Articles | Volume 14, issue 2
https://doi.org/10.5194/gmd-14-735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
CoupModel (v6.0): an ecosystem model for coupled phosphorus, nitrogen, and carbon dynamics – evaluated against empirical data from a climatic and fertility gradient in Sweden
Department of Biological and Environmental Sciences, University of
Gothenburg, P.O. Box 460, Gothenburg 40530, Sweden
Per-Erik Jansson
Department of Land and Water Resources Engineering, Royal Institute of
Technology (KTH), Stockholm 10044, Sweden
Annemieke I. Gärdenäs
CORRESPONDING AUTHOR
Department of Biological and Environmental Sciences, University of
Gothenburg, P.O. Box 460, Gothenburg 40530, Sweden
Related authors
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
Oluwabamise Lanre Afolabi, He Hongxing, and Maria Strack
EGUsphere, https://doi.org/10.5194/egusphere-2024-4049, https://doi.org/10.5194/egusphere-2024-4049, 2025
Preprint archived
Short summary
Short summary
This modelling study elucidated the multi-decade carbon dynamics of a temperate swamp peatland and the important biotic and abiotic interactions and feedbacks that drive the carbon biogeochemical cycle of this ecosystem which is currently lacking. The carbon balance of the swamp reflected the strong relationship between the swamp’s carbon flux and controlling biotic processes, hydrological and thermal conditions that imprinted on carbon assimilation and losses at different time scales.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Hongxing He, Per-Erik Jansson, Magnus Svensson, Jesper Björklund, Lasse Tarvainen, Leif Klemedtsson, and Åsa Kasimir
Biogeosciences, 13, 2305–2318, https://doi.org/10.5194/bg-13-2305-2016, https://doi.org/10.5194/bg-13-2305-2016, 2016
Short summary
Short summary
We simulate CO2 and N2O dynamics over a full forest rotation on drained agricultural peatland, using CoupModel. Data used for validation include tree ring-derived biomass data (1966–2011) and measured abiotic and soil emission data (2006–2011). The results show that the C fixed in forest biomass is slightly larger than the soil losses over the full rotation period. However when including N2O and indirect emissions from forest thinning products, the forest system switches to a large GHG source.
Hongxing He, Ian B. Strachan, and Nigel T. Roulet
Biogeosciences, 22, 1355–1368, https://doi.org/10.5194/bg-22-1355-2025, https://doi.org/10.5194/bg-22-1355-2025, 2025
Short summary
Short summary
This study applied the CoupModel to simulate carbon dynamics and ecohydrology for a restored peatland and evaluated the responses of the simulated carbon fluxes to varying acrotelm thickness and climate. The results show that the CoupModel can simulate the coupled carbon and ecohydrology dynamics for the restored peatland system, and the restored peatland has less resilience in its C-uptake functions than pristine peatlands under a changing climate.
Oluwabamise Lanre Afolabi, He Hongxing, and Maria Strack
EGUsphere, https://doi.org/10.5194/egusphere-2024-4049, https://doi.org/10.5194/egusphere-2024-4049, 2025
Preprint archived
Short summary
Short summary
This modelling study elucidated the multi-decade carbon dynamics of a temperate swamp peatland and the important biotic and abiotic interactions and feedbacks that drive the carbon biogeochemical cycle of this ecosystem which is currently lacking. The carbon balance of the swamp reflected the strong relationship between the swamp’s carbon flux and controlling biotic processes, hydrological and thermal conditions that imprinted on carbon assimilation and losses at different time scales.
Jyrki Jauhiainen, Juha Heikkinen, Nicholas Clarke, Hongxing He, Lise Dalsgaard, Kari Minkkinen, Paavo Ojanen, Lars Vesterdal, Jukka Alm, Aldis Butlers, Ingeborg Callesen, Sabine Jordan, Annalea Lohila, Ülo Mander, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Åsa Kasimir, Brynhildur Bjarnadottir, Andis Lazdins, and Raija Laiho
Biogeosciences, 20, 4819–4839, https://doi.org/10.5194/bg-20-4819-2023, https://doi.org/10.5194/bg-20-4819-2023, 2023
Short summary
Short summary
The study looked at published data on drained organic forest soils in boreal and temperate zones to revisit current Tier 1 default emission factors (EFs) provided by the IPCC Wetlands Supplement. We examined the possibilities of forming more site-type specific EFs and inspected the potential relevance of environmental variables for predicting annual soil greenhouse gas balances by statistical models. The results have important implications for EF revisions and national emission reporting.
Hongxing He, Tim Moore, Elyn R. Humphreys, Peter M. Lafleur, and Nigel T. Roulet
Hydrol. Earth Syst. Sci., 27, 213–227, https://doi.org/10.5194/hess-27-213-2023, https://doi.org/10.5194/hess-27-213-2023, 2023
Short summary
Short summary
We applied CoupModel to quantify the impacts of natural and human disturbances to adjacent water bodies in regulating net CO2 uptake of northern peatlands. We found that 1 m drops of the water level at the beaver pond lower the peatland water table depth 250 m away by 0.15 m and reduce the peatland net CO2 uptake by 120 g C m-2 yr-1. Therefore, although bogs are ombrotrophic rainfed systems, the boundary hydrological conditions play an important role in regulating water storage and CO2 uptake.
Jie Zhang, Wenxin Zhang, Per-Erik Jansson, and Søren O. Petersen
Biogeosciences, 19, 4811–4832, https://doi.org/10.5194/bg-19-4811-2022, https://doi.org/10.5194/bg-19-4811-2022, 2022
Short summary
Short summary
In this study, we relied on a properly controlled laboratory experiment to test the model’s capability of simulating the dominant microbial processes and the emissions of one greenhouse gas (nitrous oxide, N2O) from agricultural soils. This study reveals important processes and parameters that regulate N2O emissions in the investigated model framework and also suggests future steps of model development, which have implications on the broader communities of ecosystem modelers.
Balázs Grosz, Reinhard Well, Rene Dechow, Jan Reent Köster, Mohammad Ibrahim Khalil, Simone Merl, Andreas Rode, Bianca Ziehmer, Amanda Matson, and Hongxing He
Biogeosciences, 18, 5681–5697, https://doi.org/10.5194/bg-18-5681-2021, https://doi.org/10.5194/bg-18-5681-2021, 2021
Short summary
Short summary
To assure quality predictions biogeochemical models must be current. We use data measured using novel incubation methods to test the denitrification sub-modules of three models. We aim to identify limitations in the denitrification modeling to inform next steps for development. Several areas are identified, most urgently improved denitrification control parameters and further testing with high-temporal-resolution datasets. Addressing these would significantly improve denitrification modeling.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Jyrki Jauhiainen, Jukka Alm, Brynhildur Bjarnadottir, Ingeborg Callesen, Jesper R. Christiansen, Nicholas Clarke, Lise Dalsgaard, Hongxing He, Sabine Jordan, Vaiva Kazanavičiūtė, Leif Klemedtsson, Ari Lauren, Andis Lazdins, Aleksi Lehtonen, Annalea Lohila, Ainars Lupikis, Ülo Mander, Kari Minkkinen, Åsa Kasimir, Mats Olsson, Paavo Ojanen, Hlynur Óskarsson, Bjarni D. Sigurdsson, Gunnhild Søgaard, Kaido Soosaar, Lars Vesterdal, and Raija Laiho
Biogeosciences, 16, 4687–4703, https://doi.org/10.5194/bg-16-4687-2019, https://doi.org/10.5194/bg-16-4687-2019, 2019
Short summary
Short summary
We collated peer-reviewed publications presenting GHG flux data for drained organic forest soils in boreal and temperate climate zones, focusing on data that have been used, or have the potential to be used, for estimating net annual soil GHG emission/removals. We evaluated the methods in data collection and identified major gaps in background/environmental data. Based on these, we developed suggestions for future GHG data collection to increase data applicability in syntheses and inventories.
Mousong Wu, Per-Erik Jansson, Jingwei Wu, Xiao Tan, Kang Wang, Peng Chen, and Jiesheng Huang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-466, https://doi.org/10.5194/hess-2018-466, 2018
Revised manuscript not accepted
Hongxing He, Astrid Meyer, Per-Erik Jansson, Magnus Svensson, Tobias Rütting, and Leif Klemedtsson
Geosci. Model Dev., 11, 725–751, https://doi.org/10.5194/gmd-11-725-2018, https://doi.org/10.5194/gmd-11-725-2018, 2018
Short summary
Short summary
Ectomycorrhizal fungi (ECM) have shown a major impact on forest C and N cycles, but are currently neglected in most ecosystem models. We thus implemented the previously developed ectomycorrhizal fungi model, MYCOFON, into a well-established ecosystem model, CoupModel. This paper describes the key components and features of Coup-MYCOFON. The new version of CoupModel can now simulate C and N fluxes and pools, explicitly accounting for links and feedbacks among plant, soil, and ECM.
Wenxin Zhang, Per-Erik Jansson, and Bo Elberling
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-382, https://doi.org/10.5194/bg-2017-382, 2017
Manuscript not accepted for further review
Christine Metzger, Mats B. Nilsson, Matthias Peichl, and Per-Erik Jansson
Geosci. Model Dev., 9, 4313–4338, https://doi.org/10.5194/gmd-9-4313-2016, https://doi.org/10.5194/gmd-9-4313-2016, 2016
Short summary
Short summary
Many interactions between various abiotic and biotic processes and their parameters were identified by global sensitivity analysis, revealing strong dependence of a certain model output (e.g. CO2 or heat fluxes, leaf area index, radiation, water table, soil temperature or snow depth) to model set-up and parameterization in many different processes, a limited transferability of parameter values between models, and the importance of ancillary measurements for improving models and thus predictions.
Mousong Wu, Per-Erik Jansson, Xiao Tan, Jiesheng Huang, and Jingwei Wu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-507, https://doi.org/10.5194/hess-2016-507, 2016
Revised manuscript not accepted
Hongxing He, Per-Erik Jansson, Magnus Svensson, Jesper Björklund, Lasse Tarvainen, Leif Klemedtsson, and Åsa Kasimir
Biogeosciences, 13, 2305–2318, https://doi.org/10.5194/bg-13-2305-2016, https://doi.org/10.5194/bg-13-2305-2016, 2016
Short summary
Short summary
We simulate CO2 and N2O dynamics over a full forest rotation on drained agricultural peatland, using CoupModel. Data used for validation include tree ring-derived biomass data (1966–2011) and measured abiotic and soil emission data (2006–2011). The results show that the C fixed in forest biomass is slightly larger than the soil losses over the full rotation period. However when including N2O and indirect emissions from forest thinning products, the forest system switches to a large GHG source.
