Articles | Volume 14, issue 11
https://doi.org/10.5194/gmd-14-7189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-7189-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A comparative study of two-way and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US: performance evaluation and impacts of chemistry–meteorology feedbacks on air quality
Kai Wang
Department of Civil and Environmental Engineering, Northeastern
University, Boston, MA 02115, USA
Yang Zhang
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, Northeastern
University, Boston, MA 02115, USA
Key Laboratory of Environmental Remediation and Ecological Health,
Ministry of Education; Research Center for Air Pollution and Health, College
of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
David C. Wong
Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
Jonathan Pleim
Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
Rohit Mathur
Center for Environmental Measurement and Modeling, U.S. EPA, Research Triangle Park, NC 27711, USA
James T. Kelly
Office of Air Quality Planning and Standards, U.S. EPA, Research Triangle Park, NC 27711, USA
Michelle Bell
School of Forestry & Environmental Studies, Yale University, New
Haven, CT 06511, USA
Related authors
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, Raffaele Montuoro, and Robert C. Gilliam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-107, https://doi.org/10.5194/gmd-2024-107, 2024
Revised manuscript under review for GMD
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during August 2023 shows that the updated model greatly improves the simulation of MDA8 O3 by reducing the bias by 72 % in the contiguous US. PM2.5 prediction is only enhanced in regions less affected by wildfire, highlighting the need for future refinements.
Junxi Zhang, Yang Gao, Kun Luo, L. Ruby Leung, Yang Zhang, Kai Wang, and Jianren Fan
Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, https://doi.org/10.5194/acp-18-9861-2018, 2018
Short summary
Short summary
We used a regional model to investigate the impact of atmosphere with high temperature and low wind speed on ozone concentration. When these compound events (heat waves and stagnant weather) occur simultaneously, a striking ozone enhancement is revealed. This type of compound event is projected to increase more dominantly compared to single events in the future over the US, Europe, and China, implying the importance of reducing emissions in order to alleviate the impact from the compound events.
Khairunnisa Yahya, Timothy Glotfelty, Kai Wang, Yang Zhang, and Athanasios Nenes
Geosci. Model Dev., 10, 2333–2363, https://doi.org/10.5194/gmd-10-2333-2017, https://doi.org/10.5194/gmd-10-2333-2017, 2017
Khairunnisa Yahya, Kai Wang, Patrick Campbell, Timothy Glotfelty, Jian He, and Yang Zhang
Geosci. Model Dev., 9, 671–695, https://doi.org/10.5194/gmd-9-671-2016, https://doi.org/10.5194/gmd-9-671-2016, 2016
Short summary
Short summary
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 is evaluated for its first decadal application during 2001 to 2010 using the Representative Concentration Pathway 8.5 emissions. The model evaluation shows acceptable performance for long-term climatological simulations of most meteorological variables and chemical concentrations. Larger biases exist for aerosol-cloud-radiation variables, which future model improvement should focus on.
K. Yahya, K. Wang, Y. Zhang, and T. E. Kleindienst
Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015, https://doi.org/10.5194/gmd-8-2095-2015, 2015
Short summary
Short summary
The application of WRF/Chem to North America shows that it can reproduce most observations and their variation trends from 2006 to 2010. The inclusion of chemical feedbacks reduces biases in meteorological predictions in 2010 but increases errors in comparison to WRF. The net changes in meteorology from 2006 to 2010 are mostly influenced by changes in meteorology and those of ozone and fine particles are influenced by changes in emissions and chemical BCONs, and to a lesser extent meteorology.
B. Zheng, Q. Zhang, Y. Zhang, K. B. He, K. Wang, G. J. Zheng, F. K. Duan, Y. L. Ma, and T. Kimoto
Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, https://doi.org/10.5194/acp-15-2031-2015, 2015
Y. Zhang, K. Sartelet, S. Zhu, W. Wang, S.-Y. Wu, X. Zhang, K. Wang, P. Tran, C. Seigneur, and Z.-F. Wang
Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, https://doi.org/10.5194/acp-13-6845-2013, 2013
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Yuzhi Jin, Jiandong Wang, David C. Wong, Chao Liu, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2372, https://doi.org/10.5194/egusphere-2024-2372, 2024
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full account. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing Bare/Coated BC species and their conversion. Our findings show that BC mixing states have distinct spatiotemporal distribution characteristics, and BC wet deposition is dominated by Coated BC. Accounting for BC aging process improves aerosol optics simulation accuracy.
Paul A. Makar, Philip Cheung, Christian Hogrefe, Ayodeji Akingunola, Ummugulsum Alyuz-Ozdemir, Jesse O. Bash, Michael D. Bell, Roberto Bellasio, Roberto Bianconi, Tim Butler, Hazel Cathcart, Olivia E. Clifton, Alma Hodzic, Iannis Koutsioukis, Richard Kranenburg, Aurelia Lupascu, Jason A. Lynch, Kester Momoh, Juan L. Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Thomas Scheuschner, Mark Shephard, Ranjeet Sokhi, and Stefano Galmarini
EGUsphere, https://doi.org/10.5194/egusphere-2024-2226, https://doi.org/10.5194/egusphere-2024-2226, 2024
Short summary
Short summary
The large range of sulphur and nitrogen deposition estimates from air-quality models results in a large range of predicted impacts. We used models and deposition diagnostics to identify the processes controlling atmospheric sulphur and nitrogen deposition variability. Controlling factors included the uptake of gases and aerosols by droplets, rain, snow, etc., aerosol inorganic chemistry, particle dry deposition, ammonia bidirectional fluxes, and gas deposition via plant cuticles and soil.
Wei Li, Beiming Tang, Patrick C. Campbell, Youhua Tang, Barry Baker, Zachary Moon, Daniel Tong, Jianping Huang, Kai Wang, Ivanka Stajner, Raffaele Montuoro, and Robert C. Gilliam
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-107, https://doi.org/10.5194/gmd-2024-107, 2024
Revised manuscript under review for GMD
Short summary
Short summary
The study describes the updates of NOAA's current UFS-AQMv7 air quality forecast model by incorporating the latest scientific and structural changes in CMAQv5.4. An evaluation during August 2023 shows that the updated model greatly improves the simulation of MDA8 O3 by reducing the bias by 72 % in the contiguous US. PM2.5 prediction is only enhanced in regions less affected by wildfire, highlighting the need for future refinements.
T. Nash Skipper, Christian Hogrefe, Barron H. Henderson, Rohit Mathur, Kristen M. Foley, and Armistead G. Russell
EGUsphere, https://doi.org/10.5194/egusphere-2024-554, https://doi.org/10.5194/egusphere-2024-554, 2024
Short summary
Short summary
Chemical transport model simulations are combined with ozone observations to estimate the bias in ozone attributable to US anthropogenic sources as well as several individual sources of US background ozone: natural sources, non-US anthropogenic sources, and stratospheric ozone. Results indicate a positive bias correlated with US anthropogenic emissions during summer in the eastern US and a negative bias correlated with stratospheric ozone during spring.
Xu Feng, Loretta J. Mickley, Michelle L. Bell, Tianjia Liu, Jenny A. Fisher, and Maria Val Martin
Atmos. Chem. Phys., 24, 2985–3007, https://doi.org/10.5194/acp-24-2985-2024, https://doi.org/10.5194/acp-24-2985-2024, 2024
Short summary
Short summary
During severe wildfire seasons, smoke can have a significant impact on air quality in Australia. Our study demonstrates that characterization of the smoke plume injection fractions greatly affects estimates of surface smoke PM2.5. Using the plume behavior predicted by the machine learning method leads to the best model agreement with observed surface PM2.5 in key cities across Australia, with smoke PM2.5 accounting for 5 %–52 % of total PM2.5 on average during fire seasons from 2009 to 2020.
Calvin Howes, Pablo E. Saide, Hugh Coe, Amie Dobracki, Steffen Freitag, Jim M. Haywood, Steven G. Howell, Siddhant Gupta, Janek Uin, Mary Kacarab, Chongai Kuang, L. Ruby Leung, Athanasios Nenes, Greg M. McFarquhar, James Podolske, Jens Redemann, Arthur J. Sedlacek, Kenneth L. Thornhill, Jenny P. S. Wong, Robert Wood, Huihui Wu, Yang Zhang, Jianhao Zhang, and Paquita Zuidema
Atmos. Chem. Phys., 23, 13911–13940, https://doi.org/10.5194/acp-23-13911-2023, https://doi.org/10.5194/acp-23-13911-2023, 2023
Short summary
Short summary
To better understand smoke properties and its interactions with clouds, we compare the WRF-CAM5 model with observations from ORACLES, CLARIFY, and LASIC field campaigns in the southeastern Atlantic in August 2017. The model transports and mixes smoke well but does not fully capture some important processes. These include smoke chemical and physical aging over 4–12 days, smoke removal by rain, sulfate particle formation, aerosol activation into cloud droplets, and boundary layer turbulence.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Bryan K. Place, William T. Hutzell, K. Wyat Appel, Sara Farrell, Lukas Valin, Benjamin N. Murphy, Karl M. Seltzer, Golam Sarwar, Christine Allen, Ivan R. Piletic, Emma L. D'Ambro, Emily Saunders, Heather Simon, Ana Torres-Vasquez, Jonathan Pleim, Rebecca H. Schwantes, Matthew M. Coggon, Lu Xu, William R. Stockwell, and Havala O. T. Pye
Atmos. Chem. Phys., 23, 9173–9190, https://doi.org/10.5194/acp-23-9173-2023, https://doi.org/10.5194/acp-23-9173-2023, 2023
Short summary
Short summary
Ground-level ozone is a pollutant with adverse human health and ecosystem effects. Air quality models allow scientists to understand the chemical production of ozone and demonstrate impacts of air quality management plans. In this work, the role of multiple systems in ozone production was investigated for the northeastern US in summer. Model updates to chemical reaction rates and monoterpene chemistry were most influential in decreasing predicted ozone and improving agreement with observations.
Christian Hogrefe, Jesse O. Bash, Jonathan E. Pleim, Donna B. Schwede, Robert C. Gilliam, Kristen M. Foley, K. Wyat Appel, and Rohit Mathur
Atmos. Chem. Phys., 23, 8119–8147, https://doi.org/10.5194/acp-23-8119-2023, https://doi.org/10.5194/acp-23-8119-2023, 2023
Short summary
Short summary
Under the umbrella of the fourth phase of the Air Quality Model Evaluation International Initiative (AQMEII4), this study applies AQMEII4 diagnostic tools to better characterize how dry deposition removes pollutants from the atmosphere in the widely used CMAQ model. The results illustrate how these tools can provide insights into similarities and differences between the two CMAQ dry deposition options that affect simulated pollutant budgets and ecosystem impacts from atmospheric pollution.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Michael S. Walters and David C. Wong
Geosci. Model Dev., 16, 1179–1190, https://doi.org/10.5194/gmd-16-1179-2023, https://doi.org/10.5194/gmd-16-1179-2023, 2023
Short summary
Short summary
A typical numerical simulation that associates with a large amount of input and output data, applying popular compression software, gzip or bzip2, on data is one good way to mitigate data storage burden. This article proposes a simple technique to alter input, output, or input and output by keeping a specific number of significant digits in data and demonstrates an enhancement in compression efficiency on the altered data but maintains similar statistical performance of the numerical simulation.
