Articles | Volume 14, issue 2
Geosci. Model Dev., 14, 961–984, 2021
https://doi.org/10.5194/gmd-14-961-2021
Geosci. Model Dev., 14, 961–984, 2021
https://doi.org/10.5194/gmd-14-961-2021

Model description paper 18 Feb 2021

Model description paper | 18 Feb 2021

The Vertical City Weather Generator (VCWG v1.3.2)

Mohsen Moradi et al.

Related authors

A Tethered Air Blimp (TAB) for observing the microclimate over a complex terrain
Manoj K. Nambiar, Ryan A. E. Byerlay, Amir Nazem, M. Rafsan Nahian, Mohsen Moradi, and Amir A. Aliabadi
Geosci. Instrum. Method. Data Syst., 9, 193–211, https://doi.org/10.5194/gi-9-193-2020,https://doi.org/10.5194/gi-9-193-2020, 2020
Short summary

Related subject area

Atmospheric sciences
A zero-dimensional view of atmospheric degradation of levoglucosan (LEVCHEM_v1) using numerical chamber simulations
Loredana G. Suciu, Robert J. Griffin, and Caroline A. Masiello
Geosci. Model Dev., 14, 907–921, https://doi.org/10.5194/gmd-14-907-2021,https://doi.org/10.5194/gmd-14-907-2021, 2021
Short summary
The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updates
Chihiro Kodama, Tomoki Ohno, Tatsuya Seiki, Hisashi Yashiro, Akira T. Noda, Masuo Nakano, Yohei Yamada, Woosub Roh, Masaki Satoh, Tomoko Nitta, Daisuke Goto, Hiroaki Miura, Tomoe Nasuno, Tomoki Miyakawa, Ying-Wen Chen, and Masato Sugi
Geosci. Model Dev., 14, 795–820, https://doi.org/10.5194/gmd-14-795-2021,https://doi.org/10.5194/gmd-14-795-2021, 2021
Short summary
Using radar observations to evaluate 3-D radar echo structure simulated by the Energy Exascale Earth System Model (E3SM) version 1
Jingyu Wang, Jiwen Fan, Robert A. Houze Jr., Stella R. Brodzik, Kai Zhang, Guang J. Zhang, and Po-Lun Ma
Geosci. Model Dev., 14, 719–734, https://doi.org/10.5194/gmd-14-719-2021,https://doi.org/10.5194/gmd-14-719-2021, 2021
Short summary
Development of WRF/CUACE v1.0 model and its preliminary application in simulating air quality in China
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021,https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
PyCHAM (v2.1.1): a Python box model for simulating aerosol chambers
Simon Patrick O'Meara, Shuxuan Xu, David Topping, M. Rami Alfarra, Gerard Capes, Douglas Lowe, Yunqi Shao, and Gordon McFiggans
Geosci. Model Dev., 14, 675–702, https://doi.org/10.5194/gmd-14-675-2021,https://doi.org/10.5194/gmd-14-675-2021, 2021
Short summary

Cited articles

Afshari, A. and Ramirez, N.: Improving the accuracy of simplified urban canopy models for arid regions using site-specific prior information, Urban Clim., 35, 100722, https://doi.org/10.1016/j.uclim.2020.100722, 2021. a
Akbari, H., Pomerantz, M., and Taha, H.: Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas, Sol. Energy, 70, 295–310, https://doi.org/10.1016/S0038-092X(00)00089-X, 2001. a, b
Aliabadi, A. A., Krayenhoff, E. S., Nazarian, N., Chew, L. W., Armstrong, P. R., Afshari, A., and Norford, L. K.: Effects of roof-edge roughness on air temperature and pollutant concentration in urban canyons, Bound.-Lay. Meteorol., 164, 249–279, https://doi.org/10.1007/s10546-017-0246-1, 2017. a, b, c
Aliabadi, A. A., Veriotes, N., and Pedro, G.: A Very Large-Eddy Simulation (VLES) model for the investigation of the neutral atmospheric boundary layer, J. Wind Eng. Ind. Aerod., 183, 152–171, https://doi.org/10.1016/j.jweia.2018.10.014, 2018. a
Aliabadi, A. A., Moradi, M., Clement, D., Lubitz, W. D., and Gharabaghi, B.: Flow and temperature dynamics in an urban canyon under a comprehensive set of wind directions, wind speeds, and thermal stability conditions, Environ. Fluid Mech., 19, 81–109, https://doi.org/10.1007/s10652-018-9606-8, 2019. a, b
Download
Short summary
The Vertical City Weather Generator (VCWG) is an urban microclimate model developed to predict temporal and vertical variation of potential temperature, wind speed, and specific humidity. VCWG is forced by climate variables at a nearby rural site and coupled to radiation and building energy models. VCWG is evaluated against field observations of the BUBBLE campaign. It is run under exploration mode to assess its performance given urban characteristics, seasonal variations, and climate zones.