Supplementary Methods

Preparation of Test case dataset
The Test case was included in the study to demonstrate the functions in ShellChron on a short (5 year) δ18Oc record with a realistic sampling resolution (8-12 samples/yr). The δ18Oc record was created from a combination of virtual temperature, growth rate and δ18Ow vectors using the carbmodel function in the seasonalclumped package (see details in de Winter et al., 2021). Temperature seasonality was simulated as a sinusoid with a mean value of 20°C and an annual amplitude of 10°C (10°C - 30°C temperature range). Sub-annual temperature variability superimposed on the seasonal cycle was simulated by adding stochastic white noise to the temperature sinusoid with a normal distribution and a standard deviation of 1.5°C based on variability in the Texel data (see below). Growth rate was simulated as a sinusoidal function with a mean value starting at 6 mm/yr and decreasing linearly by 0.5 mm/yr over the record. The amplitude of growth rate was set at 3 mm/yr and growth rate was varied in phase with temperature. The δ18Ow vector was simulated as a sinusoid with a mean value of 0‰VSMOW and an amplitude of 0.5‰VSMOW in antiphase with temperature. Stochastic white noise was superimposed on the δ18Ow sinusoid with a standard deviation of 0.6‰VSMOW based on variability in the Texel dataset (see below). Temperature, growth rate and δ18Ow vectors were converted to a δ18Oc-distance record using the δ18Oc-temperature relationship by Kim and O’Neil (1997) and an equal sampling distance of 0.5 mm (see de Winter et al., 2021) Uncertainties on δ18Oc and sampling distance were chosen at 0.05‰ and 50 µm (one standard deviation; see SI2).

Preparation of Case 1 dataset
The Case 1 dataset is directly inherited from de Winter et al., 2021 and represents an ideal case of a carbonate record recording seasonal variability. The virtual dataset is created by creating a 6-year long sinusoidal temperature record with an amplitude of 10°C that is perfectly in phase with the annual cycle (peak in temperature occurs at day 182.5). The growth rate of Case 1 is kept at a constant 10 mm per year (~27.4 µm/day) and the δ18Ow value is kept constant at 0‰VSMOW (mean modern ocean value). Stochastic white noise is added to both the temperature (σ = ±1.5°C) and δ18Ow (σ = ±0.5‰) record to simulate sub-annual variability on the record. These values are obtained from the variability observed in hourly in situ temperature and salinity measurements taken in a tidal estuary in the northwest of the Netherlands (see Texel dataset below). The standard deviations of variability in temperature (±1.5°C) and δ18Ow (±0.5‰) on the sub-annual scale are obtained by subtracting the seasonal variability from these high temporal resolution records and calculating the standard deviation of the residuals. Temperature, growth rate and δ18Ow data is converted to a virtual carbonate δ18Oc record by applying the carbonate paleothermometry formula by Kim and O’Neil (1997) to convert the temporal records to the depth domain using the growth rate data (see de Winter et al., 2021). This depth record is then resampled at a 0.2 mm spatial resolution to obtain the Case 1 data used to test the ShellChron model. Year markers are supplied as input value by marking the peaks of the obtained δ18Oc curve, and uncertainties on δ18Oc and depth measurements were chosen to be 0.05‰ and 0.1 mm respectively (one standard deviation; see de Winter et al., 2021 and SI8).

