Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CoupModel (v6.0): an ecosystem model for coupled phosphorus, nitrogen, and carbon dynamics – evaluated against empirical data from a climatic and fertility gradient in Sweden
Department of Biological and Environmental Sciences, University of
Gothenburg, P.O. Box 460, Gothenburg 40530, Sweden
Per-Erik Jansson
Department of Land and Water Resources Engineering, Royal Institute of
Technology (KTH), Stockholm 10044, Sweden
Annemieke I. Gärdenäs
CORRESPONDING AUTHOR
Department of Biological and Environmental Sciences, University of
Gothenburg, P.O. Box 460, Gothenburg 40530, Sweden
Related authors
Oluwabamise Lanre Afolabi, Hongxing He, and Maria Strack
EGUsphere, https://doi.org/10.5194/egusphere-2025-1368, https://doi.org/10.5194/egusphere-2025-1368, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Our study completed an uncertainty analysis of a modelling experiment for multi-decade biophysical conditions (e.g., plant processes and hydrology) and carbon (C) flux simulations at a temperate swamp in Southern Ontario, Canada. The adopted uncertainty analysis technique (GLUE) improved the modelling outcomes of our study. Consequently, the findings of this research will help inform decision making on future C flux modelling experiments and peatland C management in temperate swamps.
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
Oluwabamise Lanre Afolabi, He Hongxing, and Maria Strack
EGUsphere, https://doi.org/10.5194/egusphere-2024-4049, https://doi.org/10.5194/egusphere-2024-4049, 2025
Preprint archived
Short summary
Short summary
This modelling study elucidated the multi-decade carbon dynamics of a temperate swamp peatland and the important biotic and abiotic interactions and feedbacks that drive the carbon biogeochemical cycle of this ecosystem which is currently lacking. The carbon balance of the swamp reflected the strong relationship between the swamp’s carbon flux and controlling biotic processes, hydrological and thermal conditions that imprinted on carbon assimilation and losses at different time scales.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Oluwabamise Lanre Afolabi, Hongxing He, and Maria Strack
EGUsphere, https://doi.org/10.5194/egusphere-2025-1368, https://doi.org/10.5194/egusphere-2025-1368, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Our study completed an uncertainty analysis of a modelling experiment for multi-decade biophysical conditions (e.g., plant processes and hydrology) and carbon (C) flux simulations at a temperate swamp in Southern Ontario, Canada. The adopted uncertainty analysis technique (GLUE) improved the modelling outcomes of our study. Consequently, the findings of this research will help inform decision making on future C flux modelling experiments and peatland C management in temperate swamps.
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
Oluwabamise Lanre Afolabi, He Hongxing, and Maria Strack
EGUsphere, https://doi.org/10.5194/egusphere-2024-4049, https://doi.org/10.5194/egusphere-2024-4049, 2025
Preprint archived
Short summary
Short summary
This modelling study elucidated the multi-decade carbon dynamics of a temperate swamp peatland and the important biotic and abiotic interactions and feedbacks that drive the carbon biogeochemical cycle of this ecosystem which is currently lacking. The carbon balance of the swamp reflected the strong relationship between the swamp’s carbon flux and controlling biotic processes, hydrological and thermal conditions that imprinted on carbon assimilation and losses at different time scales.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Cited articles
Aerts, R.: Nutrient resorption from senescing leaves of perennials: are
there general patterns?, J. Ecol., 84, 597–608, 1996.
Akselsson, C., Pihl Karlsson, G., Karlsson, P.-E., and Ahlstrand, J.:
Miljöövervakning på Obsytorna 1984–2013, Beskrivning, resultat,
utvärdering och framtid, Skogsstyrelsen Rapport 2015:1, 142 pp., available at: https://shopcdn.textalk.se/shop/9098/art21/25828721-150940-Obsytor_webb.pdf (last access: 28 January 2021), 2015.
Akselsson, C., Westling, O., Alveteg, M., Thelin, G., Fransson, A. M., and
Hellsten, S.: The influence of N load and harvest intensity on the risk of P
limitation in Swedish forest soils, Sci. Total Environ., 404, 284–289,
https://doi.org/10.1016/j.scitotenv.2007.11.017, 2008.