C. Metzger, P.-E. Jansson, A. Lohila, M. Aurela, T. Eickenscheidt, L. Belelli-Marchesini, K. J. Dinsmore, J. Drewer, J. van Huissteden, and M. Drösler
Biogeosciences, 12, 125–146, https://doi.org/10.5194/bg-12-125-2015, https://doi.org/10.5194/bg-12-125-2015, 2015
Short summary
Short summary
To identify site specific differences in CO2-related processes in open peatlands, we calibrated a process oriented model to fit to detailed measurements of carbon fluxes and compared the resulting parameter ranges between the sites. For most processes a common configuration could be applied. Site specific differences were identified for soil respiration coefficients, plant radiation-use efficiencies and plant storage fractions for spring regrowth.
S. H. Wu and P.-E. Jansson
Hydrol. Earth Syst. Sci., 17, 735–749, https://doi.org/10.5194/hess-17-735-2013, https://doi.org/10.5194/hess-17-735-2013, 2013
Related subject area
Biogeosciences
Alquimia v1.0: a generic interface to biogeochemical codes – a tool for interoperable development, prototyping and benchmarking for multiphysics simulators
Soil nitrous oxide emissions from global land ecosystems and their drivers within the LPJ-GUESS model (v4.1)
Parameterization toolbox for a physical–biogeochemical model compatible with FABM – a case study: the coupled 1D GOTM–ECOSMO E2E for the Sylt–Rømø Bight, North Sea
H2MV (v1.0): global physically constrained deep learning water cycle model with vegetation
NN-TOC v1: global prediction of total organic carbon in marine sediments using deep neural networks
China Wildfire Emission Dataset (ChinaWED v1) for the period 2012–2022
Process-based modeling of solar-induced chlorophyll fluorescence with VISIT-SIF version 1.0
Including the phosphorus cycle into the LPJ-GUESS dynamic global vegetation model (v4.1, r10994) – global patterns and temporal trends of N and P primary production limitation
A comprehensive land-surface vegetation model for multi-stream data assimilation, D&B v1.0
Sources of uncertainty in the SPITFIRE global fire model: development of LPJmL-SPITFIRE1.9 and directions for future improvements
Spatially varying parameters improve carbon cycle modeling in the Amazon rainforest with ORCHIDEE r8849
The unicellular NUM v.0.91: a trait-based plankton model evaluated in two contrasting biogeographic provinces
FESOM2.1-REcoM3-MEDUSA2: an ocean–sea ice–biogeochemistry model coupled to a sediment model
Satellite-based modeling of wetland methane emissions on a global scale (SatWetCH4 1.0)
Emulating grid-based forest carbon dynamics using machine learning: an LPJ-GUESS v4.1.1 application
Systematic underestimation of type-specific ecosystem process variability in the Community Land Model v5 over Europe
pyVPRM: A next-generation Vegetation Photosynthesis and Respiration Model for the post-MODIS era
Lambda-PFLOTRAN 1.0: a workflow for incorporating organic matter chemistry informed by ultra high resolution mass spectrometry into biogeochemical modeling
An improved model for air–sea exchange of elemental mercury in MITgcm-ECCOv4-Hg: the role of surfactants and waves
BOATSv2: new ecological and economic features improve simulations of high seas catch and effort
A dynamical process-based model for quantifying global agricultural ammonia emissions – AMmonia–CLIMate v1.0 (AMCLIM v1.0) – Part 1: Land module for simulating emissions from synthetic fertilizer use
Simulating the drought response of European tree species with the dynamic vegetation model LPJ-GUESS (v4.1, 97c552c5)
Simulating Ips typographus L. outbreak dynamics and their influence on carbon balance estimates with ORCHIDEE r8627
Biological nitrogen fixation of natural and agricultural vegetation simulated with LPJmL 5.7.9
BIOPERIANT12: a mesoscale resolving coupled physics-biogeochemical model for the Southern Ocean
Learning from conceptual models – a study of the emergence of cooperation towards resource protection in a social–ecological system
Development and assessment of the physical-biogeochemical ocean regional model in the Northwest Pacific: NPRT v1.0 (ROMS v3.9–TOPAZ v2.0)
TROLL 4.0: representing water and carbon fluxes, leaf phenology and intraspecific trait variation in a mixed-species individual-based forest dynamics model – Part 1: Model description
The biogeochemical model Biome-BGCMuSo v6.2 provides plausible and accurate simulations of the carbon cycle in central European beech forests
TROLL 4.0: representing water and carbon fluxes, leaf phenology, and intraspecific trait variation in a mixed-species individual-based forest dynamics model – Part 2: Model evaluation for two Amazonian sites
Estimation of above- and below-ground ecosystem parameters for the DVM-DOS-TEM v0.7.0 model using MADS v1.7.3: a synthetic case study
DeepPhenoMem V1.0: deep learning modelling of canopy greenness dynamics accounting for multi-variate meteorological memory effects on vegetation phenology
Impacts of land-use change on biospheric carbon: an oriented benchmark using the ORCHIDEE land surface model
Implementing the iCORAL (version 1.0) coral reef CaCO3 production module in the iLOVECLIM climate model
Assimilation of carbonyl sulfide (COS) fluxes within the adjoint-based data assimilation system – Nanjing University Carbon Assimilation System (NUCAS v1.0)
ML4Fire-XGBv1.0: Improving North American wildfire prediction by integrating a machine-learning fire model in a land surface model
Quantifying the role of ozone-caused damage to vegetation in the Earth system: a new parameterization scheme for photosynthetic and stomatal responses
Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models
Exploring the potential of history matching for land surface model calibration
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Using deep learning to integrate paleoclimate and global biogeochemistry over the Phanerozoic Eon
Modelling boreal forest's mineral soil and peat C dynamics with the Yasso07 model coupled with the Ricker moisture modifier
Dynamic ecosystem assembly and escaping the “fire trap” in the tropics: insights from FATES_15.0.0
In silico calculation of soil pH by SCEPTER v1.0
Simple process-led algorithms for simulating habitats (SPLASH v.2.0): robust calculations of water and energy fluxes
A global behavioural model of human fire use and management: WHAM! v1.0
Terrestrial Ecosystem Model in R (TEMIR) version 1.0: simulating ecophysiological responses of vegetation to atmospheric chemical and meteorological changes
biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators – human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk)
Modeling boreal forest soil dynamics with the microbially explicit soil model MIMICS+ (v1.0)
Optimal enzyme allocation leads to the constrained enzyme hypothesis: the Soil Enzyme Steady Allocation Model (SESAM; v3.1)
Sergi Molins, Benjamin J. Andre, Jeffrey N. Johnson, Glenn E. Hammond, Benjamin N. Sulman, Konstantin Lipnikov, Marcus S. Day, James J. Beisman, Daniil Svyatsky, Hang Deng, Peter C. Lichtner, Carl I. Steefel, and J. David Moulton
Geosci. Model Dev., 18, 3241–3263, https://doi.org/10.5194/gmd-18-3241-2025, https://doi.org/10.5194/gmd-18-3241-2025, 2025
Short summary
Short summary
Developing scientific software and making sure it functions properly requires a significant effort. As we advance our understanding of natural systems, however, there is the need to develop yet more complex models and codes. In this work, we present a piece of software that facilitates this work, specifically with regard to reactive processes. Existing tried-and-true codes are made available via this new interface, freeing up resources to focus on the new aspects of the problems at hand.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev., 18, 3131–3155, https://doi.org/10.5194/gmd-18-3131-2025, https://doi.org/10.5194/gmd-18-3131-2025, 2025
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Hoa Nguyen, Ute Daewel, Neil Banas, and Corinna Schrum
Geosci. Model Dev., 18, 2961–2982, https://doi.org/10.5194/gmd-18-2961-2025, https://doi.org/10.5194/gmd-18-2961-2025, 2025
Short summary
Short summary
Parameterization is key in modeling to reproduce observations well but is often done manually. This study presents a particle-swarm-optimizer-based toolbox for marine ecosystem models, compatible with the Framework for Aquatic Biogeochemical Models, thus enhancing its reusability. Applied to the Sylt ecosystem, the toolbox effectively (1) identified multiple parameter sets that matched observations well, providing different insights into ecosystem dynamics, and (2) optimized model complexity.
Zavud Baghirov, Martin Jung, Markus Reichstein, Marco Körner, and Basil Kraft
Geosci. Model Dev., 18, 2921–2943, https://doi.org/10.5194/gmd-18-2921-2025, https://doi.org/10.5194/gmd-18-2921-2025, 2025
Short summary
Short summary
We use an innovative approach to studying the Earth's water cycle by integrating advanced machine learning techniques with a traditional water cycle model. Our model is designed to learn from observational data, with a particular emphasis on understanding the influence of vegetation on water movement. By closely aligning with real-world observations, our model offers new possibilities for enhancing our understanding of the water cycle and its interactions with vegetation.
Naveenkumar Parameswaran, Everardo González, Ewa Burwicz-Galerne, Malte Braack, and Klaus Wallmann
Geosci. Model Dev., 18, 2521–2544, https://doi.org/10.5194/gmd-18-2521-2025, https://doi.org/10.5194/gmd-18-2521-2025, 2025
Short summary
Short summary
Our research uses deep learning to predict organic carbon stocks in ocean sediments, which is crucial for understanding their role in the global carbon cycle. By analysing over 22 000 samples and various seafloor characteristics, our model gives more accurate results than traditional methods. We estimate that the top 10 cm of ocean sediments hold about 156 Pg of carbon. This work enhances carbon stock estimates and helps plan future sampling strategies to better understand oceanic carbon burial.
Zhengyang Lin, Ling Huang, Hanqin Tian, Anping Chen, and Xuhui Wang
Geosci. Model Dev., 18, 2509–2520, https://doi.org/10.5194/gmd-18-2509-2025, https://doi.org/10.5194/gmd-18-2509-2025, 2025
Short summary
Short summary
The China Wildfire Emission Dataset (ChinaWED v1) estimated wildfire emissions in China during 2012–2022 as 78.13 Tg CO2, 279.47 Gg CH4, and 6.26 Gg N2O annually. Agricultural fires dominated emissions, while forest and grassland emissions decreased. Seasonal peaks occurred in late spring, with hotspots in northeast, southwest, and east China. The model emphasizes the importance of using localized emission factors and high-resolution fire estimates for accurate assessments.