Chandan Sarangi, Yun Qian, L. Ruby Leung, Yang Zhang, Yufei Zou, and Yuhang Wang
Atmos. Chem. Phys., 23, 1769–1783, https://doi.org/10.5194/acp-23-1769-2023, https://doi.org/10.5194/acp-23-1769-2023, 2023
Short summary
Short summary
We show that for air quality, the densely populated eastern US may see even larger impacts of wildfires due to long-distance smoke transport and associated positive climatic impacts, partially compensating the improvements from regulations on anthropogenic emissions. This study highlights the tension between natural and anthropogenic contributions and the non-local nature of air pollution that complicate regulatory strategies for improving future regional air quality for human health.
Daiwen Kang, Nicholas K. Heath, Robert C. Gilliam, Tanya L. Spero, and Jonathan E. Pleim
Geosci. Model Dev., 15, 8561–8579, https://doi.org/10.5194/gmd-15-8561-2022, https://doi.org/10.5194/gmd-15-8561-2022, 2022
Short summary
Short summary
A lightning assimilation (LTA) technique implemented in the WRF model's Kain–Fritsch (KF) convective scheme is updated and applied to simulations from regional to hemispheric scales using observed lightning flashes from ground-based lightning detection networks. Different user-toggled options associated with the KF scheme on simulations with and without LTA are assessed. The model's performance is improved significantly by LTA, but it is sensitive to various factors.
Youngseob Kim, Lya Lugon, Alice Maison, Thibaud Sarica, Yelva Roustan, Myrto Valari, Yang Zhang, Michel André, and Karine Sartelet
Geosci. Model Dev., 15, 7371–7396, https://doi.org/10.5194/gmd-15-7371-2022, https://doi.org/10.5194/gmd-15-7371-2022, 2022
Short summary
Short summary
This paper presents the latest version of the street-network model MUNICH, v2.0. The description of MUNICH v1.0, which models gas-phase pollutants in a street network, was published in GMD in 2018. Since then, major modifications have been made to MUNICH. The comprehensive aerosol model SSH-aerosol is now coupled to MUNICH to simulate primary and secondary aerosol concentrations. New parameterisations have also been introduced. Test cases are defined to illustrate the new model functionalities.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Fanlei Meng, Yibo Zhang, Jiahui Kang, Mathew R. Heal, Stefan Reis, Mengru Wang, Lei Liu, Kai Wang, Shaocai Yu, Pengfei Li, Jing Wei, Yong Hou, Ying Zhang, Xuejun Liu, Zhenling Cui, Wen Xu, and Fusuo Zhang
Atmos. Chem. Phys., 22, 6291–6308, https://doi.org/10.5194/acp-22-6291-2022, https://doi.org/10.5194/acp-22-6291-2022, 2022
Short summary
Short summary
PM2.5 pollution is a pressing environmental issue threatening human health and food security globally. We combined a meta-analysis of nationwide measurements and air quality modeling to identify efficiency gains by striking a balance between controlling NH3 and acid gas emissions. Persistent secondary inorganic aerosol pollution in China is limited by acid gas emissions, while an additional control on NH3 emissions would become more important as reductions in SO2 and NOx emissions progress.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Sally S.-C. Wang, Yun Qian, L. Ruby Leung, and Yang Zhang
Atmos. Chem. Phys., 22, 3445–3468, https://doi.org/10.5194/acp-22-3445-2022, https://doi.org/10.5194/acp-22-3445-2022, 2022
Short summary
Short summary
This study develops an interpretable machine learning (ML) model predicting monthly PM2.5 fire emission over the contiguous US at 0.25° resolution and compares the prediction skills of the ML and process-based models. The comparison facilitates attributions of model biases and better understanding of the strengths and uncertainties in the two types of models at regional scales, for informing future model development and their applications in fire emission projection.
Amir H. Souri, Kelly Chance, Juseon Bak, Caroline R. Nowlan, Gonzalo González Abad, Yeonjin Jung, David C. Wong, Jingqiu Mao, and Xiong Liu
Atmos. Chem. Phys., 21, 18227–18245, https://doi.org/10.5194/acp-21-18227-2021, https://doi.org/10.5194/acp-21-18227-2021, 2021
Short summary
Short summary
The global pandemic is believed to have an impact on emissions of air pollutants such as nitrogen dioxide (NO2) and formaldehyde (HCHO). This study quantifies the changes in the amount of NOx and VOC emissions via state-of-the-art inverse modeling technique using satellite observations during the lockdown 2020 with respect to a baseline over Europe, which in turn, it permits unraveling atmospheric processes being responsible for ozone formation in a less cloudy month.
Ruili Wu, Christopher W. Tessum, Yang Zhang, Chaopeng Hong, Yixuan Zheng, Xinyin Qin, Shigan Liu, and Qiang Zhang
Geosci. Model Dev., 14, 7621–7638, https://doi.org/10.5194/gmd-14-7621-2021, https://doi.org/10.5194/gmd-14-7621-2021, 2021
Short summary
Short summary
Reduced-complexity air quality models are less computationally intensive and easier to use. We developed a reduced-complexity air quality Intervention Model for Air Pollution over China (InMAP-China) to rapidly predict the air quality and estimate the health impacts of emission sources in China. We believe that this work will be of great interest to a broad audience, including environmentalists in China and scientists in relevant fields at both national and local institutes.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Stefano Galmarini, Paul Makar, Olivia E. Clifton, Christian Hogrefe, Jesse O. Bash, Roberto Bellasio, Roberto Bianconi, Johannes Bieser, Tim Butler, Jason Ducker, Johannes Flemming, Alma Hodzic, Christopher D. Holmes, Ioannis Kioutsioukis, Richard Kranenburg, Aurelia Lupascu, Juan Luis Perez-Camanyo, Jonathan Pleim, Young-Hee Ryu, Roberto San Jose, Donna Schwede, Sam Silva, and Ralf Wolke
Atmos. Chem. Phys., 21, 15663–15697, https://doi.org/10.5194/acp-21-15663-2021, https://doi.org/10.5194/acp-21-15663-2021, 2021
Short summary
Short summary
This technical note presents the research protocols for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This initiative has three goals: (i) to define the state of wet and dry deposition in regional models, (ii) to evaluate how dry deposition influences air concentration and flux predictions, and (iii) to identify the causes for prediction differences. The evaluation compares LULC-specific dry deposition and effective conductances and fluxes.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Geosci. Model Dev., 14, 5751–5768, https://doi.org/10.5194/gmd-14-5751-2021, https://doi.org/10.5194/gmd-14-5751-2021, 2021
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) modeling system extended for hemispheric-scale applications (H-CMAQ) incorporated the satellite-constrained degassing SO2 emissions from 50 volcanos across the Northern Hemisphere. The impact on tropospheric sulfate aerosol (SO42−) is assessed for 2010. Although the considered volcanic emissions occurred at or below the middle of free troposphere (500 hPa), SO42− enhancements of more than 10 % were detected up to the top of free troposphere (250 hPa).
Xiaoyang Chen, Yang Zhang, Kai Wang, Daniel Tong, Pius Lee, Youhua Tang, Jianping Huang, Patrick C. Campbell, Jeff Mcqueen, Havala O. T. Pye, Benjamin N. Murphy, and Daiwen Kang
Geosci. Model Dev., 14, 3969–3993, https://doi.org/10.5194/gmd-14-3969-2021, https://doi.org/10.5194/gmd-14-3969-2021, 2021
Short summary
Short summary
The continuously updated National Air Quality Forecast Capability (NAQFC) provides air quality forecasts. To support the development of the next-generation NAQFC, we evaluate a prototype of GFSv15-CMAQv5.0.2. The performance and the potential improvements for the system are discussed. This study can provide a scientific basis for further development of NAQFC and help it to provide more accurate air quality forecasts to the public over the contiguous United States.
Benjamin N. Murphy, Christopher G. Nolte, Fahim Sidi, Jesse O. Bash, K. Wyat Appel, Carey Jang, Daiwen Kang, James Kelly, Rohit Mathur, Sergey Napelenok, George Pouliot, and Havala O. T. Pye
Geosci. Model Dev., 14, 3407–3420, https://doi.org/10.5194/gmd-14-3407-2021, https://doi.org/10.5194/gmd-14-3407-2021, 2021
Short summary
Short summary
The algorithms for applying air pollution emission rates in the Community Multiscale Air Quality (CMAQ) model have been improved to better support users and developers. The new features accommodate emissions perturbation studies that are typical in atmospheric research and output a wealth of metadata for each model run so assumptions can be verified and documented. The new approach dramatically enhances the transparency and functionality of this critical aspect of atmospheric modeling.
Mario Eduardo Gavidia-Calderón, Sergio Ibarra-Espinosa, Youngseob Kim, Yang Zhang, and Maria de Fatima Andrade
Geosci. Model Dev., 14, 3251–3268, https://doi.org/10.5194/gmd-14-3251-2021, https://doi.org/10.5194/gmd-14-3251-2021, 2021
Short summary
Short summary
The MUNICH model was used to calculate pollutant concentrations inside the streets of São Paulo. The VEIN emission model provided the vehicular emissions and the coordinates of the streets. We used information from an air quality station to account for pollutant concentrations over the street rooftops. Results showed that when emissions are calibrated, MUNICH satisfied the performance criteria. MUNICH can be used to evaluate the impact of traffic-related air pollution on public health.
K. Wyat Appel, Jesse O. Bash, Kathleen M. Fahey, Kristen M. Foley, Robert C. Gilliam, Christian Hogrefe, William T. Hutzell, Daiwen Kang, Rohit Mathur, Benjamin N. Murphy, Sergey L. Napelenok, Christopher G. Nolte, Jonathan E. Pleim, George A. Pouliot, Havala O. T. Pye, Limei Ran, Shawn J. Roselle, Golam Sarwar, Donna B. Schwede, Fahim I. Sidi, Tanya L. Spero, and David C. Wong
Geosci. Model Dev., 14, 2867–2897, https://doi.org/10.5194/gmd-14-2867-2021, https://doi.org/10.5194/gmd-14-2867-2021, 2021
Short summary
Short summary
This paper details the scientific updates in the recently released CMAQ version 5.3 (and v5.3.1) and also includes operational and diagnostic evaluations of CMAQv5.3.1 against observations and the previous version of the CMAQ (v5.2.1). This work was done to improve the underlying science in CMAQ. This article is used to inform the CMAQ modeling community of the updates to the modeling system and the expected change in model performance from these updates (versus the previous model version).
Qian Shu, Benjamin Murphy, Jonathan E. Pleim, Donna Schwede, Barron H. Henderson, Havala O.T. Pye, Keith Wyat Appel, Tanvir R. Khan, and Judith A. Perlinger
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-129, https://doi.org/10.5194/gmd-2021-129, 2021
Preprint withdrawn
Short summary
Short summary
We have bridged the gap between dry deposition measurement and modeling by rigorous use of box and regional transport models and field measurements, but more efforts are needed. This study highlights that deviation among deposition schemes is most pronounced for small and large particles. This study better links model predictions to available real-world observations and incrementally reduces uncertainties in the magnitude of loss processes important for the lifecycle of air pollutants.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Huiying Luo, Marina Astitha, Christian Hogrefe, Rohit Mathur, and S. Trivikrama Rao
Atmos. Chem. Phys., 20, 13801–13815, https://doi.org/10.5194/acp-20-13801-2020, https://doi.org/10.5194/acp-20-13801-2020, 2020
Short summary
Short summary
A new method is introduced to evaluate nonlinear, nonstationary modeled PM2.5 time series by decomposing decadal PM2.5 concentrations and its species onto various timescales. It does not require preselection of temporal scales and assumptions of linearity and stationarity. It provides a unique opportunity to assess the influence of each species on total PM2.5. The results reveal a phase shift in modeled EC/OC concentrations, indicating the need for improved model treatment of organic aerosols.