Almeida, J. P., Rosenstock, N. P., Forsmark, B., Bergh, J., and Wallander,
H.: Ectomycorrhizal community composition and function in a spruce forest
transitioning between nitrogen and phosphorus limitation, Fungal Ecol.,
40, 20–31,
https://doi.org/10.1016/j.funeco.2018.05.008, 2019.
Andersson, M., Carlsson, M., Ladenberger, A., Morris, G., Sadeghl, M., and
Uhlbäck, J.: Geokemisk atlas över sverige, Sveriges Geologiska Undersökning, Uppsala, Sweden, 2014.
Arheimer, B., Dahné, J., Donnelly, C., Lindström, G., and
Strömqvist, J.: Water and nutrient simulations using the HYPE model for
Sweden vs. the Baltic Sea basin – influence of input-data quality and
scale, Hydrol. Res., 43, 315–329, https://doi.org/10.2166/nh.2012.010, 2012.
Arnold, J. G., Daniel, N. M., Gassman, P. W., Abbaspour, K. C., and White,
M. J.: SWAT: Model use, calibration, and validation, Transactions of the
American Society of Agricultural and Biological Engineers, 55, 1491–1508,
2012.
Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated
competition between plants and decomposers drives soil carbon storage,
Nature, 505, 543–545, https://doi.org/10.1038/nature12901, 2014.
Bahr, A., Ellström, M., Bergh, J., and Wallander, H.: Nitrogen leaching
and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest
fertilized with nitrogen and phosphorus, Plant Soil, 390, 323–335,
https://doi.org/10.1007/s11104-015-2408-6, 2015.
Barrow, N. J.: The description of desorption of phosphate from soil, J. Soil.
Sci., 30, 259–270, 1979.
Bell, C., Carrillo, Y., Boot, C. M., Rocca, J. D., Pendall, E., and
Wallenstein, M. D.: Rhizosphere stoichiometry: are C : N : P ratios of
plants, soils, and enzymes conserved at the plant species-level?, New
Phytol., 201, 505–517, https://doi.org/10.1111/nph.12531, 2014.
Bolan, N. S.: A critical review on the role of mycorrhizal fungi in the
uptake of phosphorus by plants, Plant Soil, 134, 189–207, 1991.
Braun, S., Thomas, V. F., Quiring, R., and Fluckiger, W.: Does nitrogen
deposition increase forest production? The role of phosphorus, Environ.
Pollut., 158, 2043–2052, https://doi.org/10.1016/j.envpol.2009.11.030, 2010.
Bucher, M.: Functional biology of plant phosphate uptake at root and
mycorrhiza interfaces, New Phytol., 173, 11–26,
https://doi.org/10.1111/j.1469-8137.2006.01935.x, 2007.
Bünemann, E. K.: Enzyme additions as a tool to assess the potential
bioavailability of organically bound nutrients, Soil Biol. Biochem., 40,
2116–2129, https://doi.org/10.1016/j.soilbio.2008.03.001, 2008.
Bünemann, E. K.: Assessment of gross and net mineralization rates of
soil organic phosphorus-A review, Soil Biol. Biochem., 89, 82–98,
https://doi.org/10.1016/j.soilbio.2015.06.026, 2015.
Cintas, O., Berndes, G., Hansson, J., Poudel, B. C., Bergh, J.,
Börjesson, P., Egnell, G., Lundmark, T., and Nordin, A.: The potential
role of forest management in Swedish scenarios towards climate neutrality by
mid century, Forest Ecol. Manag., 383, 73–84, https://doi.org/10.1016/j.foreco.2016.07.015, 2017.
Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A.,
Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., and Lindahl, B.
D.: Roots and associated fungi drive long-term carbon sequestration in
boreal forest, Science, 339, 1615–1618, https://doi.org/10.1126/science.1231923, 2013.
Cleveland, C. C. and Liptzin, D.: C:N:P stoichiometry in soil: is there a
“Redfield ratio” for the microbial biomass?, Biogeochemistry, 85, 235–252,
https://doi.org/10.1007/s10533-007-9132-0, 2007.