Tatsuya Miyauchi, Makoto Saito, Hibiki M. Noda, Akihiko Ito, Tomomichi Kato, and Tsuneo Matsunaga
Geosci. Model Dev., 18, 2329–2347, https://doi.org/10.5194/gmd-18-2329-2025, https://doi.org/10.5194/gmd-18-2329-2025, 2025
Short summary
Short summary
Solar-induced chlorophyll fluorescence (SIF) is an effective indicator for monitoring photosynthetic activity. This paper introduces VISIT-SIF, a biogeochemical model developed based on the Vegetation Integrative Simulator for Trace gases (VISIT) to represent satellite-observed SIF. Our simulations reproduced the global distribution and seasonal variations in observed SIF. VISIT-SIF helps to improve photosynthetic processes through a combination of biogeochemical modeling and observed SIF.
Mateus Dantas de Paula, Matthew Forrest, David Warlind, João Paulo Darela Filho, Katrin Fleischer, Anja Rammig, and Thomas Hickler
Geosci. Model Dev., 18, 2249–2274, https://doi.org/10.5194/gmd-18-2249-2025, https://doi.org/10.5194/gmd-18-2249-2025, 2025
Short summary
Short summary
Our study maps global nitrogen (N) and phosphorus (P) availability and how they changed from 1901 to 2018. We find that tropical regions are mostly P-limited, while temperate and boreal areas face N limitations. Over time, P limitation increased, especially in the tropics, while N limitation decreased. These shifts are key to understanding global plant growth and carbon storage, highlighting the importance of including P dynamics in ecosystem models.
Wolfgang Knorr, Matthew Williams, Tea Thum, Thomas Kaminski, Michael Voßbeck, Marko Scholze, Tristan Quaife, T. Luke Smallman, Susan C. Steele-Dunne, Mariette Vreugdenhil, Tim Green, Sönke Zaehle, Mika Aurela, Alexandre Bouvet, Emanuel Bueechi, Wouter Dorigo, Tarek S. El-Madany, Mirco Migliavacca, Marika Honkanen, Yann H. Kerr, Anna Kontu, Juha Lemmetyinen, Hannakaisa Lindqvist, Arnaud Mialon, Tuuli Miinalainen, Gaétan Pique, Amanda Ojasalo, Shaun Quegan, Peter J. Rayner, Pablo Reyes-Muñoz, Nemesio Rodríguez-Fernández, Mike Schwank, Jochem Verrelst, Songyan Zhu, Dirk Schüttemeyer, and Matthias Drusch
Geosci. Model Dev., 18, 2137–2159, https://doi.org/10.5194/gmd-18-2137-2025, https://doi.org/10.5194/gmd-18-2137-2025, 2025
Short summary
Short summary
When it comes to climate change, the land surface is where the vast majority of impacts happen. The task of monitoring those impacts across the globe is formidable and must necessarily rely on satellites – at a significant cost: the measurements are only indirect and require comprehensive physical understanding. We have created a comprehensive modelling system that we offer to the research community to explore how satellite data can be better exploited to help us capture the changes that happen on our lands.
Luke Oberhagemann, Maik Billing, Werner von Bloh, Markus Drüke, Matthew Forrest, Simon P. K. Bowring, Jessica Hetzer, Jaime Ribalaygua Batalla, and Kirsten Thonicke
Geosci. Model Dev., 18, 2021–2050, https://doi.org/10.5194/gmd-18-2021-2025, https://doi.org/10.5194/gmd-18-2021-2025, 2025
Short summary
Short summary
Under climate change, the conditions necessary for wildfires to form are occurring more frequently in many parts of the world. To help predict how wildfires will change in future, global fire models are being developed. We analyze and further develop one such model, SPITFIRE. Our work identifies and corrects sources of substantial bias in the model that are important to the global fire modelling field. With this analysis and these developments, we help to provide a basis for future improvements.
Lei Zhu, Philippe Ciais, Yitong Yao, Daniel Goll, Sebastiaan Luyssaert, Isabel Martínez Cano, Arthur Fendrich, Laurent Li, Hui Yang, Sassan Saatchi, and Wei Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-397, https://doi.org/10.5194/egusphere-2025-397, 2025
Short summary
Short summary
This study enhances the accuracy of modeling the carbon dynamics of Amazon rainforest by optimizing key model parameters based on satellite data. Using spatially varying parameters for tree mortality and photosynthesis, we improved predictions of biomass, productivity, and tree mortality. Our findings highlight the critical role of wood density and water availability in forest processes, offering insights to refine global carbon cycle models.
Trine Frisbæk Hansen, Donald Eugene Canfield, Ken Haste Andersen, and Christian Jannik Bjerrum
Geosci. Model Dev., 18, 1895–1916, https://doi.org/10.5194/gmd-18-1895-2025, https://doi.org/10.5194/gmd-18-1895-2025, 2025
Short summary
Short summary
We describe and test the size-based Nutrient-Unicellular-Multicellular model, which defines unicellular plankton using a single set of parameters, on a eutrophic and oligotrophic ecosystem. The results demonstrate that both sites can be modeled with similar parameters and robust performance over a wide range of parameters. The study shows that the model is useful for non-experts and applicable for modeling ecosystems with limited data. It holds promise for evolutionary and deep-time climate models.
Ying Ye, Guy Munhoven, Peter Köhler, Martin Butzin, Judith Hauck, Özgür Gürses, and Christoph Völker
Geosci. Model Dev., 18, 977–1000, https://doi.org/10.5194/gmd-18-977-2025, https://doi.org/10.5194/gmd-18-977-2025, 2025
Short summary
Short summary
Many biogeochemistry models assume all material reaching the seafloor is remineralized and returned to solution, which is sufficient for studies on short-term climate change. Under long-term climate change, the carbon storage in sediments slows down carbon cycling and influences feedbacks in the atmosphere–ocean–sediment system. This paper describes the coupling of a sediment model to an ocean biogeochemistry model and presents results under the pre-industrial climate and under CO2 perturbation.
Juliette Bernard, Elodie Salmon, Marielle Saunois, Shushi Peng, Penélope Serrano-Ortiz, Antoine Berchet, Palingamoorthy Gnanamoorthy, Joachim Jansen, and Philippe Ciais
Geosci. Model Dev., 18, 863–883, https://doi.org/10.5194/gmd-18-863-2025, https://doi.org/10.5194/gmd-18-863-2025, 2025
Short summary
Short summary
Despite their importance, uncertainties remain in the evaluation of the drivers of temporal variability of methane emissions from wetlands on a global scale. Here, a simplified global model is developed, taking advantage of advances in remote-sensing data and in situ observations. The model reproduces the large spatial and temporal patterns of emissions, albeit with limitations in the tropics due to data scarcity. This model, while simple, can provide valuable insights into sensitivity analyses.
Carolina Natel, David Martin Belda, Peter Anthoni, Neele Haß, Sam Rabin, and Almut Arneth
EGUsphere, https://doi.org/10.5194/egusphere-2024-4064, https://doi.org/10.5194/egusphere-2024-4064, 2025
Short summary
Short summary
Complex models predict forest carbon responses to future climate change but are slow and computationally intensive, limiting large-scale analyses. We used machine learning to accelerate predictions from the LPJ-GUESS vegetation model. Our emulators, based on random forests and neural networks, achieved 97 % faster simulations. This approach enables rapid exploration of climate mitigation strategies and supports informed policy decisions.
Christian Poppe Terán, Bibi S. Naz, Harry Vereecken, Roland Baatz, Rosie A. Fisher, and Harrie-Jan Hendricks Franssen
Geosci. Model Dev., 18, 287–317, https://doi.org/10.5194/gmd-18-287-2025, https://doi.org/10.5194/gmd-18-287-2025, 2025
Short summary
Short summary
Carbon and water exchanges between the atmosphere and the land surface contribute to water resource availability and climate change mitigation. Land surface models, like the Community Land Model version 5 (CLM5), simulate these. This study finds that CLM5 and other data sets underestimate the magnitudes of and variability in carbon and water exchanges for the most abundant plant functional types compared to observations. It provides essential insights for further research into these processes.
Theo Glauch, Julia Marshall, Christoph Gerbig, Santiago Botía, Michał Gałkowski, Sanam N. Vardag, and André Butz
EGUsphere, https://doi.org/10.5194/egusphere-2024-3692, https://doi.org/10.5194/egusphere-2024-3692, 2025
Short summary
Short summary
The Vegetation Photosynthesis and Respiration Model (VPRM) estimates carbon exchange between the atmosphere and biosphere by modeling gross primary production and respiration using satellite data and weather variables. Our new version, pyVPRM, supports diverse satellite products like Sentinel-2, MODIS, VIIRS and new land cover maps, enabling high spatial and temporal resolution. This improves flux estimates, especially in complex landscapes, and ensures continuity as MODIS nears decommissioning.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
Ling Li, Peipei Wu, Peng Zhang, Shaojian Huang, and Yanxu Zhang
Geosci. Model Dev., 17, 8683–8695, https://doi.org/10.5194/gmd-17-8683-2024, https://doi.org/10.5194/gmd-17-8683-2024, 2024
Short summary
Short summary
In this study, we incorporate sea surfactants and wave-breaking processes into MITgcm-ECCOv4-Hg. The updated model shows increased fluxes in high-wind-speed and high-wave regions and vice versa, enhancing spatial heterogeneity. It shows that elemental mercury (Hg0) transfer velocity is more sensitive to wind speed. These findings may elucidate the discrepancies in previous estimations and offer insights into global Hg cycling.
Jerome Guiet, Daniele Bianchi, Kim J. N. Scherrer, Ryan F. Heneghan, and Eric D. Galbraith
Geosci. Model Dev., 17, 8421–8454, https://doi.org/10.5194/gmd-17-8421-2024, https://doi.org/10.5194/gmd-17-8421-2024, 2024
Short summary
Short summary
The BiOeconomic mArine Trophic Size-spectrum (BOATSv2) model dynamically simulates global commercial fish populations and their coupling with fishing activity, as emerging from environmental and economic drivers. New features, including separate pelagic and demersal populations, iron limitation, and spatial variation of fishing costs and management, improve the accuracy of high seas fisheries. The updated model code is available to simulate both historical and future scenarios.
Jize Jiang, David S. Stevenson, and Mark A. Sutton
Geosci. Model Dev., 17, 8181–8222, https://doi.org/10.5194/gmd-17-8181-2024, https://doi.org/10.5194/gmd-17-8181-2024, 2024
Short summary
Short summary
A special model called AMmonia–CLIMate (AMCLIM) has been developed to understand and calculate NH3 emissions from fertilizer use and also taking into account how the environment influences these NH3 emissions. It is estimated that about 17 % of applied N in fertilizers was lost due to NH3 emissions. Hot and dry conditions and regions with high-pH soils can expect higher NH3 emissions.