Yohei Shinozuka, Pablo E. Saide, Gonzalo A. Ferrada, Sharon P. Burton, Richard Ferrare, Sarah J. Doherty, Hamish Gordon, Karla Longo, Marc Mallet, Yan Feng, Qiaoqiao Wang, Yafang Cheng, Amie Dobracki, Steffen Freitag, Steven G. Howell, Samuel LeBlanc, Connor Flynn, Michal Segal-Rosenhaimer, Kristina Pistone, James R. Podolske, Eric J. Stith, Joseph Ryan Bennett, Gregory R. Carmichael, Arlindo da Silva, Ravi Govindaraju, Ruby Leung, Yang Zhang, Leonhard Pfister, Ju-Mee Ryoo, Jens Redemann, Robert Wood, and Paquita Zuidema
Atmos. Chem. Phys., 20, 11491–11526, https://doi.org/10.5194/acp-20-11491-2020, https://doi.org/10.5194/acp-20-11491-2020, 2020
Short summary
Short summary
In the southeast Atlantic, well-defined smoke plumes from Africa advect over marine boundary layer cloud decks; both are most extensive around September, when most of the smoke resides in the free troposphere. A framework is put forth for evaluating the performance of a range of global and regional atmospheric composition models against observations made during the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) airborne mission in September 2016.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, and Yang Zhang
Atmos. Chem. Phys., 20, 3373–3396, https://doi.org/10.5194/acp-20-3373-2020, https://doi.org/10.5194/acp-20-3373-2020, 2020
Short summary
Short summary
The state-of-the-science Community Multiscale Air Quality model extended for hemispheric applications (H-CMAQ) is used to model the trans-Pacific transport which has been recognized as a potential source of air pollutants over the US. In Part 1, modeled ozone is evaluated with observations at surface, by ozonesonde and airplane, and by satellite across the Northern Hemisphere. In addition, a newly developed air mass characterization method to estimate stratospheric intrusion is presented.
Syuichi Itahashi, Rohit Mathur, Christian Hogrefe, Sergey L. Napelenok, and Yang Zhang
Atmos. Chem. Phys., 20, 3397–3413, https://doi.org/10.5194/acp-20-3397-2020, https://doi.org/10.5194/acp-20-3397-2020, 2020
Short summary
Short summary
The state-of-the-science Community Multiscale Air Quality model extended for hemispheric applications (H-CMAQ) is used to model the trans-Pacific transport which has been recognized as a potential source of air pollutants over the US. In Part 2, the higher-order decoupled direct method (HDDM) is applied to investigate the emission impacts from east Asia and the US during April 2010. Furthermore, changes in trans-Pacific transport caused by the recent emissions are examined.
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Short summary
We selected June 2014 as our study period, which exhibited a complete evolution process of open biomass burning (OBB) dominated by open crop straw burning (OCSB) over central and eastern China (CEC). We established a constraining method that integrates ground-based PM2.5 measurements with the two-way coupled WRF-CMAQ model to derive optimal OBB emissions. It was found that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period.
S. Trivikrama Rao, Huiying Luo, Marina Astitha, Christian Hogrefe, Valerie Garcia, and Rohit Mathur
Atmos. Chem. Phys., 20, 1627–1639, https://doi.org/10.5194/acp-20-1627-2020, https://doi.org/10.5194/acp-20-1627-2020, 2020
Short summary
Short summary
Since numerical air quality models do not explicitly simulate stochastic variations in the atmosphere, there will always be differences between modeled and measured pollutant levels even when the model's physics, chemistry, numerical analysis, and its input data are perfect. This paper quantifies the inherent uncertainty in regional models due to the stochastic nature of the atmosphere. A knowledge of the expected error helps model developers in evaluating the real progress in improving models.
Jia Xing, Dian Ding, Shuxiao Wang, Zhaoxin Dong, James T. Kelly, Carey Jang, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 19, 13627–13646, https://doi.org/10.5194/acp-19-13627-2019, https://doi.org/10.5194/acp-19-13627-2019, 2019
Short summary
Short summary
The study aims at addressing the challenge in efficient quantification of the nonlinear response of air pollution to precursor emission perturbations. The newly developed observable response indicators can be easily calculated by a combination of ambient concentrations of certain species. Their capability in representing the spatial and temporal variation in PM2.5 and O3 chemistry has also been well evaluated and applied in China.
Daiwen Kang, Kristen M. Foley, Rohit Mathur, Shawn J. Roselle, Kenneth E. Pickering, and Dale J. Allen
Geosci. Model Dev., 12, 4409–4424, https://doi.org/10.5194/gmd-12-4409-2019, https://doi.org/10.5194/gmd-12-4409-2019, 2019
Short summary
Short summary
This paper provides a comprehensive evaluation of the lightning production schemes in CMAQ as described in https://www.geosci-model-dev.net/12/3071/2019/gmd-12-3071-2019.html on model performance. The impact of lightning NOx from different schemes is evaluated in time and space using both ground–level network measurements and aloft (ozonesonde and aircraft) observations. These results provide users the benchmark model performance when the lightning NOx production schemes are applied.
Daiwen Kang, Kenneth E. Pickering, Dale J. Allen, Kristen M. Foley, David C. Wong, Rohit Mathur, and Shawn J. Roselle
Geosci. Model Dev., 12, 3071–3083, https://doi.org/10.5194/gmd-12-3071-2019, https://doi.org/10.5194/gmd-12-3071-2019, 2019
Short summary
Short summary
Lightning strikes produce significant amount of nitrogen oxides and the resulting atmospheric chemistry causes one of the primary air pollutants, ground-level ozone, to change. In this paper, we documented the evolution of scientific updates for lightning-induced nitrogen oxides schemes in the CMAQ model. The updated observation-based schemes are good for retrospective applications, while the parameterized scheme can estimate lightning nitrogen oxides for applications without observations.
Peng Liu, Christian Hogrefe, Ulas Im, Jesper H. Christensen, Johannes Bieser, Uarporn Nopmongcol, Greg Yarwood, Rohit Mathur, Shawn Roselle, and Tanya Spero
Atmos. Chem. Phys., 18, 17157–17175, https://doi.org/10.5194/acp-18-17157-2018, https://doi.org/10.5194/acp-18-17157-2018, 2018
Short summary
Short summary
This study represents an intercomparison of four regional-scale air quality simulations in order to understand the model similarities and differences in estimating the impact of ozone imported from outside of the US on the surface ozone within the US at process level. Vertical turbulent mixing stands out as a primary contributor to the model differences in inert tracers.
Yuqiang Zhang, J. Jason West, Rohit Mathur, Jia Xing, Christian Hogrefe, Shawn J. Roselle, Jesse O. Bash, Jonathan E. Pleim, Chuen-Meei Gan, and David C. Wong
Atmos. Chem. Phys., 18, 15003–15016, https://doi.org/10.5194/acp-18-15003-2018, https://doi.org/10.5194/acp-18-15003-2018, 2018
Short summary
Short summary
Here we use a fine-resolution (36 km) self-consistent 21-year air quality simulation from 1990 to 2010, a health impact function, and annual county-level population and baseline mortality rate estimates to estimate annual mortality burdens from PM2.5 and O3 in the US, and also the contributions to the trends. We found that the PM2.5-related mortality burden has steadily decreased by 53 %, while the O3-related mortality burden has increased by 13 %, with larger inter-annual variabilities.
Junxi Zhang, Yang Gao, Kun Luo, L. Ruby Leung, Yang Zhang, Kai Wang, and Jianren Fan
Atmos. Chem. Phys., 18, 9861–9877, https://doi.org/10.5194/acp-18-9861-2018, https://doi.org/10.5194/acp-18-9861-2018, 2018
Short summary
Short summary
We used a regional model to investigate the impact of atmosphere with high temperature and low wind speed on ozone concentration. When these compound events (heat waves and stagnant weather) occur simultaneously, a striking ozone enhancement is revealed. This type of compound event is projected to increase more dominantly compared to single events in the future over the US, Europe, and China, implying the importance of reducing emissions in order to alleviate the impact from the compound events.
Yuqiang Zhang, Rohit Mathur, Jesse O. Bash, Christian Hogrefe, Jia Xing, and Shawn J. Roselle
Atmos. Chem. Phys., 18, 9091–9106, https://doi.org/10.5194/acp-18-9091-2018, https://doi.org/10.5194/acp-18-9091-2018, 2018
Short summary
Short summary
For this study, we evaluated the WRF–CMAQ coupled model's ability to simulate the long-term trends of wet deposition of nitrogen and sulfur from 1990 to 2010 by comparing the model results with long-term observation datasets in the US. The model generally underestimates the wet deposition of both nitrogen and sulfur but captured well the decreasing trends for the deposition. Then we estimated the deposition budget in the US, including wet deposition and dry deposition from model simulations.
Stefano Galmarini, Ioannis Kioutsioukis, Efisio Solazzo, Ummugulsum Alyuz, Alessandra Balzarini, Roberto Bellasio, Anna M. K. Benedictow, Roberto Bianconi, Johannes Bieser, Joergen Brandt, Jesper H. Christensen, Augustin Colette, Gabriele Curci, Yanko Davila, Xinyi Dong, Johannes Flemming, Xavier Francis, Andrea Fraser, Joshua Fu, Daven K. Henze, Christian Hogrefe, Ulas Im, Marta Garcia Vivanco, Pedro Jiménez-Guerrero, Jan Eiof Jonson, Nutthida Kitwiroon, Astrid Manders, Rohit Mathur, Laura Palacios-Peña, Guido Pirovano, Luca Pozzoli, Marie Prank, Martin Schultz, Rajeet S. Sokhi, Kengo Sudo, Paolo Tuccella, Toshihiko Takemura, Takashi Sekiya, and Alper Unal
Atmos. Chem. Phys., 18, 8727–8744, https://doi.org/10.5194/acp-18-8727-2018, https://doi.org/10.5194/acp-18-8727-2018, 2018
Short summary
Short summary
An ensemble of model results relating to ozone concentrations in Europe in 2010 has been produced and studied. The novelty consists in the fact that the ensemble is made of results of models working at two different scales (regional and global), therefore contributing in detail two different parts of the atmospheric spectrum. The ensemble defined as a hybrid has been studied in detail and shown to bring additional value to the assessment of air quality.
Christian Hogrefe, Peng Liu, George Pouliot, Rohit Mathur, Shawn Roselle, Johannes Flemming, Meiyun Lin, and Rokjin J. Park
Atmos. Chem. Phys., 18, 3839–3864, https://doi.org/10.5194/acp-18-3839-2018, https://doi.org/10.5194/acp-18-3839-2018, 2018
Short summary
Short summary
This study quantifies the impacts of different representations of background ozone in state-of-the-science large-scale models on surface and aloft ozone burdens simulated by the CMAQ regional model over the United States. It also compares both the CMAQ simulations and the driving large-scale models to surface and upper air observations.
Jingqiu Mao, Annmarie Carlton, Ronald C. Cohen, William H. Brune, Steven S. Brown, Glenn M. Wolfe, Jose L. Jimenez, Havala O. T. Pye, Nga Lee Ng, Lu Xu, V. Faye McNeill, Kostas Tsigaridis, Brian C. McDonald, Carsten Warneke, Alex Guenther, Matthew J. Alvarado, Joost de Gouw, Loretta J. Mickley, Eric M. Leibensperger, Rohit Mathur, Christopher G. Nolte, Robert W. Portmann, Nadine Unger, Mika Tosca, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 2615–2651, https://doi.org/10.5194/acp-18-2615-2018, https://doi.org/10.5194/acp-18-2615-2018, 2018
Short summary
Short summary
This paper is aimed at discussing progress in evaluating, diagnosing, and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models.