Cole, C. V., Innis, G. S., and Stewart, J. W. B.: Simulation of Phosphorus
cycling in semiarid grasslands, Ecology, 58, 2–15, 1977.
Crowley, K. F., McNeil, B. E., Lovett, G. M., Canham, C. D., Driscoll, C.
T., Rustad, L. E., Denny, E., Hallett, R. A., Arthur, M. A., Boggs, J. L.,
Goodale, C. L., Kahl, J. S., McNulty, S. G., Ollinger, S. V., Pardo, L. H.,
Schaberg, P. G., Stoddard, J. L., Weand, M. P., and Weathers, K. C.: Do
nutrient limitation patterns shift from Nitrogen toward Phosphorus with
increasing Nitrogen deposition across the northeastern United States?,
Ecosystems, 15, 940–957, https://doi.org/10.1007/s10021-012-9550-2, 2012.
Deng, Q., Hui, D., Dennis, S., and Reddy, K. C.: Responses of terrestrial
ecosystem phosphorus cycling to nitrogen addition: A meta-analysis, Global
Ecol. Biogeogr., 26, 713–728, https://doi.org/10.1111/geb.12576, 2017.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J.,
Zhao, X., Xia N., Wu, X., and Jackson, R. B.: Global patterns of terrestrial
nitrogen and phosphorus limitation, Nat. Geosci., 13, 221–226.
https://doi.org/10.1038/s41561-019-0530-4, 2020.
Eckersten, H. and Beier, C.: Comparison of N and C dynamics in two Norway
spruce stands using a process oriented simulation model, Eniron. Pollut., 102,
395–401, https://doi.org/10.1016/S0269-7491(98)80059-6, 1998.
Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S.,
Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J.
E.: Global analysis of nitrogen and phosphorus limitation of primary
producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10,
1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007.
Ericsson, T.: Growth and shoot: root ratio of seedlings in relation to
nutrient availability, Plant Soil, 168, 205–214, 1995.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S.,
Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Fransson, A.-M. and Bergkvist, B.: Phosphorus fertilisation causes durable
enhancement of phosphorus concentrations in forest soil, Forest Ecol. Manag.,
130, 69–76, https://doi.org/10.1016/S0378-1127(99)00184-X, 2000.
Gärdenäs, A., Eckersten, H., and Lillemägi, M.: Modeling
long-term effects of N fertilization and N deposition on the N balances of
forest stands in Sweden, Swedish University of Agricultural Sciences,
34, 1651–7210, 2003.
Gärdenäs, A., Jansson, P.-E., and Karlberg, L.: A model of
accumulation of radionuclides in biosphere originating from groundwater
contamination, SKB report R-06-47, SKB, Solna, Sweden, 2006.
Gärdenäs, A., Ågren, G., Bird, J., Clarholm, M., Hallin, S.,
Ineson, P., Kätterer, T., Knicker, H., Nilsson, I., Näsholm, T.,
Ogle, S., Paustian, K., Persson, T., and Stendahl, J.: Knowledge gaps in
soil carbon and nitrogen interactions – From molecular to global scale,
Soil Biol. Biochem., 43, 702–717,
https://doi.org/10.1016/j.soilbio.2010.04.006, 2011.
Gassman, P. W., Williams, J. R., Benson, V. W., César lzaurralde, R.,
Hauck, L. M., Jones, C. A., Atwood, J. D., Kiniry, J. D., and Flowers, J. D.:
Historical development and applications of the EPIC and APEX models, CARD
working paper 05-WP 397, Center for Agricultural and Rural Development, Iowa
State University, Ames, IA, USA, https://doi.org/10.13031/2013.17074, 2005.
Giesler, R., Petersson, T., and Högberg, P.: Phosphorus limitation in
boreal forests: effects of aluminum and iron accumulation in the humus
layer, Ecosystems, 5, 300–314, https://doi.org/10.1007/s10021-001-0073-5, 2002.
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M., and Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, 9, 3547–3569, https://doi.org/10.5194/bg-9-3547-2012, 2012.