Benjamin Franklin Meyer, João Paulo Darela-Filho, Konstantin Gregor, Allan Buras, Qiao-Lin Gu, Andreas Krause, Daijun Liu, Phillip Papastefanou, Sijeh Asuk, Thorsten E. E. Grams, Christian S. Zang, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2024-3352, https://doi.org/10.5194/egusphere-2024-3352, 2024
Short summary
Short summary
Climate change has increased the likelihood of drought events across Europe, potentially threatening European forest carbon sink. Dynamic vegetation models with mechanistic plant hydraulic architecture are needed to model these developments. We evaluate the plant hydraulic architecture version of LPJ-GUESS and show it's capability at capturing species-specific evapotranspiration responses to drought and reproducing flux observations of both gross primary production and evapotranspiration.
Guillaume Marie, Jina Jeong, Hervé Jactel, Gunnar Petter, Maxime Cailleret, Matthew J. McGrath, Vladislav Bastrikov, Josefine Ghattas, Bertrand Guenet, Anne Sofie Lansø, Kim Naudts, Aude Valade, Chao Yue, and Sebastiaan Luyssaert
Geosci. Model Dev., 17, 8023–8047, https://doi.org/10.5194/gmd-17-8023-2024, https://doi.org/10.5194/gmd-17-8023-2024, 2024
Short summary
Short summary
This research looks at how climate change influences forests, and particularly how altered wind and insect activities could make forests emit instead of absorb carbon. We have updated a land surface model called ORCHIDEE to better examine the effect of bark beetles on forest health. Our findings suggest that sudden events, such as insect outbreaks, can dramatically affect carbon storage, offering crucial insights into tackling climate change.
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
Nicolette Chang, Sarah-Anne Nicholson, Marcel du Plessis, Alice D. Lebehot, Thulwaneng Mashifane, Tumelo C. Moalusi, N. Precious Mongwe, and Pedro M. S. Monteiro
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-182, https://doi.org/10.5194/gmd-2024-182, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Mesoscale features (10's to 100's of km) in the Southern Ocean (SO) are crucial for global heat and carbon transport, but often unresolved in models due to high computational costs. To address this source of uncertainty, we use a regional, NEMO model of the SO at 8 km resolution with coupled ocean, ice, and biogeochemistry, BIOPERIANT12. This serves as an experimental platform to explore physical-biogeochemical interactions, model parameters/formulations, and configuring future models.
Saeed Harati-Asl, Liliana Perez, and Roberto Molowny-Horas
Geosci. Model Dev., 17, 7423–7443, https://doi.org/10.5194/gmd-17-7423-2024, https://doi.org/10.5194/gmd-17-7423-2024, 2024
Short summary
Short summary
Social–ecological systems are the subject of many sustainability problems. Because of the complexity of these systems, we must be careful when intervening in them; otherwise we may cause irreversible damage. Using computer models, we can gain insight about these complex systems without harming them. In this paper we describe how we connected an ecological model of forest insect infestation with a social model of cooperation and simulated an intervention measure to save a forest from infestation.
Daehyuk Kim, Hyun-Chae Jung, Jae-Hong Moon, and Na-Hyeon Lee
EGUsphere, https://doi.org/10.5194/egusphere-2024-1509, https://doi.org/10.5194/egusphere-2024-1509, 2024
Short summary
Short summary
Physical–biogeochemical ocean global models is difficult to analyze oceanic environmental systems. To accurately understand the physical–biogeochemical processes at the regional scale, physical and biogeochemical models were coupled at a high resolution. The results successfully simulated the seasonal variations of chlorophyll and nutrients, particularly in the marginal seas, which were not captured by global models. The model is an important tool for studying physical–biogeochemical processes.
Isabelle Maréchaux, Fabian Jörg Fischer, Sylvain Schmitt, and Jérôme Chave
EGUsphere, https://doi.org/10.5194/egusphere-2024-3104, https://doi.org/10.5194/egusphere-2024-3104, 2024
Short summary
Short summary
We describe TROLL 4.0, a simulator of forest dynamics that represents trees in a virtual space at one-meter resolution. Tree birth, growth, death and the underlying physiological processes such as carbon assimilation, water transpiration and leaf phenology depend on plant traits that are measured in the field for many individuals and species. The model is thus capable of jointly simulating forest structure, diversity and ecosystem functioning, a major challenge in modelling vegetation dynamics.
Katarína Merganičová, Ján Merganič, Laura Dobor, Roland Hollós, Zoltán Barcza, Dóra Hidy, Zuzana Sitková, Pavel Pavlenda, Hrvoje Marjanovic, Daniel Kurjak, Michal Bošel'a, Doroteja Bitunjac, Maša Zorana Ostrogović Sever, Jiří Novák, Peter Fleischer, and Tomáš Hlásny
Geosci. Model Dev., 17, 7317–7346, https://doi.org/10.5194/gmd-17-7317-2024, https://doi.org/10.5194/gmd-17-7317-2024, 2024
Short summary
Short summary
We developed a multi-objective calibration approach leading to robust parameter values aiming to strike a balance between their local precision and broad applicability. Using the Biome-BGCMuSo model, we tested the calibrated parameter sets for simulating European beech forest dynamics across large environmental gradients. Leveraging data from 87 plots and five European countries, the results demonstrated reasonable local accuracy and plausible large-scale productivity responses.
Sylvain Schmitt, Fabian Fischer, James Ball, Nicolas Barbier, Marion Boisseaux, Damien Bonal, Benoit Burban, Xiuzhi Chen, Géraldine Derroire, Jeremy Lichstein, Daniela Nemetschek, Natalia Restrepo-Coupe, Scott Saleska, Giacomo Sellan, Philippe Verley, Grégoire Vincent, Camille Ziegler, Jérôme Chave, and Isabelle Maréchaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-3106, https://doi.org/10.5194/egusphere-2024-3106, 2024
Short summary
Short summary
We evaluate the capability of TROLL 4.0, a simulator of forest dynamics, to represent tropical forest structure, diversity and functioning in two Amazonian forests. Evaluation data include forest inventories, carbon and water fluxes between the forest and the atmosphere, and leaf area and canopy height from remote-sensing products. The model realistically predicts the structure and composition, and the seasonality of carbon and water fluxes at both sites.
Elchin E. Jafarov, Helene Genet, Velimir V. Vesselinov, Valeria Briones, Aiza Kabeer, Andrew L. Mullen, Benjamin Maglio, Tobey Carman, Ruth Rutter, Joy Clein, Chu-Chun Chang, Dogukan Teber, Trevor Smith, Joshua M. Rady, Christina Schädel, Jennifer D. Watts, Brendan M. Rogers, and Susan M. Natali
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-158, https://doi.org/10.5194/gmd-2024-158, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Thawing permafrost could greatly impact global climate. Our study improves modeling of carbon cycling in Arctic ecosystems. We developed an automated method to fine-tune a model that simulates carbon and nitrogen flows, using computer-generated data. Using computer-generated data, we tested our method and found it enhances accuracy and reduces the time needed for calibration. This work helps make climate predictions more reliable in sensitive permafrost regions.
Guohua Liu, Mirco Migliavacca, Christian Reimers, Basil Kraft, Markus Reichstein, Andrew D. Richardson, Lisa Wingate, Nicolas Delpierre, Hui Yang, and Alexander J. Winkler
Geosci. Model Dev., 17, 6683–6701, https://doi.org/10.5194/gmd-17-6683-2024, https://doi.org/10.5194/gmd-17-6683-2024, 2024
Short summary
Short summary
Our study employs long short-term memory (LSTM) networks to model canopy greenness and phenology, integrating meteorological memory effects. The LSTM model outperforms traditional methods, enhancing accuracy in predicting greenness dynamics and phenological transitions across plant functional types. Highlighting the importance of multi-variate meteorological memory effects, our research pioneers unlock the secrets of vegetation phenology responses to climate change with deep learning techniques.
Thi Lan Anh Dinh, Daniel Goll, Philippe Ciais, and Ronny Lauerwald
Geosci. Model Dev., 17, 6725–6744, https://doi.org/10.5194/gmd-17-6725-2024, https://doi.org/10.5194/gmd-17-6725-2024, 2024
Short summary
Short summary
The study assesses the performance of the dynamic global vegetation model (DGVM) ORCHIDEE in capturing the impact of land-use change on carbon stocks across Europe. Comparisons with observations reveal that the model accurately represents carbon fluxes and stocks. Despite the underestimations in certain land-use conversions, the model describes general trends in soil carbon response to land-use change, aligning with the site observations.
Nathaelle Bouttes, Lester Kwiatkowski, Manon Berger, Victor Brovkin, and Guy Munhoven
Geosci. Model Dev., 17, 6513–6528, https://doi.org/10.5194/gmd-17-6513-2024, https://doi.org/10.5194/gmd-17-6513-2024, 2024
Short summary
Short summary
Coral reefs are crucial for biodiversity, but they also play a role in the carbon cycle on long time scales of a few thousand years. To better simulate the future and past evolution of coral reefs and their effect on the global carbon cycle, hence on atmospheric CO2 concentration, it is necessary to include coral reefs within a climate model. Here we describe the inclusion of coral reef carbonate production in a carbon–climate model and its validation in comparison to existing modern data.
Huajie Zhu, Mousong Wu, Fei Jiang, Michael Vossbeck, Thomas Kaminski, Xiuli Xing, Jun Wang, Weimin Ju, and Jing M. Chen
Geosci. Model Dev., 17, 6337–6363, https://doi.org/10.5194/gmd-17-6337-2024, https://doi.org/10.5194/gmd-17-6337-2024, 2024
Short summary
Short summary
In this work, we developed the Nanjing University Carbon Assimilation System (NUCAS v1.0). Data assimilation experiments were conducted to demonstrate the robustness and investigate the feasibility and applicability of NUCAS. The assimilation of ecosystem carbonyl sulfide (COS) fluxes improved the model performance in gross primary productivity, evapotranspiration, and sensible heat, showing that COS provides constraints on parameters relevant to carbon-, water-, and energy-related processes.
Ye Liu, Huilin Huang, Sing-Chun Wang, Tao Zhang, Donghui Xu, and Yang Chen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-151, https://doi.org/10.5194/gmd-2024-151, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
This study integrates machine learning with a land surface model to improve wildfire predictions in North America. Traditional models struggle with accurately simulating burned areas due to simplified processes. By combining the predictive power of machine learning with a land model, our hybrid framework better captures fire dynamics. This approach enhances our understanding of wildfire behavior and aids in developing more effective climate and fire management strategies.