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci., 21, 5517–5529, https://doi.org/10.5194/hess-21-5517-2017, https://doi.org/10.5194/hess-21-5517-2017, 2017
Short summary
Short summary
We examined the potential roles of major climatic variables (including precipitation, air temperature, solar radiation, specific humidity, and wind speed) in altering annual runoff, which is an important indicator of freshwater supply, in the United States through the 21st century. Increasing temperature, precipitation, and humidity are recognized as three major climatic factors that drive runoff to change in different directions across the country.
Rohit Mathur, Jia Xing, Robert Gilliam, Golam Sarwar, Christian Hogrefe, Jonathan Pleim, George Pouliot, Shawn Roselle, Tanya L. Spero, David C. Wong, and Jeffrey Young
Atmos. Chem. Phys., 17, 12449–12474, https://doi.org/10.5194/acp-17-12449-2017, https://doi.org/10.5194/acp-17-12449-2017, 2017
Short summary
Short summary
We extend CMAQ's applicability to the entire Northern Hemisphere to enable consistent examination of interactions between atmospheric processes occurring on various spatial and temporal scales. Improvements were made in model process representation, structure, and input data sets that enable a range of model applications including episodic intercontinental pollutant transport, long-term trends in air pollution across the Northern Hemisphere, and air pollution–climate interactions.
Jia Xing, Jiandong Wang, Rohit Mathur, Shuxiao Wang, Golam Sarwar, Jonathan Pleim, Christian Hogrefe, Yuqiang Zhang, Jingkun Jiang, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 17, 9869–9883, https://doi.org/10.5194/acp-17-9869-2017, https://doi.org/10.5194/acp-17-9869-2017, 2017
Short summary
Short summary
The assessment of the impacts of aerosol direct effects (ADE) is important for understanding emission reduction strategies that seek co-benefits associated with reductions in both particulate matter and ozone. This study quantifies the ADE impacts on tropospheric ozone by using a two-way coupled meteorology and atmospheric chemistry model. Results suggest that reducing ADE may have the potential risk of increasing ozone in winter, but it will benefit the reduction of maxima ozone in summer.
Chaopeng Hong, Qiang Zhang, Yang Zhang, Youhua Tang, Daniel Tong, and Kebin He
Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, https://doi.org/10.5194/gmd-10-2447-2017, 2017
Short summary
Short summary
A regional coupled climate–chemistry modeling system using the dynamical downscaling technique was established and evaluated. The modeling system performed well for both the climatological and the short-term air quality applications over east Asia. Regional models outperformed global models in regional climate and air quality predictions. The coupled modeling system improved the model performance, although some biases remained in the aerosol–cloud–radiation variables.
Khairunnisa Yahya, Timothy Glotfelty, Kai Wang, Yang Zhang, and Athanasios Nenes
Geosci. Model Dev., 10, 2333–2363, https://doi.org/10.5194/gmd-10-2333-2017, https://doi.org/10.5194/gmd-10-2333-2017, 2017
K. Wyat Appel, Sergey L. Napelenok, Kristen M. Foley, Havala O. T. Pye, Christian Hogrefe, Deborah J. Luecken, Jesse O. Bash, Shawn J. Roselle, Jonathan E. Pleim, Hosein Foroutan, William T. Hutzell, George A. Pouliot, Golam Sarwar, Kathleen M. Fahey, Brett Gantt, Robert C. Gilliam, Nicholas K. Heath, Daiwen Kang, Rohit Mathur, Donna B. Schwede, Tanya L. Spero, David C. Wong, and Jeffrey O. Young
Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, https://doi.org/10.5194/gmd-10-1703-2017, 2017
Short summary
Short summary
The Community Multiscale Air Quality (CMAQ) model is a comprehensive multipollutant air quality modeling system. The CMAQ model is used extensively throughout the world to simulate air pollutants for many purposes, including regulatory and air quality forecasting applications. This work describes the scientific updates made to the latest version of the CMAQ modeling system (CMAQv5.1) and presents an evaluation of the new model against observations and results from the previous model version.
Provat K. Saha, Andrey Khlystov, Khairunnisa Yahya, Yang Zhang, Lu Xu, Nga L. Ng, and Andrew P. Grieshop
Atmos. Chem. Phys., 17, 501–520, https://doi.org/10.5194/acp-17-501-2017, https://doi.org/10.5194/acp-17-501-2017, 2017
Kai Duan, Ge Sun, Steven G. McNulty, Peter V. Caldwell, Erika C. Cohen, Shanlei Sun, Heather D. Aldridge, Decheng Zhou, Liangxia Zhang, and Yang Zhang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2016-493, https://doi.org/10.5194/hess-2016-493, 2016
Revised manuscript not accepted
Short summary
Short summary
This study examines the potential shift of the relative roles of changing precipitation and temperature in controlling freshwater availability in the USA. The influence of temperature is projected to outweigh that of precipitation in a continued warming future in the 21st century, although precipitation has been the primary control in recent decades. The vast croplands and grasslands across the central and forests in the northwestern regions might be particularly vulnerable to climate change.
Jia Xing, Rohit Mathur, Jonathan Pleim, Christian Hogrefe, Jiandong Wang, Chuen-Meei Gan, Golam Sarwar, David C. Wong, and Stuart McKeen
Atmos. Chem. Phys., 16, 10865–10877, https://doi.org/10.5194/acp-16-10865-2016, https://doi.org/10.5194/acp-16-10865-2016, 2016
Short summary
Short summary
Downward transport of ozone from the stratosphere has large impacts on surface concentration and needs to be properly represented in regional models. This study developed a seasonally and spatially varying PV-based function from an investigation of the relationship between PV and O3. The implementation of the new function significantly improves the model's performance in O3 simulation, which enables a more accurate simulation of the vertical distribution of O3 across the Northern Hemisphere.
Shanlei Sun, Ge Sun, Erika Cohen, Steven G. McNulty, Peter V. Caldwell, Kai Duan, and Yang Zhang
Hydrol. Earth Syst. Sci., 20, 935–952, https://doi.org/10.5194/hess-20-935-2016, https://doi.org/10.5194/hess-20-935-2016, 2016
Short summary
Short summary
This study links an ecohydrological model with WRF (Weather Research and Forecasting Model) dynamically downscaled climate projections of the HadCM3 model under the IPCC SRES A2 emission scenario. Water yield and ecosystem productivity response to climate change were highly variable with an increasing trend across the 82 773 watersheds. Results are useful for policy-makers and land managers in formulating appropriate watershed-specific strategies for sustaining water and carbon sources.
Khairunnisa Yahya, Kai Wang, Patrick Campbell, Timothy Glotfelty, Jian He, and Yang Zhang
Geosci. Model Dev., 9, 671–695, https://doi.org/10.5194/gmd-9-671-2016, https://doi.org/10.5194/gmd-9-671-2016, 2016
Short summary
Short summary
The Weather Research and Forecasting model with Chemistry (WRF/Chem) v3.6.1 is evaluated for its first decadal application during 2001 to 2010 using the Representative Concentration Pathway 8.5 emissions. The model evaluation shows acceptable performance for long-term climatological simulations of most meteorological variables and chemical concentrations. Larger biases exist for aerosol-cloud-radiation variables, which future model improvement should focus on.
J. He, Y. Zhang, S. Tilmes, L. Emmons, J.-F. Lamarque, T. Glotfelty, A. Hodzic, and F. Vitt
Geosci. Model Dev., 8, 3999–4025, https://doi.org/10.5194/gmd-8-3999-2015, https://doi.org/10.5194/gmd-8-3999-2015, 2015
Short summary
Short summary
The global simulations with CB05_GE and MOZART-4x predict similar chemical profiles for major gases compared to aircraft measurements, with better agreement for the NOy profile by CB05_GE. The SOA concentrations of SOA at four sites in CONUS and organic carbon over the IMPROVE sites are better predicted by MOZART-4x. The two simulations result in a global average difference of 0.5W m-2 in simulated shortwave cloud radiative forcing, with up to 13.6W m-2 over subtropical regions.
B. Gantt, J. T. Kelly, and J. O. Bash
Geosci. Model Dev., 8, 3733–3746, https://doi.org/10.5194/gmd-8-3733-2015, https://doi.org/10.5194/gmd-8-3733-2015, 2015
J. He, R. He, and Y. Zhang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-9965-2015, https://doi.org/10.5194/gmdd-8-9965-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
WRF/Chem simulations are performed to understand the impacts of cumulus parameterizations and air-sea interactions on coastal air quality. The use of different cumulus parameterizations gives different vertical mixing and wet scavenging. The use of different air-sea interaction treatments also gives different predictions of O3 and PM2.5 by up to 17.3 ppb and 7.9 μg m-3, respectively. WRF/Chem-ROMS improves model predictions, illustrating the benefits and needs of using coupled atmospheric-ocean
C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, D. Wong, R. Gilliam, and C. Wei
Atmos. Chem. Phys., 15, 12193–12209, https://doi.org/10.5194/acp-15-12193-2015, https://doi.org/10.5194/acp-15-12193-2015, 2015
Short summary
Short summary
This study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act especially on trends in solar radiation. Comparisons of model results with observations of aerosol optical depth, aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD.
C. G. Nolte, K. W. Appel, J. T. Kelly, P. V. Bhave, K. M. Fahey, J. L. Collett Jr., L. Zhang, and J. O. Young
Geosci. Model Dev., 8, 2877–2892, https://doi.org/10.5194/gmd-8-2877-2015, https://doi.org/10.5194/gmd-8-2877-2015, 2015
Short summary
Short summary
This study is the most comprehensive evaluation of CMAQ inorganic
aerosol size-composition distributions conducted to date. We compare two
methods of inferring PM2.5 concentrations from the model: (1) based on
the sum of the masses in the fine aerosol modes, as is most commonly
done in CMAQ model evaluation; and (2) computed using the simulated size
distributions. Differences are generally less than 1 microgram/m3, and
are largest over the eastern USA during the summer.
J. Xing, R. Mathur, J. Pleim, C. Hogrefe, C.-M. Gan, D. C. Wong, and C. Wei
Atmos. Chem. Phys., 15, 9997–10018, https://doi.org/10.5194/acp-15-9997-2015, https://doi.org/10.5194/acp-15-9997-2015, 2015
Short summary
Short summary
The ability of a coupled meteorology-chemistry model (WRF-CMAQ) to reproduce the historical trend in AOD and clear-sky SWR over the N. Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Questions of how well the model represents the regional and temporal variability of aerosol burden and DRE, and whether the model is able to capture past trends in aerosol loading and associated radiation effects, will be addressed.
K. Yahya, K. Wang, Y. Zhang, and T. E. Kleindienst
Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015, https://doi.org/10.5194/gmd-8-2095-2015, 2015
Short summary
Short summary
The application of WRF/Chem to North America shows that it can reproduce most observations and their variation trends from 2006 to 2010. The inclusion of chemical feedbacks reduces biases in meteorological predictions in 2010 but increases errors in comparison to WRF. The net changes in meteorology from 2006 to 2010 are mostly influenced by changes in meteorology and those of ozone and fine particles are influenced by changes in emissions and chemical BCONs, and to a lesser extent meteorology.
X. Fu, S. X. Wang, L. M. Ran, J. E. Pleim, E. Cooter, J. O. Bash, V. Benson, and J. M. Hao
Atmos. Chem. Phys., 15, 6637–6649, https://doi.org/10.5194/acp-15-6637-2015, https://doi.org/10.5194/acp-15-6637-2015, 2015
Short summary
Short summary
In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using the bi-directional CMAQ model coupled to an agro-ecosystem model. Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.