Goll, D. S., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., Peng, S., Sun, Y., Kvakic, M., Guimberteau, M., Guenet, B., Zaehle, S., Penuelas, J., Janssens, I., and Ciais, P.: A representation of the phosphorus cycle for ORCHIDEE (revision 4520), Geosci. Model Dev., 10, 3745–3770, https://doi.org/10.5194/gmd-10-3745-2017, 2017.
Gress, E. S., Nichols, T. D., Northcraft, C. C., and Peterjohn, W. T.:
Nutrient limitation in soils exhibiting differing nitrogenavailabilities:
what lies beyond nitrogen saturation?, Ecology, 88, 119–130,
https://doi.org/10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2, 2007.
Groenendijk, P., Renaud, L. V., and Roelsma, J.: Prediction of nitrogen and
phosphorus leaching to groundwater and surface waters; process descriptions
of the Animo4.0 model, Alterra–Report 983, 114 pp.,
Wageningen, The Netherlands, 2005.
Guidry, M. W. and Machenzie, F. T.: Apatite weathering and the phanerozoic
phosphorus cycle, Geology, 28, 631–634, 2000.
Güsewell, S.: N : P ratios in terrestrial plants: variation and
functional significance, New Phytol., 164, 243–266,
https://doi.org/10.1111/j.1469-8137.2004.01192.x, 2004.
He, H., Meyer, A., Jansson, P.-E., Svensson, M., Rütting, T., and Klemedtsson, L.: Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5), Geosci. Model Dev., 11, 725–751, https://doi.org/10.5194/gmd-11-725-2018, 2018.
He, H., Jansson, P.-E., and Gärdenäs, A.: CoupModel (v6.0): code and evaluating database (Version V 6.0), Zenodo, https://doi.org/10.5281/zenodo.3547628, 2020a.
He, H., Jansson, P.-E., and Gärdenäs, A.: CoupModel (v6.0): Global parameter sensitivity analysis (Version V 6.0), Zenodo, https://doi.org/10.5281/zenodo.4291963, 2020b.
Hinsinger, P.: Bioavailability of soil inorganic P in the rhizosphere as
affected by root-induced chemical changes: a review, Plant Soil, 237,
173–195, 2001.
Högberg, P., Näsholm, T., Franklin, O., and Högberg, M. N.: Tamm
Review: On the nature of the nitrogen limitation to plant growth in
Fennoscandian boreal forests, Forest Ecol. Manag., 403, 161–185,
https://doi.org/10.1016/j.foreco.2017.04.045, 2017.
Ingestad, T.: Mineral nutrient requirements of Pinus silvestris and Picea abies Seedlings,
Physiol. Plantarum, 45, 373–380, 1979.
Ingestad, T. and Ågren, G. I.: Theories and methods on plant nutrient
and growth, Physiol Plantarum, 84, 177–184, 1992.
Jackson-Blake, L. A., Wade, A. J., Futter, M. N., Butterfield, D., Couture,
R. M., Cox, B. A., Crossman, J., Ekholm, P., Halliday, S. J., Jin, L.,
Lawrence, D. S. L., Lepistö, A., Lin, Y., Rankinen, K., and Whitehead,
P. G.: The INtegrated CAtchment model of phosphorus dynamics (INCA-P):
Description and demonstration of new model structure and equations, Environ.
Model. Softw., 83, 356–386, https://doi.org/10.1016/j.envsoft.2016.05.022,
2016.
Jahn, R., Blume, H.-P., Asio, V.-B., Spaargaren, O., and Schad, P.:
Guidelines for soil description, Food and Agriculture
Organization of the United Nations, Rome, Italy, 2006.
Jansson, P. E.: CoupModel: model use, calibration, and validation, T. ASABE,
4, 1335–1344, 2012.
Jansson, P. E. and Karlberg, L.: User manual of Coupled heat and mass
transfer model for soil-plant-atmosphere systems, Royal Institute of
Technology, Department of Land and Water Resources, Stockholm, Sweden, 2011.
Johnson, A. H., Frizano, J., and Vann, D. R.: Biogeochemical implications of
labile phosphorus in forest soils determined by the Hedley fractionation
procedure, Oecologia, 135, 487–499, https://doi.org/10.1007/s00442-002-1164-5, 2003.