Fang Li, Zhimin Zhou, Samuel Levis, Stephen Sitch, Felicity Hayes, Zhaozhong Feng, Peter B. Reich, Zhiyi Zhao, and Yanqing Zhou
Geosci. Model Dev., 17, 6173–6193, https://doi.org/10.5194/gmd-17-6173-2024, https://doi.org/10.5194/gmd-17-6173-2024, 2024
Short summary
Short summary
A new scheme is developed to model the surface ozone damage to vegetation in regional and global process-based models. Based on 4210 data points from ozone experiments, it accurately reproduces statistically significant linear or nonlinear photosynthetic and stomatal responses to ozone in observations for all vegetation types. It also enables models to implicitly capture the variability in plant ozone tolerance and the shift among species within a vegetation type.
Alexander S. Brunmayr, Frank Hagedorn, Margaux Moreno Duborgel, Luisa I. Minich, and Heather D. Graven
Geosci. Model Dev., 17, 5961–5985, https://doi.org/10.5194/gmd-17-5961-2024, https://doi.org/10.5194/gmd-17-5961-2024, 2024
Short summary
Short summary
A new generation of soil models promises to more accurately predict the carbon cycle in soils under climate change. However, measurements of 14C (the radioactive carbon isotope) in soils reveal that the new soil models face similar problems to the traditional models: they underestimate the residence time of carbon in soils and may therefore overestimate the net uptake of CO2 by the land ecosystem. Proposed solutions include restructuring the models and calibrating model parameters with 14C data.
Nina Raoult, Simon Beylat, James M. Salter, Frédéric Hourdin, Vladislav Bastrikov, Catherine Ottlé, and Philippe Peylin
Geosci. Model Dev., 17, 5779–5801, https://doi.org/10.5194/gmd-17-5779-2024, https://doi.org/10.5194/gmd-17-5779-2024, 2024
Short summary
Short summary
We use computer models to predict how the land surface will respond to climate change. However, these complex models do not always simulate what we observe in real life, limiting their effectiveness. To improve their accuracy, we use sophisticated statistical and computational techniques. We test a technique called history matching against more common approaches. This method adapts well to these models, helping us better understand how they work and therefore how to make them more realistic.
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024, https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Short summary
To understand and predict the ocean’s capacity for carbon sequestration, its ability to supply food, and its response to climate change, we need the best possible estimate of its physical and biogeochemical properties. This is obtained through data assimilation which blends numerical models and observations. We present the Ensemble and Assimilation Tool (EAT), a flexible and efficient test bed that allows any scientist to explore and further develop the state of the art in data assimilation.
Dongyu Zheng, Andrew S. Merdith, Yves Goddéris, Yannick Donnadieu, Khushboo Gurung, and Benjamin J. W. Mills
Geosci. Model Dev., 17, 5413–5429, https://doi.org/10.5194/gmd-17-5413-2024, https://doi.org/10.5194/gmd-17-5413-2024, 2024
Short summary
Short summary
This study uses a deep learning method to upscale the time resolution of paleoclimate simulations to 1 million years. This improved resolution allows a climate-biogeochemical model to more accurately predict climate shifts. The method may be critical in developing new fully continuous methods that are able to be applied over a moving continental surface in deep time with high resolution at reasonable computational expense.
Boris Ťupek, Aleksi Lehtonen, Alla Yurova, Rose Abramoff, Bertrand Guenet, Elisa Bruni, Samuli Launiainen, Mikko Peltoniemi, Shoji Hashimoto, Xianglin Tian, Juha Heikkinen, Kari Minkkinen, and Raisa Mäkipää
Geosci. Model Dev., 17, 5349–5367, https://doi.org/10.5194/gmd-17-5349-2024, https://doi.org/10.5194/gmd-17-5349-2024, 2024
Short summary
Short summary
Updating the Yasso07 soil C model's dependency on decomposition with a hump-shaped Ricker moisture function improved modelled soil organic C (SOC) stocks in a catena of mineral and organic soils in boreal forest. The Ricker function, set to peak at a rate of 1 and calibrated against SOC and CO2 data using a Bayesian approach, showed a maximum in well-drained soils. Using SOC and CO2 data together with the moisture only from the topsoil humus was crucial for accurate model estimates.
Jacquelyn K. Shuman, Rosie A. Fisher, Charles Koven, Ryan Knox, Lara Kueppers, and Chonggang Xu
Geosci. Model Dev., 17, 4643–4671, https://doi.org/10.5194/gmd-17-4643-2024, https://doi.org/10.5194/gmd-17-4643-2024, 2024
Short summary
Short summary
We adapt a fire behavior and effects module for use in a size-structured vegetation demographic model to test how climate, fire regime, and fire-tolerance plant traits interact to determine the distribution of tropical forests and grasslands. Our model captures the connection between fire disturbance and plant fire-tolerance strategies in determining plant distribution and provides a useful tool for understanding the vulnerability of these areas under changing conditions across the tropics.
Yoshiki Kanzaki, Isabella Chiaravalloti, Shuang Zhang, Noah J. Planavsky, and Christopher T. Reinhard
Geosci. Model Dev., 17, 4515–4532, https://doi.org/10.5194/gmd-17-4515-2024, https://doi.org/10.5194/gmd-17-4515-2024, 2024
Short summary
Short summary
Soil pH is one of the most commonly measured agronomical and biogeochemical indices, mostly reflecting exchangeable acidity. Explicit simulation of both porewater and bulk soil pH is thus crucial to the accurate evaluation of alkalinity required to counteract soil acidification and the resulting capture of anthropogenic carbon dioxide through the enhanced weathering technique. This has been enabled by the updated reactive–transport SCEPTER code and newly developed framework to simulate soil pH.
David Sandoval, Iain Colin Prentice, and Rodolfo L. B. Nóbrega
Geosci. Model Dev., 17, 4229–4309, https://doi.org/10.5194/gmd-17-4229-2024, https://doi.org/10.5194/gmd-17-4229-2024, 2024
Short summary
Short summary
Numerous estimates of water and energy balances depend on empirical equations requiring site-specific calibration, posing risks of "the right answers for the wrong reasons". We introduce novel first-principles formulations to calculate key quantities without requiring local calibration, matching predictions from complex land surface models.
Oliver Perkins, Matthew Kasoar, Apostolos Voulgarakis, Cathy Smith, Jay Mistry, and James D. A. Millington
Geosci. Model Dev., 17, 3993–4016, https://doi.org/10.5194/gmd-17-3993-2024, https://doi.org/10.5194/gmd-17-3993-2024, 2024
Short summary
Short summary
Wildfire is often presented in the media as a danger to human life. Yet globally, millions of people’s livelihoods depend on using fire as a tool. So, patterns of fire emerge from interactions between humans, land use, and climate. This complexity means scientists cannot yet reliably say how fire will be impacted by climate change. So, we developed a new model that represents globally how people use and manage fire. The model reveals the extent and diversity of how humans live with and use fire.
Amos P. K. Tai, David H. Y. Yung, and Timothy Lam
Geosci. Model Dev., 17, 3733–3764, https://doi.org/10.5194/gmd-17-3733-2024, https://doi.org/10.5194/gmd-17-3733-2024, 2024
Short summary
Short summary
We have developed the Terrestrial Ecosystem Model in R (TEMIR), which simulates plant carbon and pollutant uptake and predicts their response to varying atmospheric conditions. This model is designed to couple with an atmospheric chemistry model so that questions related to plant–atmosphere interactions, such as the effects of climate change, rising CO2, and ozone pollution on forest carbon uptake, can be addressed. The model has been well validated with both ground and satellite observations.
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
Elin Ristorp Aas, Heleen A. de Wit, and Terje K. Berntsen
Geosci. Model Dev., 17, 2929–2959, https://doi.org/10.5194/gmd-17-2929-2024, https://doi.org/10.5194/gmd-17-2929-2024, 2024
Short summary
Short summary
By including microbial processes in soil models, we learn how the soil system interacts with its environment and responds to climate change. We present a soil process model, MIMICS+, which is able to reproduce carbon stocks found in boreal forest soils better than a conventional land model. With the model we also find that when adding nitrogen, the relationship between soil microbes changes notably. Coupling the model to a vegetation model will allow for further study of these mechanisms.
Thomas Wutzler, Christian Reimers, Bernhard Ahrens, and Marion Schrumpf
Geosci. Model Dev., 17, 2705–2725, https://doi.org/10.5194/gmd-17-2705-2024, https://doi.org/10.5194/gmd-17-2705-2024, 2024
Short summary
Short summary
Soil microbes provide a strong link for elemental fluxes in the earth system. The SESAM model applies an optimality assumption to model those linkages and their adaptation. We found that a previous heuristic description was a special case of a newly developed more rigorous description. The finding of new behaviour at low microbial biomass led us to formulate the constrained enzyme hypothesis. We now can better describe how microbially mediated linkages of elemental fluxes adapt across decades.
Cited articles
Aerts, R.: Nutrient resorption from senescing leaves of perennials: are
there general patterns?, J. Ecol., 84, 597–608, 1996.
Akselsson, C., Pihl Karlsson, G., Karlsson, P.-E., and Ahlstrand, J.:
Miljöövervakning på Obsytorna 1984–2013, Beskrivning, resultat,
utvärdering och framtid, Skogsstyrelsen Rapport 2015:1, 142 pp., available at: https://shopcdn.textalk.se/shop/9098/art21/25828721-150940-Obsytor_webb.pdf (last access: 28 January 2021), 2015.
Akselsson, C., Westling, O., Alveteg, M., Thelin, G., Fransson, A. M., and
Hellsten, S.: The influence of N load and harvest intensity on the risk of P
limitation in Swedish forest soils, Sci. Total Environ., 404, 284–289,
https://doi.org/10.1016/j.scitotenv.2007.11.017, 2008.
Almeida, J. P., Rosenstock, N. P., Forsmark, B., Bergh, J., and Wallander,
H.: Ectomycorrhizal community composition and function in a spruce forest
transitioning between nitrogen and phosphorus limitation, Fungal Ecol.,
40, 20–31,
https://doi.org/10.1016/j.funeco.2018.05.008, 2019.
Andersson, M., Carlsson, M., Ladenberger, A., Morris, G., Sadeghl, M., and
Uhlbäck, J.: Geokemisk atlas över sverige, Sveriges Geologiska Undersökning, Uppsala, Sweden, 2014.
Arheimer, B., Dahné, J., Donnelly, C., Lindström, G., and
Strömqvist, J.: Water and nutrient simulations using the HYPE model for
Sweden vs. the Baltic Sea basin – influence of input-data quality and
scale, Hydrol. Res., 43, 315–329, https://doi.org/10.2166/nh.2012.010, 2012.
