be modified in the case that the default skewed sinusoid does
not accurately describe the extension rate of the record un-
der study, and the d18O_model function can be adapted to
feature the most fitting δ18Oc–temperature or δ18Oc–δ18Ow
relationship. Note that the flexibility of this approach is lim-
ited by the expression of the annual cycle in the δ18Oc record.
The δ18Oc-based dating approach in ShellChron will there-
fore have more trouble dating records in which the annual
δ18Oc variability is severely dampened, such as speleothems
in deeper cave systems (e.g., Vansteenberge et al., 2016), or
in which annual δ18Oc variability is not sinusoidal, such as
tropical records with bimodal temperature or precipitation
seasonality (Knoben et al., 2019).

Flexibility in the definition of building block functions
used to approximate the input data paves the way for future
application beyond carbonate δ18Oc records. The seasonal
variability in δ18O in some ice cores can be approximated
by a stable and unbiased temperature relationship (van Om-
men and Morgan, 1997). ShellChron can therefore be modi-
fied to date sub-annual samples in these ice core records and
reconstruct seasonal variability in the high latitudes through
the Quaternary. Similarly, interannual δ18O variability in tree
ring records is demonstrated to record variability in precip-
itation through the year, and this variability can be modeled
to improve sub-annual age models in these records (Xu et
al., 2016). More generally, the field of dendrochemistry has
recently developed additional chemical proxies for season-
ality (e.g., trace element concentrations), which can be mea-
sured in smaller sample volumes (and thus greater resolution)
to obtain ultrahigh-resolution records on which (sub-annual)
dating can be based (e.g., Poussart et al., 2006; Superville
et al., 2017). A similar development has taken place in the
study of carbonate bio-archives such as corals and mollusks,
some of which show strong, predictable seasonal variabil-
ity in trace elements (e.g., Mg/Ca and Sr/Ca ratios) which
can be used to accurately date these records (de Villiers et
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al., 1995; Sosdian et al., 2006; Durham et al., 2017; de Win-
ter et al., 2021b). Minor changes in the building block func-
tions using empirical transfer functions for these trace ele-
ment records will enable ShellChron to capitalize on these re-
lationships and reconstruct sub-annual growth rates with im-
proved precision due to the higher precision with which these
proxies can be measured compared to δ18Oc records. Finally,
the application of ShellChron for age model construction is
not necessarily limited to the seasonal cycle, as other major
cycles in climate (e.g., tidal, diurnal, or Milankovitch cycles)
leave similar marks on climate records and can thus be used
as a basis for age modeling (e.g., Sano et al., 2012; Huyghe
et al., 2019; de Winter et al., 2020a; Sinnesael et al., 2019).
It must be noted that, since ShellChron was developed for
modeling based on annual periodicity, applying it to other
timescales would require more thorough adaptation of the
model code than merely adapting the building block func-
tions to support additional proxy systems.

While age reconstructions are the main aim of ShellChron,
the model also yields information about the temperature and
growth rate parameters used in each simulation window to
approximate the local δ18Oc curve (see parameter matrix in
Fig. 1 and SI6). These parameters hold key information about
the response of the archive to seasonal changes in the envi-
ronment, such as the season of growth, relationships between
growth rate and temperature, and the temperature range that
is recorded. Combining these parameters with records of in-
fluential environmental variables such as seawater chloro-
phyll concentration or local precipitation patterns yields in-
formation about the response of the climate archive to en-
vironmental variables, in addition to the climate or environ-
mental change it records. Study examples include the rela-
tionship between the growth rate of marine calcifies and phy-
toplankton abundance or the correlation between precipita-
tion patterns and chemical variability in speleothems. While
such discussion is beyond the scope of this work, examples
of parameter distributions are provided in SI5, and the ap-
plication of modeled growth rate parameters in bivalve scle-
rochronology is discussed in more detail in Judd et al. (2018).
Note that the sliding window approach of ShellChron pro-
duces records of changing temperature and growth rate pa-
rameters at the scale of individual samples (albeit smoothed
by the sliding window approach) rather than annually, as in
Judd et al. (2018).

6 Conclusions

ShellChron offers a novel, open-source solution to the prob-
lem of dating carbonate archives for high-resolution paleocli-
mate reconstruction on a sub-annual scale. Based on critical
evaluation of previous age models, building on their strengths
while attempting to minimize their weaknesses, ShellChron
provides continuous age models based on δ18Oc profiles in
these archives with monthly accuracy, considering the uncer-

tainties associated with both the model itself and the input
data. The monthly accuracy of the model, as tested on a range
of virtual and natural datasets, enables its application for age
determination in studies of seasonal climate and environmen-
tal variability. Higher accuracies can be reached at the cost
of longer computation times by adapting the model param-
eters, but age determinations far beyond the monthly scale
are unlikely to be feasible considering the limitations on
sampling resolution and measurement uncertainties in δ18Oc
records. ShellChron’s computation times for datasets with
sampling resolutions typical for the paleoclimatology field
(up to 20 samples yr−1) remain practical and comparable to
previous model solutions, despite adding several features that
improve the versatility and interpretation of model results.
Its modular design allows ShellChron to be adapted to dif-
ferent situations with comparative ease. It thereby functions
as a platform for age–distance modeling on a wide range of
climate and environmental archives and is not limited in its
application to the δ18Oc proxy, the carbonate substrate, or
even to the annual cycle, as long as the relationship between
the proxy and the extension rate of the archive on a given
timescale can be parameterized. Future improvements will
capitalize on this variability, expanding ShellChron beyond
its current dependency on the δ18Oc–temperature relation-
ship in carbonates. Members of the high-resolution paleocli-
mate community are invited to contribute to this effort by
adapting the model for their purpose.

Code and data availability. ShellChron is worked out into a fully
functioning package for the open-source computational language
R (version 3.5.0 or later; R Core Team, 2020). The most recent
full version (v0.4.0) of ShellChron passed the code review of the
Comprehensive R Archive Network (CRAN) and is freely available
for download as an R package on the CRAN server (see https://
CRAN.R-project.org/package=ShellChron; de Winter, 2021a). The
CRAN server entry also includes detailed line-by-line documen-
tation of the code and working examples for every function. In
addition, the latest development version of ShellChron is avail-
able on Zenodo (https://doi.org/10.5281/zenodo.6023364; de Win-
ter, 2022). Those interested in adapting ShellChron for their re-
search purposes are invited to do so there. Code and documenta-
tion, together with all supplementary files belonging to this study,
are also available on the open-source online repository Zenodo
(https://doi.org/10.5281/zenodo.5061861; de Winter, 2021b).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-15-1247-2022-supplement.
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