Jonard, M., Furst, A., Verstraeten, A., Thimonier, A., Timmermann, V.,
Potocic, N., Waldner, P., Benham, S., Hansen, K., Merila, P., Ponette, Q.,
de la Cruz, A. C., Roskams, P., Nicolas, M., Croise, L., Ingerslev, M.,
Matteucci, G., Decinti, B., Bascietto, M., and Rautio, P.: Tree mineral
nutrition is deteriorating in Europe, Glob. Change Biol., 21, 418–430,
https://doi.org/10.1111/gcb.12657, 2015.
Jones, C. A., Cole, C. V., Sharpley, A. N., and Williams, J. R.: A
simplified soil and plant phosphorus model: I. Documentation, Soil Sci. Soc.
Am. J., 48, 800–805, https://doi.org/10.2136/sssaj1984.03615995004800040020x, 1984.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter
in soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.:
Controls on the dynamics of dissolved organic matter in soils: a review,
Soil Sci., 165, 277–304, 2000.
Knisel, W. G. and Turtola, E.: Gleams model application on a heavy clay
soil in Finland, Agr. Water Manage., 43, 285–309,
https://doi.org/10.1016/S0378-3774(99)00067-0, 2000.
Kronnäs, V., Akselsson, C., and Belyazid, S.: Dynamic modelling of weathering rates – the benefit over steady-state modelling, SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, 2019.
Lagerström, A., Esberg, C., Wardle, D. A., and Giesler, R.: Soil
phosphorus and microbial response to a long-term wildfire chronosequence in
northern Sweden, Biogeochemistry, 95, 199–213, https://doi.org/10.1007/s10533-009-9331-y,
2009.
Laiho, R. and Prescott, C. E.: Decay and nutrient dynamics of coarse woody
debris in northern coniferous forests: a synthesis, Can. J. Forest Res., 34,
763–777, https://doi.org/10.1139/x03-241, 2004.
Lang, F., Bauhus, J., Frossard, E., George, E., Kaiser, K., Kaupenjohann,
M., Krüger, J., Matzner, E., Polle, A., Prietzel, J., Rennenberg, H.,
and Wellbrock, N.: Phosphorus in forest ecosystems: New insights from an
ecosystem nutrition perspective, J. Plant Nutr. Soil. Sci., 179, 129–135,
https://doi.org/10.1002/jpln.201500541, 2016.
Liebig, J.: Die Chemie in ihrer Andwendung auf Agrikultur und Physiologie,
Vieweg und Söhne, Braunschweig, Germany, 1840.
Linder, S.: Foliar analysis for detecting and correcting nutrient imbalances
in Norway spruce, Ecol. Bull., 44, 178–190, 1995.
Manzoni, S., Trofymow, J. A., Jackson, R. B., and Porporato, A.:
Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in
decomposing litter, Ecol. Monogr., 80, 89–106, https://doi.org/10.1890/09-0179.1, 2010.
McGill, W. B. and Cole, C. V.: Comparative aspects of cycling of organic C,
N, S and P through soil organic matter, Geoderma, 26, 267–286, 1981.
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A.,
Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y. P., Yang, X., Crous, K.
Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S.
A., Tjoelker, M. G., and Ellsworth, D. S.: Using models to guide field
experiments: a priori predictions for the CO2 response of a nutrient- and
water-limited native Eucalypt woodland, Glob. Change Biol., 22, 2834–2851,
https://doi.org/10.1111/gcb.13268, 2016.
Meyer, A., Grote, R., Polle, A., and Butterbach-Bahl, K.: Simulating
mycorrhiza contribution to forest C- and N cycling-the MYCOFON model, Plant
Soil, 327, 493–517, https://doi.org/10.1007/s11104-009-0017-y, 2009.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 16,
205–234, 1965.
Nasholm, T., Hogberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell,
C., Hurry, V., Linder, S., and Hogberg, M. N.: Are ectomycorrhizal fungi
alleviating or aggravating nitrogen limitation of tree growth in boreal
forests?, New Phytol., 198, 214–221, https://doi.org/10.1111/nph.12139, 2013.