Arnold, J. G., Daniel, N. M., Gassman, P. W., Abbaspour, K. C., and White,
M. J.: SWAT: Model use, calibration, and validation, Transactions of the
American Society of Agricultural and Biological Engineers, 55, 1491–1508,
2012.
Averill, C., Turner, B. L., and Finzi, A. C.: Mycorrhiza-mediated
competition between plants and decomposers drives soil carbon storage,
Nature, 505, 543–545, https://doi.org/10.1038/nature12901, 2014.
Bahr, A., Ellström, M., Bergh, J., and Wallander, H.: Nitrogen leaching
and ectomycorrhizal nitrogen retention capacity in a Norway spruce forest
fertilized with nitrogen and phosphorus, Plant Soil, 390, 323–335,
https://doi.org/10.1007/s11104-015-2408-6, 2015.
Barrow, N. J.: The description of desorption of phosphate from soil, J. Soil.
Sci., 30, 259–270, 1979.
Bell, C., Carrillo, Y., Boot, C. M., Rocca, J. D., Pendall, E., and
Wallenstein, M. D.: Rhizosphere stoichiometry: are C : N : P ratios of
plants, soils, and enzymes conserved at the plant species-level?, New
Phytol., 201, 505–517, https://doi.org/10.1111/nph.12531, 2014.
Bolan, N. S.: A critical review on the role of mycorrhizal fungi in the
uptake of phosphorus by plants, Plant Soil, 134, 189–207, 1991.
Braun, S., Thomas, V. F., Quiring, R., and Fluckiger, W.: Does nitrogen
deposition increase forest production? The role of phosphorus, Environ.
Pollut., 158, 2043–2052, https://doi.org/10.1016/j.envpol.2009.11.030, 2010.
Bucher, M.: Functional biology of plant phosphate uptake at root and
mycorrhiza interfaces, New Phytol., 173, 11–26,
https://doi.org/10.1111/j.1469-8137.2006.01935.x, 2007.
Bünemann, E. K.: Enzyme additions as a tool to assess the potential
bioavailability of organically bound nutrients, Soil Biol. Biochem., 40,
2116–2129, https://doi.org/10.1016/j.soilbio.2008.03.001, 2008.
Bünemann, E. K.: Assessment of gross and net mineralization rates of
soil organic phosphorus-A review, Soil Biol. Biochem., 89, 82–98,
https://doi.org/10.1016/j.soilbio.2015.06.026, 2015.
Cintas, O., Berndes, G., Hansson, J., Poudel, B. C., Bergh, J.,
Börjesson, P., Egnell, G., Lundmark, T., and Nordin, A.: The potential
role of forest management in Swedish scenarios towards climate neutrality by
mid century, Forest Ecol. Manag., 383, 73–84, https://doi.org/10.1016/j.foreco.2016.07.015, 2017.
Clemmensen, K. E., Bahr, A., Ovaskainen, O., Dahlberg, A., Ekblad, A.,
Wallander, H., Stenlid, J., Finlay, R. D., Wardle, D. A., and Lindahl, B.
D.: Roots and associated fungi drive long-term carbon sequestration in
boreal forest, Science, 339, 1615–1618, https://doi.org/10.1126/science.1231923, 2013.
Cleveland, C. C. and Liptzin, D.: C:N:P stoichiometry in soil: is there a
“Redfield ratio” for the microbial biomass?, Biogeochemistry, 85, 235–252,
https://doi.org/10.1007/s10533-007-9132-0, 2007.
Cole, C. V., Innis, G. S., and Stewart, J. W. B.: Simulation of Phosphorus
cycling in semiarid grasslands, Ecology, 58, 2–15, 1977.
Crowley, K. F., McNeil, B. E., Lovett, G. M., Canham, C. D., Driscoll, C.
T., Rustad, L. E., Denny, E., Hallett, R. A., Arthur, M. A., Boggs, J. L.,
Goodale, C. L., Kahl, J. S., McNulty, S. G., Ollinger, S. V., Pardo, L. H.,
Schaberg, P. G., Stoddard, J. L., Weand, M. P., and Weathers, K. C.: Do
nutrient limitation patterns shift from Nitrogen toward Phosphorus with
increasing Nitrogen deposition across the northeastern United States?,
Ecosystems, 15, 940–957, https://doi.org/10.1007/s10021-012-9550-2, 2012.
Deng, Q., Hui, D., Dennis, S., and Reddy, K. C.: Responses of terrestrial
ecosystem phosphorus cycling to nitrogen addition: A meta-analysis, Global
Ecol. Biogeogr., 26, 713–728, https://doi.org/10.1111/geb.12576, 2017.
Du, E., Terrer, C., Pellegrini, A. F. A., Ahlström, A., van Lissa, C. J.,
Zhao, X., Xia N., Wu, X., and Jackson, R. B.: Global patterns of terrestrial
nitrogen and phosphorus limitation, Nat. Geosci., 13, 221–226.
https://doi.org/10.1038/s41561-019-0530-4, 2020.
Eckersten, H. and Beier, C.: Comparison of N and C dynamics in two Norway
spruce stands using a process oriented simulation model, Eniron. Pollut., 102,
395–401, https://doi.org/10.1016/S0269-7491(98)80059-6, 1998.
Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W. S.,
Hillebrand, H., Ngai, J. T., Seabloom, E. W., Shurin, J. B., and Smith, J.
E.: Global analysis of nitrogen and phosphorus limitation of primary
producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10,
1135–1142, https://doi.org/10.1111/j.1461-0248.2007.01113.x, 2007.
Ericsson, T.: Growth and shoot: root ratio of seedlings in relation to
nutrient availability, Plant Soil, 168, 205–214, 1995.
Fleischer, K., Rammig, A., De Kauwe, M. G., Walker, A. P., Domingues, T. F.,
Fuchslueger, L., Garcia, S., Goll, D. S., Grandis, A., Jiang, M., Haverd,
V., Hofhansl, F., Holm, J. A., Kruijt, B., Leung, F., Medlyn, B. E.,
Mercado, L. M., Norby, R. J., Pak, B., von Randow, C., Quesada, C. A.,
Schaap, K. J., Valverde-Barrantes, O. J., Wang, Y.-P., Yang, X., Zaehle, S.,
Zhu, Q., and Lapola, D. M.: Amazon forest response to CO2 fertilization
dependent on plant phosphorus acquisition, Nat. Geosci., 12, 736–741,
https://doi.org/10.1038/s41561-019-0404-9, 2019.
Fransson, A.-M. and Bergkvist, B.: Phosphorus fertilisation causes durable
enhancement of phosphorus concentrations in forest soil, Forest Ecol. Manag.,
130, 69–76, https://doi.org/10.1016/S0378-1127(99)00184-X, 2000.
Gärdenäs, A., Eckersten, H., and Lillemägi, M.: Modeling
long-term effects of N fertilization and N deposition on the N balances of
forest stands in Sweden, Swedish University of Agricultural Sciences,
34, 1651–7210, 2003.
Gärdenäs, A., Jansson, P.-E., and Karlberg, L.: A model of
accumulation of radionuclides in biosphere originating from groundwater
contamination, SKB report R-06-47, SKB, Solna, Sweden, 2006.
Gärdenäs, A., Ågren, G., Bird, J., Clarholm, M., Hallin, S.,
Ineson, P., Kätterer, T., Knicker, H., Nilsson, I., Näsholm, T.,
Ogle, S., Paustian, K., Persson, T., and Stendahl, J.: Knowledge gaps in
soil carbon and nitrogen interactions – From molecular to global scale,
Soil Biol. Biochem., 43, 702–717,
https://doi.org/10.1016/j.soilbio.2010.04.006, 2011.
Gassman, P. W., Williams, J. R., Benson, V. W., César lzaurralde, R.,
Hauck, L. M., Jones, C. A., Atwood, J. D., Kiniry, J. D., and Flowers, J. D.:
Historical development and applications of the EPIC and APEX models, CARD
working paper 05-WP 397, Center for Agricultural and Rural Development, Iowa
State University, Ames, IA, USA, https://doi.org/10.13031/2013.17074, 2005.
Giesler, R., Petersson, T., and Högberg, P.: Phosphorus limitation in
boreal forests: effects of aluminum and iron accumulation in the humus
layer, Ecosystems, 5, 300–314, https://doi.org/10.1007/s10021-001-0073-5, 2002.
Goll, D. S., Brovkin, V., Parida, B. R., Reick, C. H., Kattge, J., Reich, P. B., van Bodegom, P. M., and Niinemets, Ü.: Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling, Biogeosciences, 9, 3547–3569, https://doi.org/10.5194/bg-9-3547-2012, 2012.
Goll, D. S., Vuichard, N., Maignan, F., Jornet-Puig, A., Sardans, J., Violette, A., Peng, S., Sun, Y., Kvakic, M., Guimberteau, M., Guenet, B., Zaehle, S., Penuelas, J., Janssens, I., and Ciais, P.: A representation of the phosphorus cycle for ORCHIDEE (revision 4520), Geosci. Model Dev., 10, 3745–3770, https://doi.org/10.5194/gmd-10-3745-2017, 2017.
Gress, E. S., Nichols, T. D., Northcraft, C. C., and Peterjohn, W. T.:
Nutrient limitation in soils exhibiting differing nitrogenavailabilities:
what lies beyond nitrogen saturation?, Ecology, 88, 119–130,
https://doi.org/10.1890/0012-9658(2007)88[119:NLISED]2.0.CO;2, 2007.
Groenendijk, P., Renaud, L. V., and Roelsma, J.: Prediction of nitrogen and
phosphorus leaching to groundwater and surface waters; process descriptions
of the Animo4.0 model, Alterra–Report 983, 114 pp.,
Wageningen, The Netherlands, 2005.
Guidry, M. W. and Machenzie, F. T.: Apatite weathering and the phanerozoic
phosphorus cycle, Geology, 28, 631–634, 2000.
Güsewell, S.: N : P ratios in terrestrial plants: variation and
functional significance, New Phytol., 164, 243–266,
https://doi.org/10.1111/j.1469-8137.2004.01192.x, 2004.
He, H., Meyer, A., Jansson, P.-E., Svensson, M., Rütting, T., and Klemedtsson, L.: Simulating ectomycorrhiza in boreal forests: implementing ectomycorrhizal fungi model MYCOFON in CoupModel (v5), Geosci. Model Dev., 11, 725–751, https://doi.org/10.5194/gmd-11-725-2018, 2018.
He, H., Jansson, P.-E., and Gärdenäs, A.: CoupModel (v6.0): code and evaluating database (Version V 6.0), Zenodo, https://doi.org/10.5281/zenodo.3547628, 2020a.