Preparation of Texel dataset
The Texel dataset is based on in situ temperature and salinity observations of surface water measured by the measuring station of the Royal Dutch Institute for Sea Research (NIOZ) jetty in the Marsdiep tidal inlet off the south coast of the Wadden Sea island Texel in the northwest of the Netherlands (53°0.1’ N latitude; 4°47.3’ W longitude). Salinity measurements were converted to δ18Ow variability using a mass balance equation based on the mixing of local rainwater (salinity of 0, δ18Ow value of -8‰VSMOW) and seawater (salinity of 35, δ18Ow value of 0‰VSMOW per definition). The resulting δ18Ow values were statistically indistinguishable from measurements of the salinity-δ18Ow relationship in the North Sea region (see details in de Winter et al., 2021). The temperature and δ18Ow dataset were converted to the depth domain using a seasonally fluctuating growth rate curve with an inter-annual linearly decreasing trend and growth rate maxima in the winter season (see de Winter et al., 2021). These parameters were chosen to add complexity to the record and to test the accuracy of ShellChron’s age models of non-straightforward depth series. The δ18Oc data was generated using a carbonate model based on the Kim and O’Neil (1997) δ18Oc-temperature relationship (see Case 1 above) and subsampled at 0.2 mm resolution. Year markers were indicated at maxima in the δ18Oc curve and uncertainties on δ18Oc and depth measurements were chosen to be 0.05‰ and 0.1 mm respectively (one standard deviation; see de Winter et al., 2021 and SI9).

Preparation of Coral dataset
The coral record is obtained from high-resolution (~50 samples/yr) δ18Oc data from 6 growth years (1978-1984) of a Porites lutea stony coral from Pandora Reef (Great barrier Reef, NW Australia, 18° 48’45”S; 146°25’56”E; Gagan et al., 1994). The δ18Ow value of the seawater at this locality was estimated to be 0.45‰VSMOW based on the global gridded δ18Ow database (LeGrand and Schmidt, 2006) and presumed constant throughout the year. Standard deviations of uncertainties in the depth and δ18Oc measurements were estimated to be 0.125 mm and 0.05‰ respectively based on reports on the methodology in the original manuscript (Gagan et al., 2014). Since the mineralogy of the coral is aragonite, the Grossman and Ku (1986) temperature equation was used to model temperature fluctuations for this dataset. Year transitions were marked at minima in the δ18Oc curve. Ground truth data with which to compare the result were obtained by assuming that seasonal extension rates remained constant between years. The seasonality in growth rate of Porites corals was not studied in Gagan et al. (2014). However, a study of sub-annual growth rates was made on a 5-year carbonate record (2005-2010) from another Porites specimen from Palmyra atoll in the central Pacific Ocean by DeCarlo and Cohen (2017) based on the spacing between dissepiments in the coral skeletons accreted with lunar periodicity. The seasonal growth rate of this Porites specimen was used as basis for the “ground truth” age model with which the ShellChron results on the Pandora Reef Porites record were compared to assess the model success. For this assumption to work, the phase of the seasonal growth rate variability had to be inverted to correct for the fact that Palmyra atoll is on the northern hemisphere and Pandora Reef on the southern hemisphere. The full input dataset, model parameters and model results are provided in SI10.

Preparation of Oyster dataset
Data in the oyster dataset was obtained from previously published δ18Oc records from a Pacific oyster (Crassostrea gigas) that grew in the Danish tidal List Basin (54°59.25N; 8°23.51E; Ullmann et al., 2010). The raw data from this study were kindly provided by dr. Clemens Ullmann (University of Exeter, UK), who lead the study. Based on information in the methodology section of the study and personal communication with the author, the uncertainties on depth and δ18Oc values in the dataset were assumed to be 0.1 mm and 0.14‰ respectively (one standard deviation). Year transitions were marked at minima in the δ18Oc curve. The local seasonal variability in δ18Ow values was estimated from in situ salinity measurement on the locality using mass balance considerations assuming that the water in which the oyster grew is a mix of seawater (salinity of 35, δ18Ow value of 0‰VSMOW per definition) and freshwater from the Elbe and Weser rivers (salinity of 0, δ18Ow value of -8.5‰VSMOW per definition). An age model was established for the oyster shell record by aligning the δ18Oc record with expected δ18Oc values based on local sea surface temperature records and the above-mentioned δ18Ow seasonality. This age model was used as the “true” age-depth relationship against which the result of ShellChron is compared. The full input dataset, model parameters and model results are provided in SI10.