Nehls, U.: Mastering ectomycorrhizal symbiosis: the impact of carbohydrates,
J. Exp. Bot., 59, 1097–1108, https://doi.org/10.1093/jxb/erm334, 2008.
Olander, L. and Vitousek, P.: Short-term controls over inorganic phosphorus
during soil and ecosystem development, Soil Biol. Biochem., 37, 651–659,
https://doi.org/10.1016/j.soilbio.2004.08.022, 2005.
Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, Å., and
Stendahl, J.: Organic carbon stocks in Swedish Podzol soils in relation to
soil hydrology and other site characteristics, Silva Fennica, 43, 209–222,
2009.
Ortiz, C. A., Lundblad, M., Lundström, A., and Stendahl, J.: The effect
of increased extraction of forest harvest residues on soil organic carbon
accumulation in Sweden, Biomass Bioenergy, 70, 230–238,
https://doi.org/10.1016/j.biombioe.2014.08.030, 2014.
Orwin, K. H., Kirschbaum, M. U., St. John, M. G., and Dickie, I. A.: Organic
nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a
model-based assessment, Ecol. Lett., 14, 493–502,
https://doi.org/10.1111/j.1461-0248.2011.01611.x, 2011.
Oulehle, F., Chuman, T., Hruška, J., Krám, P., McDowell, W. H.,
Myška, O., Navrátil, T., and Tesař, M.: Recovery from
acidification alters concentrations and fluxes of solutes from Czech
catchments, Biogeochemistry, 132, 251–272, https://doi.org/10.1007/s10533-017-0298-9, 2017.
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp,
L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca,
S., Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen-phosphorus
imbalances alter natural and managed ecosystems across the globe, Nat.
Commun., 4, 2934, https://doi.org/10.1038/ncomms3934, 2013.
Read, D. J. and Perez-Moreno, J.: Mycorrhizas and nutrient cycling in
ecosystems – a journey towards relevance?, New Phytol., 157, 475–492,
https://doi.org/10.1046/j.1469-8137.2003.00704.x, 2003.
Reed, S. C., Yang, X., and Thornton, P. E.: Incorporating phosphorus cycling
into global modeling efforts: a worthwhile, tractable endeavor, New Phytol.,
208, 324–329, https://doi.org/10.1111/nph.13521, 2015.
Richardson, A. E. and Simpson, R. J.: Soil microorganisms mediating
phosphorus availability update on microbial phosphorus, Plant Physiol., 156,
989–996, https://doi.org/10.1104/pp.111.175448, 2011.
Richardson, A. E., Barea, J.-M., McNeill, A. M., and Prigent-Combaret, C.:
Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth
promotion by microorganisms, Plant Soil, 321, 305–339,
https://doi.org/10.1007/s11104-009-9895-2, 2009.
Rosengren-Brinck, U. and Nihlgård, B.: Nutritional status in needles of
Norway spruce in relation to water and nutrient supply, Ecol. Bull., 44,
168–177, 1995.
Rosling, A., Midgley, M. G., Cheeke, T., Urbina, H., Fransson, P., and
Phillips, R. P.: Phosphorus cycling in deciduous forest soil differs between
stands dominated by ecto- and arbuscular mycorrhizal trees, New Phytol., 209,
1184–1195, https://doi.org/10.1111/nph.13720, 2016.
Saito, M. A., Goepfert, T. J., and Ritt, J. T.: Some thoughts on the concept
of colimitation: three definitions and the importance of bioavailability,
Limnol. Oceanogr., 53, 276–290, 2008.
Schachtman, D. P., Reid, R. J., and Ayling, S. M.: Phosphorus uptake by
plants: from soil to cell, Plant Physiol., 116, 447–453, 1998.
Schlesinger, W. H.: Biogeochemistry. An analysis of global change,
Academic Press, Cambridge, MA, USA, 1997.
Schnepf, A. and Roose, T.: Modelling the contribution of arbuscular
mycorrhizal fungi to plant phosphate uptake, New Phytol., 171, 669–682,
https://doi.org/10.1111/j.1469-8137.2006.01771.x, 2006.
SLU: Skogsdata: Aktuella uppgifter om de svenska skogarna från
Riksskogstaxeringen, SLU, Umeå, Sweden, available at:
https://pub.epsilon.slu.se/9266/1/SkogsData2012_webb.pdf
(last access: 10 February 2020), 2012.