He, H., Jansson, P.-E., and Gärdenäs, A.: CoupModel (v6.0): Global parameter sensitivity analysis (Version V 6.0), Zenodo, https://doi.org/10.5281/zenodo.4291963, 2020b.
Hinsinger, P.: Bioavailability of soil inorganic P in the rhizosphere as
affected by root-induced chemical changes: a review, Plant Soil, 237,
173–195, 2001.
Högberg, P., Näsholm, T., Franklin, O., and Högberg, M. N.: Tamm
Review: On the nature of the nitrogen limitation to plant growth in
Fennoscandian boreal forests, Forest Ecol. Manag., 403, 161–185,
https://doi.org/10.1016/j.foreco.2017.04.045, 2017.
Ingestad, T.: Mineral nutrient requirements of Pinus silvestris and Picea abies Seedlings,
Physiol. Plantarum, 45, 373–380, 1979.
Ingestad, T. and Ågren, G. I.: Theories and methods on plant nutrient
and growth, Physiol Plantarum, 84, 177–184, 1992.
Jackson-Blake, L. A., Wade, A. J., Futter, M. N., Butterfield, D., Couture,
R. M., Cox, B. A., Crossman, J., Ekholm, P., Halliday, S. J., Jin, L.,
Lawrence, D. S. L., Lepistö, A., Lin, Y., Rankinen, K., and Whitehead,
P. G.: The INtegrated CAtchment model of phosphorus dynamics (INCA-P):
Description and demonstration of new model structure and equations, Environ.
Model. Softw., 83, 356–386, https://doi.org/10.1016/j.envsoft.2016.05.022,
2016.
Jahn, R., Blume, H.-P., Asio, V.-B., Spaargaren, O., and Schad, P.:
Guidelines for soil description, Food and Agriculture
Organization of the United Nations, Rome, Italy, 2006.
Jansson, P. E.: CoupModel: model use, calibration, and validation, T. ASABE,
4, 1335–1344, 2012.
Jansson, P. E. and Karlberg, L.: User manual of Coupled heat and mass
transfer model for soil-plant-atmosphere systems, Royal Institute of
Technology, Department of Land and Water Resources, Stockholm, Sweden, 2011.
Johnson, A. H., Frizano, J., and Vann, D. R.: Biogeochemical implications of
labile phosphorus in forest soils determined by the Hedley fractionation
procedure, Oecologia, 135, 487–499, https://doi.org/10.1007/s00442-002-1164-5, 2003.
Jonard, M., Furst, A., Verstraeten, A., Thimonier, A., Timmermann, V.,
Potocic, N., Waldner, P., Benham, S., Hansen, K., Merila, P., Ponette, Q.,
de la Cruz, A. C., Roskams, P., Nicolas, M., Croise, L., Ingerslev, M.,
Matteucci, G., Decinti, B., Bascietto, M., and Rautio, P.: Tree mineral
nutrition is deteriorating in Europe, Glob. Change Biol., 21, 418–430,
https://doi.org/10.1111/gcb.12657, 2015.
Jones, C. A., Cole, C. V., Sharpley, A. N., and Williams, J. R.: A
simplified soil and plant phosphorus model: I. Documentation, Soil Sci. Soc.
Am. J., 48, 800–805, https://doi.org/10.2136/sssaj1984.03615995004800040020x, 1984.
Kaiser, K. and Kalbitz, K.: Cycling downwards – dissolved organic matter
in soils, Soil Biol. Biochem., 52, 29–32, https://doi.org/10.1016/j.soilbio.2012.04.002, 2012.
Kalbitz, K., Solinger, S., Park, J.-H., Michalzik, B., and Matzner, E.:
Controls on the dynamics of dissolved organic matter in soils: a review,
Soil Sci., 165, 277–304, 2000.
Knisel, W. G. and Turtola, E.: Gleams model application on a heavy clay
soil in Finland, Agr. Water Manage., 43, 285–309,
https://doi.org/10.1016/S0378-3774(99)00067-0, 2000.
Kronnäs, V., Akselsson, C., and Belyazid, S.: Dynamic modelling of weathering rates – the benefit over steady-state modelling, SOIL, 5, 33–47, https://doi.org/10.5194/soil-5-33-2019, 2019.
Lagerström, A., Esberg, C., Wardle, D. A., and Giesler, R.: Soil
phosphorus and microbial response to a long-term wildfire chronosequence in
northern Sweden, Biogeochemistry, 95, 199–213, https://doi.org/10.1007/s10533-009-9331-y,
2009.
Laiho, R. and Prescott, C. E.: Decay and nutrient dynamics of coarse woody
debris in northern coniferous forests: a synthesis, Can. J. Forest Res., 34,
763–777, https://doi.org/10.1139/x03-241, 2004.
Lang, F., Bauhus, J., Frossard, E., George, E., Kaiser, K., Kaupenjohann,
M., Krüger, J., Matzner, E., Polle, A., Prietzel, J., Rennenberg, H.,
and Wellbrock, N.: Phosphorus in forest ecosystems: New insights from an
ecosystem nutrition perspective, J. Plant Nutr. Soil. Sci., 179, 129–135,
https://doi.org/10.1002/jpln.201500541, 2016.
Liebig, J.: Die Chemie in ihrer Andwendung auf Agrikultur und Physiologie,
Vieweg und Söhne, Braunschweig, Germany, 1840.
Linder, S.: Foliar analysis for detecting and correcting nutrient imbalances
in Norway spruce, Ecol. Bull., 44, 178–190, 1995.
Manzoni, S., Trofymow, J. A., Jackson, R. B., and Porporato, A.:
Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in
decomposing litter, Ecol. Monogr., 80, 89–106, https://doi.org/10.1890/09-0179.1, 2010.
McGill, W. B. and Cole, C. V.: Comparative aspects of cycling of organic C,
N, S and P through soil organic matter, Geoderma, 26, 267–286, 1981.
Medlyn, B. E., De Kauwe, M. G., Zaehle, S., Walker, A. P., Duursma, R. A.,
Luus, K., Mishurov, M., Pak, B., Smith, B., Wang, Y. P., Yang, X., Crous, K.
Y., Drake, J. E., Gimeno, T. E., Macdonald, C. A., Norby, R. J., Power, S.
A., Tjoelker, M. G., and Ellsworth, D. S.: Using models to guide field
experiments: a priori predictions for the CO2 response of a nutrient- and
water-limited native Eucalypt woodland, Glob. Change Biol., 22, 2834–2851,
https://doi.org/10.1111/gcb.13268, 2016.
Meyer, A., Grote, R., Polle, A., and Butterbach-Bahl, K.: Simulating
mycorrhiza contribution to forest C- and N cycling-the MYCOFON model, Plant
Soil, 327, 493–517, https://doi.org/10.1007/s11104-009-0017-y, 2009.
Monteith, J. L.: Evaporation and environment, Symp. Soc. Exp. Biol., 16,
205–234, 1965.
Nasholm, T., Hogberg, P., Franklin, O., Metcalfe, D., Keel, S. G., Campbell,
C., Hurry, V., Linder, S., and Hogberg, M. N.: Are ectomycorrhizal fungi
alleviating or aggravating nitrogen limitation of tree growth in boreal
forests?, New Phytol., 198, 214–221, https://doi.org/10.1111/nph.12139, 2013.
Nehls, U.: Mastering ectomycorrhizal symbiosis: the impact of carbohydrates,
J. Exp. Bot., 59, 1097–1108, https://doi.org/10.1093/jxb/erm334, 2008.
Olander, L. and Vitousek, P.: Short-term controls over inorganic phosphorus
during soil and ecosystem development, Soil Biol. Biochem., 37, 651–659,
https://doi.org/10.1016/j.soilbio.2004.08.022, 2005.
Olsson, M. T., Erlandsson, M., Lundin, L., Nilsson, T., Nilsson, Å., and
Stendahl, J.: Organic carbon stocks in Swedish Podzol soils in relation to
soil hydrology and other site characteristics, Silva Fennica, 43, 209–222,
2009.
Ortiz, C. A., Lundblad, M., Lundström, A., and Stendahl, J.: The effect
of increased extraction of forest harvest residues on soil organic carbon
accumulation in Sweden, Biomass Bioenergy, 70, 230–238,
https://doi.org/10.1016/j.biombioe.2014.08.030, 2014.
Orwin, K. H., Kirschbaum, M. U., St. John, M. G., and Dickie, I. A.: Organic
nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a
model-based assessment, Ecol. Lett., 14, 493–502,
https://doi.org/10.1111/j.1461-0248.2011.01611.x, 2011.
Oulehle, F., Chuman, T., Hruška, J., Krám, P., McDowell, W. H.,
Myška, O., Navrátil, T., and Tesař, M.: Recovery from
acidification alters concentrations and fluxes of solutes from Czech
catchments, Biogeochemistry, 132, 251–272, https://doi.org/10.1007/s10533-017-0298-9, 2017.
Penuelas, J., Poulter, B., Sardans, J., Ciais, P., van der Velde, M., Bopp,
L., Boucher, O., Godderis, Y., Hinsinger, P., Llusia, J., Nardin, E., Vicca,
S., Obersteiner, M., and Janssens, I. A.: Human-induced nitrogen-phosphorus
imbalances alter natural and managed ecosystems across the globe, Nat.
Commun., 4, 2934, https://doi.org/10.1038/ncomms3934, 2013.
Read, D. J. and Perez-Moreno, J.: Mycorrhizas and nutrient cycling in
ecosystems – a journey towards relevance?, New Phytol., 157, 475–492,
https://doi.org/10.1046/j.1469-8137.2003.00704.x, 2003.
Reed, S. C., Yang, X., and Thornton, P. E.: Incorporating phosphorus cycling
into global modeling efforts: a worthwhile, tractable endeavor, New Phytol.,
208, 324–329, https://doi.org/10.1111/nph.13521, 2015.
Richardson, A. E. and Simpson, R. J.: Soil microorganisms mediating
phosphorus availability update on microbial phosphorus, Plant Physiol., 156,
989–996, https://doi.org/10.1104/pp.111.175448, 2011.
Richardson, A. E., Barea, J.-M., McNeill, A. M., and Prigent-Combaret, C.:
Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth
promotion by microorganisms, Plant Soil, 321, 305–339,
https://doi.org/10.1007/s11104-009-9895-2, 2009.
Rosengren-Brinck, U. and Nihlgård, B.: Nutritional status in needles of
Norway spruce in relation to water and nutrient supply, Ecol. Bull., 44,
168–177, 1995.
Rosling, A., Midgley, M. G., Cheeke, T., Urbina, H., Fransson, P., and
Phillips, R. P.: Phosphorus cycling in deciduous forest soil differs between
stands dominated by ecto- and arbuscular mycorrhizal trees, New Phytol., 209,
1184–1195, https://doi.org/10.1111/nph.13720, 2016.