K. R. Baker, A. G. Carlton, T. E. Kleindienst, J. H. Offenberg, M. R. Beaver, D. R. Gentner, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. B. Gilman, J. A. de Gouw, M. C. Woody, H. O. T. Pye, J. T. Kelly, M. Lewandowski, M. Jaoui, P. S. Stevens, W. H. Brune, Y.-H. Lin, C. L. Rubitschun, and J. D. Surratt
Atmos. Chem. Phys., 15, 5243–5258, https://doi.org/10.5194/acp-15-5243-2015, https://doi.org/10.5194/acp-15-5243-2015, 2015
Short summary
Short summary
This work details the evaluation of PM2.5 carbon, VOC precursors, and OH estimated by the CMAQ photochemical transport model using routine and special measurements from the 2010 CalNex field study. Here, CMAQ and most recent emissions inventory (2011 NEI) are used to generate model PM2.5 OC estimates that are examined in novel ways including primary vs. secondary formation, fossil vs. contemporary carbon, OH and HO2 evaluation, and the relationship between key VOC precursors and SOC tracers.
D. C. Wong, C. E. Yang, J. S. Fu, K. Wong, and Y. Gao
Geosci. Model Dev., 8, 1033–1046, https://doi.org/10.5194/gmd-8-1033-2015, https://doi.org/10.5194/gmd-8-1033-2015, 2015
J. Xing, R. Mathur, J. Pleim, C. Hogrefe, C.-M. Gan, D. C. Wong, C. Wei, R. Gilliam, and G. Pouliot
Atmos. Chem. Phys., 15, 2723–2747, https://doi.org/10.5194/acp-15-2723-2015, https://doi.org/10.5194/acp-15-2723-2015, 2015
Short summary
Short summary
Model-simulated air quality trends over the past 2 decades largely agree with those derived from observations. In the relative amounts of VOC and NOx emission controls in different regions across the northern hemisphere have led to significantly different trends in tropospheric O3. Differences in the historical changes in the relative amounts of NH3, NOx and SO2 emissions also impact the trends in inorganic particulate matter amounts and composition in China, the U.S. and Europe.
B. Zheng, Q. Zhang, Y. Zhang, K. B. He, K. Wang, G. J. Zheng, F. K. Duan, Y. L. Ma, and T. Kimoto
Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, https://doi.org/10.5194/acp-15-2031-2015, 2015
S. Yu, R. Mathur, J. Pleim, D. Wong, R. Gilliam, K. Alapaty, C. Zhao, and X. Liu
Atmos. Chem. Phys., 14, 11247–11285, https://doi.org/10.5194/acp-14-11247-2014, https://doi.org/10.5194/acp-14-11247-2014, 2014
T. Glotfelty, Y. Zhang, P. Karamchandani, and D. G. Streets
Atmos. Chem. Phys., 14, 9379–9402, https://doi.org/10.5194/acp-14-9379-2014, https://doi.org/10.5194/acp-14-9379-2014, 2014
J. He and Y. Zhang
Atmos. Chem. Phys., 14, 9171–9200, https://doi.org/10.5194/acp-14-9171-2014, https://doi.org/10.5194/acp-14-9171-2014, 2014
B. Gantt, J. He, X. Zhang, Y. Zhang, and A. Nenes
Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, https://doi.org/10.5194/acp-14-7485-2014, 2014
F. Yan, E. Winijkul, D. G. Streets, Z. Lu, T. C. Bond, and Y. Zhang
Atmos. Chem. Phys., 14, 5709–5733, https://doi.org/10.5194/acp-14-5709-2014, https://doi.org/10.5194/acp-14-5709-2014, 2014
M. Li, Q. Zhang, D. G. Streets, K. B. He, Y. F. Cheng, L. K. Emmons, H. Huo, S. C. Kang, Z. Lu, M. Shao, H. Su, X. Yu, and Y. Zhang
Atmos. Chem. Phys., 14, 5617–5638, https://doi.org/10.5194/acp-14-5617-2014, https://doi.org/10.5194/acp-14-5617-2014, 2014
L. T. Wang, Z. Wei, J. Yang, Y. Zhang, F. F. Zhang, J. Su, C. C. Meng, and Q. Zhang
Atmos. Chem. Phys., 14, 3151–3173, https://doi.org/10.5194/acp-14-3151-2014, https://doi.org/10.5194/acp-14-3151-2014, 2014
C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, S. Roselle, and C. Wei
Atmos. Chem. Phys., 14, 1701–1715, https://doi.org/10.5194/acp-14-1701-2014, https://doi.org/10.5194/acp-14-1701-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
G. Sarwar, J. Godowitch, B. H. Henderson, K. Fahey, G. Pouliot, W. T. Hutzell, R. Mathur, D. Kang, W. S. Goliff, and W. R. Stockwell
Atmos. Chem. Phys., 13, 9695–9712, https://doi.org/10.5194/acp-13-9695-2013, https://doi.org/10.5194/acp-13-9695-2013, 2013
J. Xing, J. Pleim, R. Mathur, G. Pouliot, C. Hogrefe, C.-M. Gan, and C. Wei
Atmos. Chem. Phys., 13, 7531–7549, https://doi.org/10.5194/acp-13-7531-2013, https://doi.org/10.5194/acp-13-7531-2013, 2013
Y. Zhang, K. Sartelet, S.-Y. Wu, and C. Seigneur
Atmos. Chem. Phys., 13, 6807–6843, https://doi.org/10.5194/acp-13-6807-2013, https://doi.org/10.5194/acp-13-6807-2013, 2013
Y. Zhang, K. Sartelet, S. Zhu, W. Wang, S.-Y. Wu, X. Zhang, K. Wang, P. Tran, C. Seigneur, and Z.-F. Wang
Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, https://doi.org/10.5194/acp-13-6845-2013, 2013
J. O. Bash, E. J. Cooter, R. L. Dennis, J. T. Walker, and J. E. Pleim
Biogeosciences, 10, 1635–1645, https://doi.org/10.5194/bg-10-1635-2013, https://doi.org/10.5194/bg-10-1635-2013, 2013
Related subject area
Atmospheric sciences
Valid time shifting ensemble Kalman filter (VTS-EnKF) for dust storm forecasting
An updated parameterization of the unstable atmospheric surface layer in the Weather Research and Forecasting (WRF) modeling system
The impact of cloud microphysics and ice nucleation on Southern Ocean clouds assessed with single-column modeling and instrument simulators
An updated aerosol simulation in the Community Earth System Model (v2.1.3): dust and marine aerosol emissions and secondary organic aerosol formation
Exploring ship track spreading rates with a physics-informed Langevin particle parameterization
Do data-driven models beat numerical models in forecasting weather extremes? A comparison of IFS HRES, Pangu-Weather, and GraphCast
Development of the MPAS-CMAQ coupled system (V1.0) for multiscale global air quality modeling
Assessment of object-based indices to identify convective organization
The Global Forest Fire Emissions Prediction System version 1.0
NEIVAv1.0: Next-generation Emissions InVentory expansion of Akagi et al. (2011) version 1.0
FLEXPART version 11: improved accuracy, efficiency, and flexibility
Challenges of high-fidelity air quality modeling in urban environments – PALM sensitivity study during stable conditions
Air quality modeling intercomparison and multiscale ensemble chain for Latin America
Recommended coupling to global meteorological fields for long-term tracer simulations with WRF-GHG
Selecting CMIP6 global climate models (GCMs) for Coordinated Regional Climate Downscaling Experiment (CORDEX) dynamical downscaling over Southeast Asia using a standardised benchmarking framework
Improved definition of prior uncertainties in CO2 and CO fossil fuel fluxes and its impact on multi-species inversion with GEOS-Chem (v12.5)
RASCAL v1.0: an open-source tool for climatological time series reconstruction and extension
Introducing graupel density prediction in Weather Research and Forecasting (WRF) double-moment 6-class (WDM6) microphysics and evaluation of the modified scheme during the ICE-POP field campaign
Enabling high-performance cloud computing for the Community Multiscale Air Quality Model (CMAQ) version 5.3.3: performance evaluation and benefits for the user community
Atmospheric-river-induced precipitation in California as simulated by the regionally refined Simple Convective Resolving E3SM Atmosphere Model (SCREAM) Version 0
Recent improvements and maximum covariance analysis of aerosol and cloud properties in the EC-Earth3-AerChem model
GPU-HADVPPM4HIP V1.0: using the heterogeneous-compute interface for portability (HIP) to speed up the piecewise parabolic method in the CAMx (v6.10) air quality model on China's domestic GPU-like accelerator
Preliminary evaluation of the effect of electro-coalescence with conducting sphere approximation on the formation of warm cumulus clouds using SCALE-SDM version 0.2.5–2.3.0
Exploring the footprint representation of microwave radiance observations in an Arctic limited-area data assimilation system
Orbital-Radar v1.0.0: A tool to transform suborbital radar observations to synthetic EarthCARE cloud radar data
Analysis of model error in forecast errors of extended atmospheric Lorenz 05 systems and the ECMWF system
Description and validation of Vehicular Emissions from Road Traffic (VERT) 1.0, an R-based framework for estimating road transport emissions from traffic flows
AeroMix v1.0.1: a Python package for modeling aerosol optical properties and mixing states
Impact of ITCZ width on global climate: ITCZ-MIP
Deep-learning-driven simulations of boundary layer clouds over the Southern Great Plains
Mixed-precision computing in the GRIST dynamical core for weather and climate modelling
A conservative immersed boundary method for the multi-physics urban large-eddy simulation model uDALES v2.0
RCEMIP-II: mock-Walker simulations as phase II of the radiative–convective equilibrium model intercomparison project
Objective identification of meteorological fronts and climatologies from ERA-Interim and ERA5
TAMS: a tracking, classifying, and variable-assigning algorithm for mesoscale convective systems in simulated and satellite-derived datasets
Development of the adjoint of the unified tropospheric–stratospheric chemistry extension (UCX) in GEOS-Chem adjoint v36
New explicit formulae for the settling speed of prolate spheroids in the atmosphere: theoretical background and implementation in AerSett v2.0.2
ZJU-AERO V0.5: an Accurate and Efficient Radar Operator designed for CMA-GFS/MESO with the capability to simulate non-spherical hydrometeors
The Year of Polar Prediction site Model Intercomparison Project (YOPPsiteMIP) phase 1: project overview and Arctic winter forecast evaluation
Evaluating CHASER V4.0 global formaldehyde (HCHO) simulations using satellite, aircraft, and ground-based remote-sensing observations
Global variable-resolution simulations of extreme precipitation over Henan, China, in 2021 with MPAS-Atmosphere v7.3
The CHIMERE chemistry-transport model v2023r1
tobac v1.5: introducing fast 3D tracking, splits and mergers, and other enhancements for identifying and analysing meteorological phenomena
Merged Observatory Data Files (MODFs): an integrated observational data product supporting process-oriented investigations and diagnostics
Simulation of marine stratocumulus using the super-droplet method: numerical convergence and comparison to a double-moment bulk scheme using SCALE-SDM 5.2.6-2.3.1
Modeling of PAHs From Global to Regional Scales: Model Development and Investigation of Health Risks from 2013 to 2018 in China
WRF-Comfort: simulating microscale variability in outdoor heat stress at the city scale with a mesoscale model
Representing effects of surface heterogeneity in a multi-plume eddy diffusivity mass flux boundary layer parameterization
Can TROPOMI NO2 satellite data be used to track the drop in and resurgence of NOx emissions in Germany between 2019–2021 using the multi-source plume method (MSPM)?