Smeck, N. E.: Phosphorus dynamics in soils and landscapes, Geoderma, 36,
185–199, 1985.
Smith, S. E.: Mycorrhizal fungi can dominate phosphate supply to plants
irrespective of growth responses, Plant Physiol., 133, 16–20,
https://doi.org/10.1104/pp.103.024380, 2003.
Smith, S. E. and Read, D. J.: Mycorrhizal symbiosis, 3rd ed., Academic
Press, Cambridge, MA, USA, 2008.
Staddon, P. L., Thompson, K., Jakobsen, I., Grime, J. P., Askew, A. P., and
Fitter, A. H.: Mycorrhizal fungal abundance is affected by long-term
climatic manipulations in the field, Glob. Change Biol., 9, 186–194,
https://doi.org/10.1046/j.1365-2486.2003.00593.x, 2003.
Stendahl, J., Johansson, M.-B., Eriksson, E., Nilsson, Å., and Langvall,
O.: Soil organic carbon in Swedish spruce and pine forests- differences in
stock levels and regional patterns, Silva Fennica, 44, 5–21, 2010.
Sundqvist, M. K., Liu, Z., Giesler, R., and Wardle, D. A.: Plant and
microbial responses to nitrogen and phosphorus addition across an
elevational gradient in subarctic tundra, Ecology, 95, 1819–1835, https://doi.org/10.1890/13-0869.1, 2014.
Svensson, M., Jansson, P.-E., and Berggren Kleja, D.: Modelling soil C
sequestration in spruce forest ecosystems along a Swedish transect based on
current conditions, Biogeochemistry, 89, 95–119, https://doi.org/10.1007/s10533-007-9134-y,
2008.
Sverdrup, H. and Warfvinge, P.: Calculating field weathering rates using a
mechanistic geochemical model PROFILE, Appl. Geochem., 8, 273–283,
https://doi.org/10.1016/0883-2927(93)90042-F, 1993.
Swedish Forest Agency: Grundbok for skogsbrukare, Swedish Forest Agency,
Jönköping, Sweden, 2005.
Talkner, U., Meiwes, K. J., Potočić, N., Seletković, I., Cools,
N., De Vos, B., and Rautio, P.: Phosphorus nutrition of beech (Fagus
sylvatica L.) is decreasing in Europe, Ann. For. Sci., 72, 919–928,
https://doi.org/10.1007/s13595-015-0459-8, 2015.
Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., Chen, D., Liu, Q.,
Ma, W., Xiong, G., He, H., He, N., Guo, Y., Guo, Q., Zhu, J., Han, W., Hu,
H., Fang, J., and Xie, Z.: Patterns of plant carbon, nitrogen, and
phosphorus concentration in relation to productivity in China's terrestrial
ecosystems, P. Natl. Acad. Sci. USA, 115, 4033–4038, https://doi.org/10.1073/pnas.1700295114,
2018.
Tarvainen, L., Lutz, M., Rantfors, M., Nasholm, T., and Wallin, G.:
Increased needle nitrogen contents did not improve shoot photosynthetic
performance of mature nitrogen-poor Scots pine trees, Front. Plant Sci., 7,
1051, https://doi.org/10.3389/fpls.2016.01051, 2016.
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., and Prentice, I. C.:
Mycorrhizal association as a primary control of the CO2 fertilization
effect, Science, 353, 72–74, https://doi.org/10.1126/science.aaf4610, 2016.
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C.,
Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A.,
Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A.,
Talhelm, A. F., Van Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M.
J., Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter, K., Field, C. B.,
Viechtbauer, W., Van Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T.,
Leshyk, V. O., Polley, H. W., and Franklin, O.: Nitrogen and phosphorus
constrain the CO2 fertilization of global plant biomass, Nat. Clim. Change, 9, 684–689,
https://doi.org/10.1038/s41558-019-0545-2, 2019.