Saito, M. A., Goepfert, T. J., and Ritt, J. T.: Some thoughts on the concept
of colimitation: three definitions and the importance of bioavailability,
Limnol. Oceanogr., 53, 276–290, 2008.
Schachtman, D. P., Reid, R. J., and Ayling, S. M.: Phosphorus uptake by
plants: from soil to cell, Plant Physiol., 116, 447–453, 1998.
Schlesinger, W. H.: Biogeochemistry. An analysis of global change,
Academic Press, Cambridge, MA, USA, 1997.
Schnepf, A. and Roose, T.: Modelling the contribution of arbuscular
mycorrhizal fungi to plant phosphate uptake, New Phytol., 171, 669–682,
https://doi.org/10.1111/j.1469-8137.2006.01771.x, 2006.
SLU: Skogsdata: Aktuella uppgifter om de svenska skogarna från
Riksskogstaxeringen, SLU, Umeå, Sweden, available at:
https://pub.epsilon.slu.se/9266/1/SkogsData2012_webb.pdf
(last access: 10 February 2020), 2012.
Smeck, N. E.: Phosphorus dynamics in soils and landscapes, Geoderma, 36,
185–199, 1985.
Smith, S. E.: Mycorrhizal fungi can dominate phosphate supply to plants
irrespective of growth responses, Plant Physiol., 133, 16–20,
https://doi.org/10.1104/pp.103.024380, 2003.
Smith, S. E. and Read, D. J.: Mycorrhizal symbiosis, 3rd ed., Academic
Press, Cambridge, MA, USA, 2008.
Staddon, P. L., Thompson, K., Jakobsen, I., Grime, J. P., Askew, A. P., and
Fitter, A. H.: Mycorrhizal fungal abundance is affected by long-term
climatic manipulations in the field, Glob. Change Biol., 9, 186–194,
https://doi.org/10.1046/j.1365-2486.2003.00593.x, 2003.
Stendahl, J., Johansson, M.-B., Eriksson, E., Nilsson, Å., and Langvall,
O.: Soil organic carbon in Swedish spruce and pine forests- differences in
stock levels and regional patterns, Silva Fennica, 44, 5–21, 2010.
Sundqvist, M. K., Liu, Z., Giesler, R., and Wardle, D. A.: Plant and
microbial responses to nitrogen and phosphorus addition across an
elevational gradient in subarctic tundra, Ecology, 95, 1819–1835, https://doi.org/10.1890/13-0869.1, 2014.
Svensson, M., Jansson, P.-E., and Berggren Kleja, D.: Modelling soil C
sequestration in spruce forest ecosystems along a Swedish transect based on
current conditions, Biogeochemistry, 89, 95–119, https://doi.org/10.1007/s10533-007-9134-y,
2008.
Sverdrup, H. and Warfvinge, P.: Calculating field weathering rates using a
mechanistic geochemical model PROFILE, Appl. Geochem., 8, 273–283,
https://doi.org/10.1016/0883-2927(93)90042-F, 1993.
Swedish Forest Agency: Grundbok for skogsbrukare, Swedish Forest Agency,
Jönköping, Sweden, 2005.
Talkner, U., Meiwes, K. J., Potočić, N., Seletković, I., Cools,
N., De Vos, B., and Rautio, P.: Phosphorus nutrition of beech (Fagus
sylvatica L.) is decreasing in Europe, Ann. For. Sci., 72, 919–928,
https://doi.org/10.1007/s13595-015-0459-8, 2015.
Tang, Z., Xu, W., Zhou, G., Bai, Y., Li, J., Tang, X., Chen, D., Liu, Q.,
Ma, W., Xiong, G., He, H., He, N., Guo, Y., Guo, Q., Zhu, J., Han, W., Hu,
H., Fang, J., and Xie, Z.: Patterns of plant carbon, nitrogen, and
phosphorus concentration in relation to productivity in China's terrestrial
ecosystems, P. Natl. Acad. Sci. USA, 115, 4033–4038, https://doi.org/10.1073/pnas.1700295114,
2018.
Tarvainen, L., Lutz, M., Rantfors, M., Nasholm, T., and Wallin, G.:
Increased needle nitrogen contents did not improve shoot photosynthetic
performance of mature nitrogen-poor Scots pine trees, Front. Plant Sci., 7,
1051, https://doi.org/10.3389/fpls.2016.01051, 2016.
Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., and Prentice, I. C.:
Mycorrhizal association as a primary control of the CO2 fertilization
effect, Science, 353, 72–74, https://doi.org/10.1126/science.aaf4610, 2016.
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C.,
Vicca, S., Fisher, J. B., Reich, P. B., Stocker, B. D., Hungate, B. A.,
Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A.,
Talhelm, A. F., Van Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M.
J., Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter, K., Field, C. B.,
Viechtbauer, W., Van Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T.,
Leshyk, V. O., Polley, H. W., and Franklin, O.: Nitrogen and phosphorus
constrain the CO2 fertilization of global plant biomass, Nat. Clim. Change, 9, 684–689,
https://doi.org/10.1038/s41558-019-0545-2, 2019.
Tessier, J. T. and Raynal, D. J.: Use of nitrogen to phosphorus ratios in
plant tissue as an indicator of nutrient limitation and nitrogen saturation,
J. Appl. Ecol., 40, 523–534, https://doi.org/10.1046/j.1365-2664.2003.00820.x, 2003.
Thelin, G., Rosengren-Brinck, U., Nihlgård, B., and Barkman, A.: Trends
in needle and soil chemistry of Norway spruce and Scots pine stands in South
Sweden 1985–1994, Environ. Poll., 99, 149–158, https://doi.org/10.1016/S0269-7491(97)00192-9,
1998.
Thelin, G., Rosengren, U., Callesen, I., and Ingerslev, M.: The nutrient
status of Norway spruce in pure and in mixed-species stands, For. Ecol. Manage., 160, 115–125, https://doi.org/10.1016/S0378-1127(01)00464-9, 2002.
Thum, T., Caldararu, S., Engel, J., Kern, M., Pallandt, M., Schnur, R., Yu, L., and Zaehle, S.: A new model of the coupled carbon, nitrogen, and phosphorus cycles in the terrestrial biosphere (QUINCY v1.0; revision 1996), Geosci. Model Dev., 12, 4781–4802, https://doi.org/10.5194/gmd-12-4781-2019, 2019.
Tipping, E., Benham, S., Boyle, J. F., Crow, P., Davies, J., Fischer, U.,
Guyatt, H., Helliwell, R., Jackson-Blake, L., Lawlor, A. J., Monteith, D.
T., Rowe, E. C., and Toberman, H.: Atmospheric deposition of phosphorus to
land and freshwater, Environ. Sci. Process. Impacts., 16, 1608–1617,
https://doi.org/10.1039/c3em00641g, 2014.
Van Sundert, K., Radujkovic, D., Cools, N., De Vos, B., Etzold, S.,
Fernandez-Martinez, M., Janssens, I., Merila, P., Penuelas, J., Sardans, J.,
Stendahl, J., Terrer, C., and Vicca, S.: Towards comparable assessment of
the soil nutrient status across scales – review and development of nutrient
metrics, Glob. Change Biol., e26, 392–409, https://doi.org/10.1111/gcb.14802, 2020.
Vincent, A. G., Sundqvist, M. K., Wardle, D. A., and Giesler, R.:
Bioavailable soil phosphorus decreases with increasing elevation in a
subarctic tundra landscape, PLoS One, 9, e92942,
https://doi.org/10.1371/journal.pone.0092942, 2014.
Vitousek, P. M., Porder, S., Houlton, B. Z., and Chadwick, O. A.:
Terrestrial phosphorus limitation: mechanisms, implications, and
nitrogen-phosphorus interactions, Ecol. Appl., 20, 5–15, 2010.
Wallander, H., Mahmood, S., Hagerberg, D., Johansson, L., and Pallon, J.:
Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP
analysis and grown in contact with apatite or wood ash in forest soil, FEMS
Microbiol. Ecol., 44, 57–65, https://doi.org/10.1111/j.1574-6941.2003.tb01090.x,
2003.
Wang, Y. P., Houlton, B. Z., and Field, C. B.: A model of biogeochemical
cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen
fixation and phosphatase production, Global Biogeochem. Cy., 21, GB1018,
https://doi.org/10.1029/2006gb002797, 2007.
Wang, Y. P., Law, R. M., and Pak, B.: A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere, Biogeosciences, 7, 2261–2282, https://doi.org/10.5194/bg-7-2261-2010, 2010.
Wijk, S.: Skogsvårdsorganisationens skogliga observationsytor,
Anvisningar för analys av markprover, version 1995-11-15,
Skogsstyrelsen, Jönköping, Sweden, 1995.
Wijk, S.: Skogsvårdsorganisationens skogliga observationsytor, Manual –
anvisningar för urval av träd för barrprovtagning, Version
1997-08-14, Skogsstyrelsen, Jönköping, Sweden, 1997.
Yanai, R. D.: Phosphorus budget of a 70-year-old northern hardwood forest,
Biogeochemistry, 17, 1–22, https://doi.org/10.1007/BF00002757,
1992.
Yang, X., Thornton, P. E., Ricciuto, D. M., and Post, W. M.: The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP, Biogeosciences, 11, 1667–1681, https://doi.org/10.5194/bg-11-1667-2014, 2014.
Yu, L., Zanchi, G., Akselsson, C., Wallander, H., and Belyazid, S.: Modeling
the forest phosphorus nutrition in a southwestern Swedish forest site, Ecol.
Model., 369, 88–100, https://doi.org/10.1016/j.ecolmodel.2017.12.018, 2018.
Zhang, J. and Elser, J. J.: Carbon:Nitrogen:Phosphorus stoichiometry in
fungi: a meta-analysis, Front. Microbiol., 8, 1281, https://doi.org/10.3389/fmicb.2017.01281, 2017.
Zhu, Q., Riley, W. J., Tang, J., and Koven, C. D.: Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests, Biogeosciences, 13, 341–363, https://doi.org/10.5194/bg-13-341-2016, 2016.
Short summary
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP). The extended Coup-CNP, which explicitly considers the symbiosis between soil microbes and plant roots, enables simulations of coupled C, N, and P dynamics for terrestrial ecosystems. Simulations from the new Coup-CNP model provide strong evidence that P fluxes need to be further considered in studies of how ecosystems and C turnover react to climate change.
This study presents the integration of the phosphorus (P) cycle into CoupModel (v6.0, Coup-CNP)....