A spatiotemporally separated framework for reconstructing the sources of atmospheric radionuclide releases
Mijie Pang, Jianbing Jin, Arjo Segers, Huiya Jiang, Wei Han, Batjargal Buyantogtokh, Ji Xia, Li Fang, Jiandong Li, Hai Xiang Lin, and Hong Liao
Geosci. Model Dev., 17, 8223–8242, https://doi.org/10.5194/gmd-17-8223-2024, https://doi.org/10.5194/gmd-17-8223-2024, 2024
Short summary
Short summary
The ensemble Kalman filter (EnKF) improves dust storm forecasts but faces challenges with position errors. The valid time shifting EnKF (VTS-EnKF) addresses this by adjusting for position errors, enhancing accuracy in forecasting dust storms, as proven in tests on 2021 events, even with smaller ensembles and time intervals.
Prabhakar Namdev, Maithili Sharan, Piyush Srivastava, and Saroj Kanta Mishra
Geosci. Model Dev., 17, 8093–8114, https://doi.org/10.5194/gmd-17-8093-2024, https://doi.org/10.5194/gmd-17-8093-2024, 2024
Short summary
Short summary
Inadequate representation of surface–atmosphere interaction processes is a major source of uncertainty in numerical weather prediction models. Here, an effort has been made to improve the Weather Research and Forecasting (WRF) model version 4.2.2 by introducing a unique theoretical framework under convective conditions. In addition, to enhance the potential applicability of the WRF modeling system, various commonly used similarity functions under convective conditions have also been installed.
Andrew Gettelman, Richard Forbes, Roger Marchand, Chih-Chieh Chen, and Mark Fielding
Geosci. Model Dev., 17, 8069–8092, https://doi.org/10.5194/gmd-17-8069-2024, https://doi.org/10.5194/gmd-17-8069-2024, 2024
Short summary
Short summary
Supercooled liquid clouds (liquid clouds colder than 0°C) are common at higher latitudes (especially over the Southern Ocean) and are critical for constraining climate projections. We compare a single-column version of a weather model to observations with two different cloud schemes and find that both the dynamical environment and atmospheric aerosols are important for reproducing observations.
Yujuan Wang, Peng Zhang, Jie Li, Yaman Liu, Yanxu Zhang, Jiawei Li, and Zhiwei Han
Geosci. Model Dev., 17, 7995–8021, https://doi.org/10.5194/gmd-17-7995-2024, https://doi.org/10.5194/gmd-17-7995-2024, 2024
Short summary
Short summary
This study updates the CESM's aerosol schemes, focusing on dust, marine aerosol emissions, and secondary organic aerosol (SOA) . Dust emission modifications make deflation areas more continuous, improving results in North America and the sub-Arctic. Humidity correction to sea-salt emissions has a minor effect. Introducing marine organic aerosol emissions, coupled with ocean biogeochemical processes, and adding aqueous reactions for SOA formation advance the CESM's aerosol modelling results.
Lucas A. McMichael, Michael J. Schmidt, Robert Wood, Peter N. Blossey, and Lekha Patel
Geosci. Model Dev., 17, 7867–7888, https://doi.org/10.5194/gmd-17-7867-2024, https://doi.org/10.5194/gmd-17-7867-2024, 2024
Short summary
Short summary
Marine cloud brightening (MCB) is a climate intervention technique to potentially cool the climate. Climate models used to gauge regional climate impacts associated with MCB often assume large areas of the ocean are uniformly perturbed. However, a more realistic representation of MCB application would require information about how an injected particle plume spreads. This work aims to develop such a plume-spreading model.
Leonardo Olivetti and Gabriele Messori
Geosci. Model Dev., 17, 7915–7962, https://doi.org/10.5194/gmd-17-7915-2024, https://doi.org/10.5194/gmd-17-7915-2024, 2024
Short summary
Short summary
Data-driven models are becoming a viable alternative to physics-based models for weather forecasting up to 15 d into the future. However, it is unclear whether they are as reliable as physics-based models when forecasting weather extremes. We evaluate their performance in forecasting near-surface cold, hot, and windy extremes globally. We find that data-driven models can compete with physics-based models and that the choice of the best model mainly depends on the region and type of extreme.
David C. Wong, Jeff Willison, Jonathan E. Pleim, Golam Sarwar, James Beidler, Russ Bullock, Jerold A. Herwehe, Rob Gilliam, Daiwen Kang, Christian Hogrefe, George Pouliot, and Hosein Foroutan
Geosci. Model Dev., 17, 7855–7866, https://doi.org/10.5194/gmd-17-7855-2024, https://doi.org/10.5194/gmd-17-7855-2024, 2024
Short summary
Short summary
This work describe how we linked the meteorological Model for Prediction Across Scales – Atmosphere (MPAS-A) with the Community Multiscale Air Quality (CMAQ) air quality model to form a coupled modelling system. This could be used to study air quality or climate and air quality interaction at a global scale. This new model scales well in high-performance computing environments and performs well with respect to ground surface networks in terms of ozone and PM2.5.
Giulio Mandorli and Claudia J. Stubenrauch
Geosci. Model Dev., 17, 7795–7813, https://doi.org/10.5194/gmd-17-7795-2024, https://doi.org/10.5194/gmd-17-7795-2024, 2024
Short summary
Short summary
In recent years, several studies focused their attention on the disposition of convection. Lots of methods, called indices, have been developed to quantify the amount of convection clustering. These indices are evaluated in this study by defining criteria that must be satisfied and then evaluating the indices against these standards. None of the indices meet all criteria, with some only partially meeting them.
Kerry Anderson, Jack Chen, Peter Englefield, Debora Griffin, Paul A. Makar, and Dan Thompson
Geosci. Model Dev., 17, 7713–7749, https://doi.org/10.5194/gmd-17-7713-2024, https://doi.org/10.5194/gmd-17-7713-2024, 2024
Short summary
Short summary
The Global Forest Fire Emissions Prediction System (GFFEPS) is a model that predicts smoke and carbon emissions from wildland fires. The model calculates emissions from the ground up based on satellite-detected fires, modelled weather and fire characteristics. Unlike other global models, GFFEPS uses daily weather conditions to capture changing burning conditions on a day-to-day basis. GFFEPS produced lower carbon emissions due to the changing weather not captured by the other models.
Samiha Binte Shahid, Forrest G. Lacey, Christine Wiedinmyer, Robert J. Yokelson, and Kelley C. Barsanti
Geosci. Model Dev., 17, 7679–7711, https://doi.org/10.5194/gmd-17-7679-2024, https://doi.org/10.5194/gmd-17-7679-2024, 2024
Short summary
Short summary
The Next-generation Emissions InVentory expansion of Akagi (NEIVA) v.1.0 is a comprehensive biomass burning emissions database that allows integration of new data and flexible querying. Data are stored in connected datasets, including recommended averages of ~1500 constituents for 14 globally relevant fire types. Individual compounds were mapped to common model species to allow better attribution of emissions in modeling studies that predict the effects of fires on air quality and climate.
Lucie Bakels, Daria Tatsii, Anne Tipka, Rona Thompson, Marina Dütsch, Michael Blaschek, Petra Seibert, Katharina Baier, Silvia Bucci, Massimo Cassiani, Sabine Eckhardt, Christine Groot Zwaaftink, Stephan Henne, Pirmin Kaufmann, Vincent Lechner, Christian Maurer, Marie D. Mulder, Ignacio Pisso, Andreas Plach, Rakesh Subramanian, Martin Vojta, and Andreas Stohl
Geosci. Model Dev., 17, 7595–7627, https://doi.org/10.5194/gmd-17-7595-2024, https://doi.org/10.5194/gmd-17-7595-2024, 2024
Short summary
Short summary
Computer models are essential for improving our understanding of how gases and particles move in the atmosphere. We present an update of the atmospheric transport model FLEXPART. FLEXPART 11 is more accurate due to a reduced number of interpolations and a new scheme for wet deposition. It can simulate non-spherical aerosols and includes linear chemical reactions. It is parallelised using OpenMP and includes new user options. A new user manual details how to use FLEXPART 11.
Jaroslav Resler, Petra Bauerová, Michal Belda, Martin Bureš, Kryštof Eben, Vladimír Fuka, Jan Geletič, Radek Jareš, Jan Karel, Josef Keder, Pavel Krč, William Patiño, Jelena Radović, Hynek Řezníček, Matthias Sühring, Adriana Šindelářová, and Ondřej Vlček
Geosci. Model Dev., 17, 7513–7537, https://doi.org/10.5194/gmd-17-7513-2024, https://doi.org/10.5194/gmd-17-7513-2024, 2024
Short summary
Short summary
Detailed modeling of urban air quality in stable conditions is a challenge. We show the unprecedented sensitivity of a large eddy simulation (LES) model to meteorological boundary conditions and model parameters in an urban environment under stable conditions. We demonstrate the crucial role of boundary conditions for the comparability of results with observations. The study reveals a strong sensitivity of the results to model parameters and model numerical instabilities during such conditions.
Jorge E. Pachón, Mariel A. Opazo, Pablo Lichtig, Nicolas Huneeus, Idir Bouarar, Guy Brasseur, Cathy W. Y. Li, Johannes Flemming, Laurent Menut, Camilo Menares, Laura Gallardo, Michael Gauss, Mikhail Sofiev, Rostislav Kouznetsov, Julia Palamarchuk, Andreas Uppstu, Laura Dawidowski, Nestor Y. Rojas, María de Fátima Andrade, Mario E. Gavidia-Calderón, Alejandro H. Delgado Peralta, and Daniel Schuch
Geosci. Model Dev., 17, 7467–7512, https://doi.org/10.5194/gmd-17-7467-2024, https://doi.org/10.5194/gmd-17-7467-2024, 2024
Short summary
Short summary
Latin America (LAC) has some of the most populated urban areas in the world, with high levels of air pollution. Air quality management in LAC has been traditionally focused on surveillance and building emission inventories. This study performed the first intercomparison and model evaluation in LAC, with interesting and insightful findings for the region. A multiscale modeling ensemble chain was assembled as a first step towards an air quality forecasting system.
David Ho, Michał Gałkowski, Friedemann Reum, Santiago Botía, Julia Marshall, Kai Uwe Totsche, and Christoph Gerbig
Geosci. Model Dev., 17, 7401–7422, https://doi.org/10.5194/gmd-17-7401-2024, https://doi.org/10.5194/gmd-17-7401-2024, 2024
Short summary
Short summary
Atmospheric model users often overlook the impact of the land–atmosphere interaction. This study accessed various setups of WRF-GHG simulations that ensure consistency between the model and driving reanalysis fields. We found that a combination of nudging and frequent re-initialization allows certain improvement by constraining the soil moisture fields and, through its impact on atmospheric mixing, improves atmospheric transport.
Phuong Loan Nguyen, Lisa V. Alexander, Marcus J. Thatcher, Son C. H. Truong, Rachael N. Isphording, and John L. McGregor
Geosci. Model Dev., 17, 7285–7315, https://doi.org/10.5194/gmd-17-7285-2024, https://doi.org/10.5194/gmd-17-7285-2024, 2024
Short summary
Short summary
We use a comprehensive approach to select a subset of CMIP6 models for dynamical downscaling over Southeast Asia, taking into account model performance, model independence, data availability and the range of future climate projections. The standardised benchmarking framework is applied to assess model performance through both statistical and process-based metrics. Ultimately, we identify two independent model groups that are suitable for dynamical downscaling in the Southeast Asian region.