Preparation of Speleothem dataset
[bookmark: _Hlk57045007]The speleothem record used as a test case in this study consists of δ18Oc data from the Proserpine speleothem from the Han-sur-Lesse cave in south eastern Belgium (50°07’17”N; 5°11’32”E). This speleothem was subject to several previous studies and its annual lamination, δ18Oc composition and local cave environment were studied in great detail (Verheyden et al., 2006; Van Rampelbergh et al., 2014; Vansteenberge et al., 2019). Specifically, the data used in this study were obtained from Van Rampelbergh et al. (2014) and represent the carbonate laminae deposited in the years 1976-1985. Uncertainties on the depth and δ18Oc data from this segment were 0.025 mm and 0.047‰ respectively (one standard deviation). The latter is a weighted average, as the δ18Oc uncertainty fluctuated in function of the stability of the mass spectrometer. Local δ18Ow values in the cave water were kept constant through ShellChron modelling at the average value of -7.65‰VSMOW obtained from cave monitoring (Van Rampelbergh et al., 2014). Year transitions were marked at minima in the δ18Oc curve. Given the uncertainty on the relationship between speleothem growth rates and environmental and cave variables (see discussion in Van Rampelbergh et al., 2014 and references therein), the “true” age-depth relationship for the Proserpine speleothem was determined by interpolating between annual growth lines. It must be noted that cave monitoring in Han-sur-Lesse, and specifically at the growth locality of the Proserpine speleothem, shows that drip rates, cave air pCO2 and drip water chemistry are in fact seasonally variable in this cave (Van Rampelbergh et al., 2014). Therefore, this assumption of constant sub-annual growth rates is likely an oversimplification. The full input dataset, model parameters and model results are provided in SI10.


Detailed explanation of the cumulative_day function
The aim of the cumulative_day function is to convert the age model results for each δ18Oc datapoint obtained with ShellChron from the relative timescale (in days relative to the start of the year in which the datapoint is found) to the cumulative timescale (in days relative to the start of the first year in the record). To achieve this conversion, so-called year transitions (places in the record where one year ends and the next year begins) need to be recognized. Within the cumulative_day function, this is achieved by combining the results of four methods for recognizing these transitions:
1. A sinusoidal function is fit to the model results, with datapoints closest to the year transition (day 1 or day 365) being situated on the peaks of the sinusoidal curve and days furthest removed from the year transition (days 182 and 183) located in the low extremes of the sinusoid. The resulting sinusoidal data series normalized to facilitate comparison with the other methods (see Fig. SM1).
2. Every datapoint that is modelled to be precipitated in the first or last 10 days of the year is given a weight depending on its proximity to the beginning or end of the year. Weights decrease linearly away from the beginning or end of the year, with model results from day 1 and day 365 (days closest to the year transition) receiving a weight of 10 and model results day 10 and day 356 (days furthest way from the year transition) are given a weight of 1. All model results from days 11-355 were given no weight. The result is normalized to facilitate comparison with the other methods (see Fig. SM1).
3. Instances where year transitions are directly recorded within a model window are flagged by giving them a weighing factor of 1, while other model results are given no weight. Instances recording the year transition are defined as those places within the modelling window where one model result has an assigned relative age that is higher than the subsequent datapoint (e.g. day 361 followed by day 3). After assigning weights, the results from individual model windows are collapsed by applying a moving average in the depth domain and summing the weighing factors of recorded year transitions into one record. This record is normalized to facilitate comparison with the other methods (see Fig. SM1).
4. A sinusoidal curve is fit through the original δ18Oc data, with the maximum δ18Oc value associated with a peak in the sinusoid. These peak values are assumed to reflect the temperature minima in the record which are associated with the winter seasons and therefore with year transitions in the record. The resulting sinusoidal data series normalized to facilitate comparison with the other methods (see Fig. SM1).
The normalized results from these four methods for recognizing year transitions are added together to create one record of the likelihood of the presence of a year transition for each datapoint (see Fig. SM1). The peakid function is used to detect the locations of year transitions with the highest likelihood. Finally, the position of model results relative to the start of the local year (obtained as input) is compared with the position of identified year transitions. Based on this comparison, an integer number of years is added to each model result to convert them from the relative age to cumulative age scale. The result is exported by the function and used to create the age model.
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Figure SM1: Overview of the results of the outlined methods for identifying year transitions in the model results of the high-resolution Case 1 record. In red, the combination of all methods is indicated, and the black dashed lines indicate the identified year transitions.