Tessier, J. T. and Raynal, D. J.: Use of nitrogen to phosphorus ratios in
plant tissue as an indicator of nutrient limitation and nitrogen saturation,
J. Appl. Ecol., 40, 523–534, https://doi.org/10.1046/j.1365-2664.2003.00820.x, 2003.
Thelin, G., Rosengren-Brinck, U., Nihlgård, B., and Barkman, A.: Trends
in needle and soil chemistry of Norway spruce and Scots pine stands in South
Sweden 1985–1994, Environ. Poll., 99, 149–158, https://doi.org/10.1016/S0269-7491(97)00192-9,
1998.
Thelin, G., Rosengren, U., Callesen, I., and Ingerslev, M.: The nutrient
status of Norway spruce in pure and in mixed-species stands, For. Ecol. Manage., 160, 115–125, https://doi.org/10.1016/S0378-1127(01)00464-9, 2002.
Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., Yu, L., and Zaehle, S.: A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996), Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019, 2019.
Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U.,
Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A. J., Monteith, D.
T., Rowe, E. C., and Toberman, H.: Atmospheric deposition of phosphorus to
land and freshwater, Environ. Sci. Process. Impacts., 16, 1608–1617,
https://doi.org/10.1039/c3em00641g, 2014.
Van Sundert, K., Radujkovic, D., Cools, N., De Vos, B., Etzold, S.,
Fernandez-Martinez, M., Janssens, I., Merila, P., Penuelas, J., Sardans, J.,
Stendahl, J., Terrer, C., and Vicca, S.: Towards comparable assessment of
the soil nutrient status across scales – review and development of nutrient
metrics, Glob. Change Biol., e26, 392–409, https://doi.org/10.1111/gcb.14802, 2020.
Vincent, A. G., Sundqvist, M. K., Wardle, D. A., and Giesler, R.:
Bioavailable soil phosphorus decreases with increasing elevation in a
subarctic tundra landscape, PLoS One, 9, e92942,
https://doi.org/10.1371/journal.pone.0092942, 2014.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.:
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen-phosphorus interactions, Ecol. Appl., 20, 5–15, 2010.
Wallander, H., Mahmood, S., Hagerberg, D., Johansson, L., and Pallon, J.:
Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP
analysis and grown in contact with apatite or wood ash in forest soil, FEMS
Microbiol. Ecol., 44, 57–65, https://doi.org/10.1111/j.1574-6941.2003.tb01090.x,
2003.
Wang, Y. P., Houlton, B. Z., and Field, C. B.: A model of biogeochemical
cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen
fixation and phosphatase production, Global Biogeochem. Cy., 21, GB1018,
https://doi.org/10.1029/2006gb002797, 2007.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Wijk, S.: Skogsvårdsorganisationens skogliga observationsytor,
Anvisningar för analys av markprover, version 1995-11-15,
Skogsstyrelsen, Jönköping, Sweden, 1995.
Wijk, S.: Skogsvårdsorganisationens skogliga observationsytor, Manual –
anvisningar för urval av träd för barrprovtagning, Version
1997-08-14, Skogsstyrelsen, Jönköping, Sweden, 1997.
Yanai, R. D.: Phosphorus budget of a 70-year-old northern hardwood forest,
Biogeochemistry, 17, 1–22, https://doi.org/10.1007/BF00002757,
1992.
Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP, Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014, 2014.
Yu, L., Zanchi, G., Akselsson, C., Wallander, H., and Belyazid, S.: Modeling
the forest phosphorus nutrition in a southwestern Swedish forest site, Ecol.
Model., 369, 88–100, https://doi.org/10.1016/j.ecolmodel.2017.12.018, 2018.
Zhang, J. and Elser, J. J.: Carbon:Nitrogen:Phosphorus stoichiometry in
fungi: a meta-analysis, Front. Microbiol., 8, 1281, https://doi.org/10.3389/fmicb.2017.01281, 2017.
Zhu, Q., Riley, W. J., Tang, J., and Koven, C. D.: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests, Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016, 2016.
Short summary
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP). The extended Coup-CNP, which explicitly considers the symbiosis between soil microbes and plant roots, enables simulations of coupled C, N, and P dynamics for terrestrial ecosystems. Simulations from the new Coup-CNP model provide strong evidence that P fluxes need to be further considered in studies of how ecosystems and C turnover react to climate change.
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP)....