Ingrid Super, Tia Scarpelli, Arjan Droste, and Paul I. Palmer
Geosci. Model Dev., 17, 7263–7284, https://doi.org/10.5194/gmd-17-7263-2024, https://doi.org/10.5194/gmd-17-7263-2024, 2024
Short summary
Short summary
Monitoring greenhouse gas emission reductions requires a combination of models and observations, as well as an initial emission estimate. Each component provides information with a certain level of certainty and is weighted to yield the most reliable estimate of actual emissions. We describe efforts for estimating the uncertainty in the initial emission estimate, which significantly impacts the outcome. Hence, a good uncertainty estimate is key for obtaining reliable information on emissions.
Álvaro González-Cervera and Luis Durán
Geosci. Model Dev., 17, 7245–7261, https://doi.org/10.5194/gmd-17-7245-2024, https://doi.org/10.5194/gmd-17-7245-2024, 2024
Short summary
Short summary
RASCAL is an open-source Python tool designed for reconstructing daily climate observations, especially in regions with complex local phenomena. It merges large-scale weather patterns with local weather using the analog method. Evaluations in central Spain show that RASCAL outperforms ERA20C reanalysis in reconstructing precipitation and temperature. RASCAL offers opportunities for broad scientific applications, from short-term forecasts to local-scale climate change scenarios.
Sun-Young Park, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, and Jason A. Milbrandt
Geosci. Model Dev., 17, 7199–7218, https://doi.org/10.5194/gmd-17-7199-2024, https://doi.org/10.5194/gmd-17-7199-2024, 2024
Short summary
Short summary
We enhance the WDM6 scheme by incorporating predicted graupel density. The modification affects graupel characteristics, including fall velocity–diameter and mass–diameter relationships. Simulations highlight changes in graupel distribution and precipitation patterns, potentially influencing surface snow amounts. The study underscores the significance of integrating predicted graupel density for a more realistic portrayal of microphysical properties in weather models.
Christos I. Efstathiou, Elizabeth Adams, Carlie J. Coats, Robert Zelt, Mark Reed, John McGee, Kristen M. Foley, Fahim I. Sidi, David C. Wong, Steven Fine, and Saravanan Arunachalam
Geosci. Model Dev., 17, 7001–7027, https://doi.org/10.5194/gmd-17-7001-2024, https://doi.org/10.5194/gmd-17-7001-2024, 2024
Short summary
Short summary
We present a summary of enabling high-performance computing of the Community Multiscale Air Quality Model (CMAQ) – a state-of-the-science community multiscale air quality model – on two cloud computing platforms through documenting the technologies, model performance, scaling and relative merits. This may be a new paradigm for computationally intense future model applications. We initiated this work due to a need to leverage cloud computing advances and to ease the learning curve for new users.
Peter A. Bogenschutz, Jishi Zhang, Qi Tang, and Philip Cameron-Smith
Geosci. Model Dev., 17, 7029–7050, https://doi.org/10.5194/gmd-17-7029-2024, https://doi.org/10.5194/gmd-17-7029-2024, 2024
Short summary
Short summary
Using high-resolution and state-of-the-art modeling techniques we simulate five atmospheric river events for California to test the capability to represent precipitation for these events. We find that our model is able to capture the distribution of precipitation very well but suffers from overestimating the precipitation amounts over high elevation. Increasing the resolution further has no impact on reducing this bias, while increasing the domain size does have modest impacts.
Manu Anna Thomas, Klaus Wyser, Shiyu Wang, Marios Chatziparaschos, Paraskevi Georgakaki, Montserrat Costa-Surós, Maria Gonçalves Ageitos, Maria Kanakidou, Carlos Pérez García-Pando, Athanasios Nenes, Twan van Noije, Philippe Le Sager, and Abhay Devasthale
Geosci. Model Dev., 17, 6903–6927, https://doi.org/10.5194/gmd-17-6903-2024, https://doi.org/10.5194/gmd-17-6903-2024, 2024
Short summary
Short summary
Aerosol–cloud interactions occur at a range of spatio-temporal scales. While evaluating recent developments in EC-Earth3-AerChem, this study aims to understand the extent to which the Twomey effect manifests itself at larger scales. We find a reduction in the warm bias over the Southern Ocean due to model improvements. While we see footprints of the Twomey effect at larger scales, the negative relationship between cloud droplet number and liquid water drives the shortwave radiative effect.
Kai Cao, Qizhong Wu, Lingling Wang, Hengliang Guo, Nan Wang, Huaqiong Cheng, Xiao Tang, Dongxing Li, Lina Liu, Dongqing Li, Hao Wu, and Lanning Wang
Geosci. Model Dev., 17, 6887–6901, https://doi.org/10.5194/gmd-17-6887-2024, https://doi.org/10.5194/gmd-17-6887-2024, 2024
Short summary
Short summary
AMD’s heterogeneous-compute interface for portability was implemented to port the piecewise parabolic method solver from NVIDIA GPUs to China's GPU-like accelerators. The results show that the larger the model scale, the more acceleration effect on the GPU-like accelerator, up to 28.9 times. The multi-level parallelism achieves a speedup of 32.7 times on the heterogeneous cluster. By comparing the results, the GPU-like accelerators have more accuracy for the geoscience numerical models.
Ruyi Zhang, Limin Zhou, Shin-ichiro Shima, and Huawei Yang
Geosci. Model Dev., 17, 6761–6774, https://doi.org/10.5194/gmd-17-6761-2024, https://doi.org/10.5194/gmd-17-6761-2024, 2024
Short summary
Short summary
Solar activity weakly ionises Earth's atmosphere, charging cloud droplets. Electro-coalescence is when oppositely charged droplets stick together. We introduce an analytical expression of electro-coalescence probability and use it in a warm-cumulus-cloud simulation. Results show that charge cases increase rain and droplet size, with the new method outperforming older ones. The new method requires longer computation time, but its impact on rain justifies inclusion in meteorology models.
Máté Mile, Stephanie Guedj, and Roger Randriamampianina
Geosci. Model Dev., 17, 6571–6587, https://doi.org/10.5194/gmd-17-6571-2024, https://doi.org/10.5194/gmd-17-6571-2024, 2024
Short summary
Short summary
Satellite observations provide crucial information about atmospheric constituents in a global distribution that helps to better predict the weather over sparsely observed regions like the Arctic. However, the use of satellite data is usually conservative and imperfect. In this study, a better spatial representation of satellite observations is discussed and explored by a so-called footprint function or operator, highlighting its added value through a case study and diagnostics.
Lukas Pfitzenmaier, Pavlos Kollias, Nils Risse, Imke Schirmacher, Bernat Puigdomenech Treserras, and Katia Lamer
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-129, https://doi.org/10.5194/gmd-2024-129, 2024
Revised manuscript accepted for GMD
Short summary
Short summary
Orbital-radar is a Python tool transferring sub-orbital radar data (ground-based, airborne, and forward-simulated NWP) into synthetical space-borne cloud profiling radar data mimicking the platform characteristics, e.g. EarthCARE or CloudSat CPR. The novelty of orbital-radar is the simulation platform characteristic noise floors and errors. By this long time data sets can be transformed into synthetic observations for Cal/Valor sensitivity studies for new or future satellite missions.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Giorgio Veratti, Alessandro Bigi, Sergio Teggi, and Grazia Ghermandi
Geosci. Model Dev., 17, 6465–6487, https://doi.org/10.5194/gmd-17-6465-2024, https://doi.org/10.5194/gmd-17-6465-2024, 2024
Short summary
Short summary
In this study, we present VERT (Vehicular Emissions from Road Traffic), an R package designed to estimate transport emissions using traffic estimates and vehicle fleet composition data. Compared to other tools available in the literature, VERT stands out for its user-friendly configuration and flexibility of user input. Case studies demonstrate its accuracy in both urban and regional contexts, making it a valuable tool for air quality management and transport scenario planning.
Sam P. Raj, Puna Ram Sinha, Rohit Srivastava, Srinivas Bikkina, and Damu Bala Subrahamanyam
Geosci. Model Dev., 17, 6379–6399, https://doi.org/10.5194/gmd-17-6379-2024, https://doi.org/10.5194/gmd-17-6379-2024, 2024
Short summary
Short summary
A Python successor to the aerosol module of the OPAC model, named AeroMix, has been developed, with enhanced capabilities to better represent real atmospheric aerosol mixing scenarios. AeroMix’s performance in modeling aerosol mixing states has been evaluated against field measurements, substantiating its potential as a versatile aerosol optical model framework for next-generation algorithms to infer aerosol mixing states and chemical composition.
Angeline G. Pendergrass, Michael P. Byrne, Oliver Watt-Meyer, Penelope Maher, and Mark J. Webb
Geosci. Model Dev., 17, 6365–6378, https://doi.org/10.5194/gmd-17-6365-2024, https://doi.org/10.5194/gmd-17-6365-2024, 2024
Short summary
Short summary
The width of the tropical rain belt affects many aspects of our climate, yet we do not understand what controls it. To better understand it, we present a method to change it in numerical model experiments. We show that the method works well in four different models. The behavior of the width is unexpectedly simple in some ways, such as how strong the winds are as it changes, but in other ways, it is more complicated, especially how temperature increases with carbon dioxide.
Tianning Su and Yunyan Zhang
Geosci. Model Dev., 17, 6319–6336, https://doi.org/10.5194/gmd-17-6319-2024, https://doi.org/10.5194/gmd-17-6319-2024, 2024
Short summary
Short summary
Using 2 decades of field observations over the Southern Great Plains, this study developed a deep-learning model to simulate the complex dynamics of boundary layer clouds. The deep-learning model can serve as the cloud parameterization within reanalysis frameworks, offering insights into improving the simulation of low clouds. By quantifying biases due to various meteorological factors and parameterizations, this deep-learning-driven approach helps bridge the observation–modeling divide.
Siyuan Chen, Yi Zhang, Yiming Wang, Zhuang Liu, Xiaohan Li, and Wei Xue
Geosci. Model Dev., 17, 6301–6318, https://doi.org/10.5194/gmd-17-6301-2024, https://doi.org/10.5194/gmd-17-6301-2024, 2024
Short summary
Short summary
This study explores strategies and techniques for implementing mixed-precision code optimization within an atmosphere model dynamical core. The coded equation terms in the governing equations that are sensitive (or insensitive) to the precision level have been identified. The performance of mixed-precision computing in weather and climate simulations was analyzed.
Sam O. Owens, Dipanjan Majumdar, Chris E. Wilson, Paul Bartholomew, and Maarten van Reeuwijk
Geosci. Model Dev., 17, 6277–6300, https://doi.org/10.5194/gmd-17-6277-2024, https://doi.org/10.5194/gmd-17-6277-2024, 2024
Short summary
Short summary
Designing cities that are resilient, sustainable, and beneficial to health requires an understanding of urban climate and air quality. This article presents an upgrade to the multi-physics numerical model uDALES, which can simulate microscale airflow, heat transfer, and pollutant dispersion in urban environments. This upgrade enables it to resolve realistic urban geometries more accurately and to take advantage of the resources available on current and future high-performance computing systems.
Allison A. Wing, Levi G. Silvers, and Kevin A. Reed
Geosci. Model Dev., 17, 6195–6225, https://doi.org/10.5194/gmd-17-6195-2024, https://doi.org/10.5194/gmd-17-6195-2024, 2024
Short summary
Short summary
This paper presents the experimental design for a model intercomparison project to study tropical clouds and climate. It is a follow-up from a prior project that used a simplified framework for tropical climate. The new project adds one new component – a specified pattern of sea surface temperatures as the lower boundary condition. We provide example results from one cloud-resolving model and one global climate model and test the sensitivity to the experimental parameters.