SCEUA optimization and year transitions
The most computationally intensive part of ShellChron’s modelling routine is the application of the SCEUA algorithm for optimization of the parameters of temperature and growth rate sinusoids. This optimization, and the required processing time, presents the biggest challenge for applying ShellChron’s sliding window-approach to create smooth age models. The reason is that the number of windows scales with the number of samples in the dataset, rather than with the number of years, as in the approach employed by Judd et al. (2018). In an attempt to overcome impractical computation times in ShellChron, an initial sinusoidal regression (sinreg function, see equation 9 and Model description in the main text) was built into the algorithm that estimates the parameters of the sinusoids prior to optimization. Not only does this regression bring the starting values of sinusoid parameters closer to the optimal result, it also allows the boundary conditions for optimization to become narrower, decreasing the range of possibilities considered in optimization and improving the algorithms efficiency. As a result, the parameters inherent to the SCEUA optimization, especially the number of complexes (ngs; see SI4) and number of function evaluations (maxn; see SI4) can be reduced in comparison with the Judd et al. model (see discussion in section 4.1 of main text). This greatly improves the computation time of individual optimization loops at the cost of a slight increase in uncertainty on the result (see Fig. 5 and 8 and section 4.1 and 4.4 in main text). The latter is compensated by the sliding window approach, which causes the result of multiple optimizations of the same sample position to be averaged.
Another advantage of the overlapping window approach combined with automatic detection of year transitions is that it prevents sharp transitions in the age-depth model on the boundaries between years (see Fig. 8B in main text). These occur frequently in the Judd et al. model because each growth year (separated by user-provided boundaries) is considered separately. In a multi-annual record, mismatches between years, which can be substantial will be propagated through the age model and lead to inaccuracies in age estimates which can greatly exceed the acceptable monthly precision of the model (see Fig. 8B in main text). ShellChron’s sliding window approach smoothes out sharp year transitions and the automated recognition of year transitions (see above) eliminates the human error associated with delineating growth years based on user-provided year markers.


Supplementary Discussion
Equilibrium fractionation
Which carbonates are precipitated in equilibrium has long been subject to debate, and the development of new techniques for measuring the carbonate-water system (e.g. clumped and dual-clumped isotope analyses; Daëron et al., 2019; Bajnai et al., 2020) has led recent authors to challenge the assumption that equilibrium fractionation is the norm. These recent findings suggest that kinetic effects in fast-growing carbonate archives or elevated pH in the calcification fluids of some calcifiers (e.g. foraminifera and corals; Rollion-Bard et al., 2003; Zeebe, 2007) force precipitation out of equilibrium, and that true equilibrium is only reached in very slow-growing inorganic carbonates (e.g. Devils Hole vein calcite and subaqueous and cryogenic cave deposits; Coplen, 2007; Bajnai et al., 2020). On the other hand, disequilibrium fractionation likely affected the samples on which empirical transfer functions (equations 1 and 2 in main text) were based in a similar way as the samples on which they are applied, potentially eliminating the offset caused by disequilibrium fractionation (Daëron et al., 2019). In addition, the carbonic anhydrase enzyme present in many calcifiers accelerates CO2 hydration at the calcification site, potentially eliminating kinetic effects in carbonate bio-archives whose growth rate would otherwise cause disequilibrium (Uchikawa and Zeebe, 2012). These findings are corroborated by many studies of modern marine calcifiers such as mollusks and corals in which δ18Oc-based temperatures closely match in situ water temperatures (Dunbar and Wellington, 1981; Jones and Quitmyer, 1996; Ullmann et al., 2010; de Winter et al., 2020c). Therefore, it is widely assumed that many marine calcifiers precipitate their carbonates near isotopic equilibrium and that the empirical transfer functions yield accurate temperature reconstructions.
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