Philip G. Sansom and Jennifer L. Catto
Geosci. Model Dev., 17, 6137–6151, https://doi.org/10.5194/gmd-17-6137-2024, https://doi.org/10.5194/gmd-17-6137-2024, 2024
Short summary
Short summary
Weather fronts bring a lot of rain and strong winds to many regions of the mid-latitudes. We have developed an updated method of identifying these fronts in gridded data that can be used on new datasets with small grid spacing. The method can be easily applied to different datasets due to the use of open-source software for its development and shows improvements over similar previous methods. We present an updated estimate of the average frequency of fronts over the past 40 years.
Kelly M. Núñez Ocasio and Zachary L. Moon
Geosci. Model Dev., 17, 6035–6049, https://doi.org/10.5194/gmd-17-6035-2024, https://doi.org/10.5194/gmd-17-6035-2024, 2024
Short summary
Short summary
TAMS is an open-source Python-based package for tracking and classifying mesoscale convective systems that can be used to study observed and simulated systems. Each step of the algorithm is described in this paper with examples showing how to make use of visualization and post-processing tools within the package. A unique and valuable feature of this tracker is its support for unstructured grids in the identification stage and grid-independent tracking.
Irene C. Dedoussi, Daven K. Henze, Sebastian D. Eastham, Raymond L. Speth, and Steven R. H. Barrett
Geosci. Model Dev., 17, 5689–5703, https://doi.org/10.5194/gmd-17-5689-2024, https://doi.org/10.5194/gmd-17-5689-2024, 2024
Short summary
Short summary
Atmospheric model gradients provide a meaningful tool for better understanding the underlying atmospheric processes. Adjoint modeling enables computationally efficient gradient calculations. We present the adjoint of the GEOS-Chem unified chemistry extension (UCX). With this development, the GEOS-Chem adjoint model can capture stratospheric ozone and other processes jointly with tropospheric processes. We apply it to characterize the Antarctic ozone depletion potential of active halogen species.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Hejun Xie, Lei Bi, and Wei Han
Geosci. Model Dev., 17, 5657–5688, https://doi.org/10.5194/gmd-17-5657-2024, https://doi.org/10.5194/gmd-17-5657-2024, 2024
Short summary
Short summary
A radar operator plays a crucial role in utilizing radar observations to enhance numerical weather forecasts. However, developing an advanced radar operator is challenging due to various complexities associated with the wave scattering by non-spherical hydrometeors, radar beam propagation, and multiple platforms. In this study, we introduce a novel radar operator named the Accurate and Efficient Radar Operator developed by ZheJiang University (ZJU-AERO) which boasts several unique features.
Jonathan J. Day, Gunilla Svensson, Barbara Casati, Taneil Uttal, Siri-Jodha Khalsa, Eric Bazile, Elena Akish, Niramson Azouz, Lara Ferrighi, Helmut Frank, Michael Gallagher, Øystein Godøy, Leslie M. Hartten, Laura X. Huang, Jareth Holt, Massimo Di Stefano, Irene Suomi, Zen Mariani, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Teresa Remes, Rostislav Fadeev, Amy Solomon, Johanna Tjernström, and Mikhail Tolstykh
Geosci. Model Dev., 17, 5511–5543, https://doi.org/10.5194/gmd-17-5511-2024, https://doi.org/10.5194/gmd-17-5511-2024, 2024
Short summary
Short summary
The YOPP site Model Intercomparison Project (YOPPsiteMIP), which was designed to facilitate enhanced weather forecast evaluation in polar regions, is discussed here, focussing on describing the archive of forecast data and presenting a multi-model evaluation at Arctic supersites during February and March 2018. The study highlights an underestimation in boundary layer temperature variance that is common across models and a related inability to forecast cold extremes at several of the sites.
Hossain Mohammed Syedul Hoque, Kengo Sudo, Hitoshi Irie, Yanfeng He, and Md Firoz Khan
Geosci. Model Dev., 17, 5545–5571, https://doi.org/10.5194/gmd-17-5545-2024, https://doi.org/10.5194/gmd-17-5545-2024, 2024
Short summary
Short summary
Using multi-platform observations, we validated global formaldehyde (HCHO) simulations from a chemistry transport model. HCHO is a crucial intermediate in the chemical catalytic cycle that governs the ozone formation in the troposphere. The model was capable of replicating the observed spatiotemporal variability in HCHO. In a few cases, the model's capability was limited. This is attributed to the uncertainties in the observations and the model parameters.
Zijun Liu, Li Dong, Zongxu Qiu, Xingrong Li, Huiling Yuan, Dongmei Meng, Xiaobin Qiu, Dingyuan Liang, and Yafei Wang
Geosci. Model Dev., 17, 5477–5496, https://doi.org/10.5194/gmd-17-5477-2024, https://doi.org/10.5194/gmd-17-5477-2024, 2024
Short summary
Short summary
In this study, we completed a series of simulations with MPAS-Atmosphere (version 7.3) to study the extreme precipitation event of Henan, China, during 20–22 July 2021. We found the different performance of two built-in parameterization scheme suites (mesoscale and convection-permitting suites) with global quasi-uniform and variable-resolution meshes. This study holds significant implications for advancing the understanding of the scale-aware capability of MPAS-Atmosphere.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
G. Alexander Sokolowsky, Sean W. Freeman, William K. Jones, Julia Kukulies, Fabian Senf, Peter J. Marinescu, Max Heikenfeld, Kelcy N. Brunner, Eric C. Bruning, Scott M. Collis, Robert C. Jackson, Gabrielle R. Leung, Nils Pfeifer, Bhupendra A. Raut, Stephen M. Saleeby, Philip Stier, and Susan C. van den Heever
Geosci. Model Dev., 17, 5309–5330, https://doi.org/10.5194/gmd-17-5309-2024, https://doi.org/10.5194/gmd-17-5309-2024, 2024
Short summary
Short summary
Building on previous analysis tools developed for atmospheric science, the original release of the Tracking and Object-Based Analysis (tobac) Python package, v1.2, was open-source, modular, and insensitive to the type of gridded input data. Here, we present the latest version of tobac, v1.5, which substantially improves scientific capabilities and computational efficiency from the previous version. These enhancements permit new uses for tobac in atmospheric science and potentially other fields.
Taneil Uttal, Leslie M. Hartten, Siri Jodha Khalsa, Barbara Casati, Gunilla Svensson, Jonathan Day, Jareth Holt, Elena Akish, Sara Morris, Ewan O'Connor, Roberta Pirazzini, Laura X. Huang, Robert Crawford, Zen Mariani, Øystein Godøy, Johanna A. K. Tjernström, Giri Prakash, Nicki Hickmon, Marion Maturilli, and Christopher J. Cox
Geosci. Model Dev., 17, 5225–5247, https://doi.org/10.5194/gmd-17-5225-2024, https://doi.org/10.5194/gmd-17-5225-2024, 2024
Short summary
Short summary
A Merged Observatory Data File (MODF) format to systematically collate complex atmosphere, ocean, and terrestrial data sets collected by multiple instruments during field campaigns is presented. The MODF format is also designed to be applied to model output data, yielding format-matching Merged Model Data Files (MMDFs). MODFs plus MMDFs will augment and accelerate the synergistic use of model results with observational data to increase understanding and predictive skill.
Chongzhi Yin, Shin-ichiro Shima, Lulin Xue, and Chunsong Lu
Geosci. Model Dev., 17, 5167–5189, https://doi.org/10.5194/gmd-17-5167-2024, https://doi.org/10.5194/gmd-17-5167-2024, 2024
Short summary
Short summary
We investigate numerical convergence properties of a particle-based numerical cloud microphysics model (SDM) and a double-moment bulk scheme for simulating a marine stratocumulus case, compare their results with model intercomparison project results, and present possible explanations for the different results of the SDM and the bulk scheme. Aerosol processes can be accurately simulated using SDM, and this may be an important factor affecting the behavior and morphology of marine stratocumulus.
Zichen Wu, Xueshun Chen, Zifa Wang, Huansheng Chen, Zhe Wang, Qing Mu, Lin Wu, Wending Wang, Xiao Tang, Jie Li, Ying Li, Qizhong Wu, Yang Wang, Zhiyin Zou, and Zijian Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1437, https://doi.org/10.5194/egusphere-2024-1437, 2024
Short summary
Short summary
We developed a model to simulate polycyclic aromatic hydrocarbons (PAHs) from global to regional scales. The model can well reproduce the distribution of PAHs. The concentration of BaP (indicator species for PAHs) could exceed the target values of 1 ng m-3 over some areas (e.g., in central Europe, India, and eastern China). The change of BaP is less than PM2.5 from 2013 to 2018. China still faces significant potential health risks posed by BaP although "the Action Plan" has been implemented.
Alberto Martilli, Negin Nazarian, E. Scott Krayenhoff, Jacob Lachapelle, Jiachen Lu, Esther Rivas, Alejandro Rodriguez-Sanchez, Beatriz Sanchez, and José Luis Santiago
Geosci. Model Dev., 17, 5023–5039, https://doi.org/10.5194/gmd-17-5023-2024, https://doi.org/10.5194/gmd-17-5023-2024, 2024
Short summary
Short summary
Here, we present a model that quantifies the thermal stress and its microscale variability at a city scale with a mesoscale model. This tool can have multiple applications, from early warnings of extreme heat to the vulnerable population to the evaluation of the effectiveness of heat mitigation strategies. It is the first model that includes information on microscale variability in a mesoscale model, something that is essential for fully evaluating heat stress.
Nathan P. Arnold
Geosci. Model Dev., 17, 5041–5056, https://doi.org/10.5194/gmd-17-5041-2024, https://doi.org/10.5194/gmd-17-5041-2024, 2024
Short summary
Short summary
Earth system models often represent the land surface at smaller scales than the atmosphere, but surface–atmosphere coupling uses only aggregated surface properties. This study presents a method to allow heterogeneous surface properties to modify boundary layer updrafts. The method is tested in single column experiments. Updraft properties are found to reasonably covary with surface conditions, and simulated boundary layer variability is enhanced over more heterogeneous land surfaces.
Enrico Dammers, Janot Tokaya, Christian Mielke, Kevin Hausmann, Debora Griffin, Chris McLinden, Henk Eskes, and Renske Timmermans
Geosci. Model Dev., 17, 4983–5007, https://doi.org/10.5194/gmd-17-4983-2024, https://doi.org/10.5194/gmd-17-4983-2024, 2024
Short summary
Short summary
Nitrogen dioxide (NOx) is produced by sources such as industry and traffic and is directly linked to negative impacts on health and the environment. The current construction of emission inventories to keep track of NOx emissions is slow and time-consuming. Satellite measurements provide a way to quickly and independently estimate emissions. In this study, we apply a consistent methodology to derive NOx emissions over Germany and illustrate the value of having such a method for fast projections.
Yuhan Xu, Sheng Fang, Xinwen Dong, and Shuhan Zhuang
Geosci. Model Dev., 17, 4961–4982, https://doi.org/10.5194/gmd-17-4961-2024, https://doi.org/10.5194/gmd-17-4961-2024, 2024
Short summary
Short summary
Recent atmospheric radionuclide leakages from unknown sources have posed a new challenge in nuclear emergency assessment. Reconstruction via environmental observations is the only feasible way to identify sources, but simultaneous reconstruction of the source location and release rate yields high uncertainties. We propose a spatiotemporally separated reconstruction strategy that avoids these uncertainties and outperforms state-of-the-art methods with respect to accuracy and uncertainty ranges.
Cited articles
Abdul-Razzak, H. and Ghan, S. J.: A parameterization of aerosol activation
2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000.
Alapaty, K., Herwehe, J. A., Otte, T. L., Nolte, C. G., Bullock, O. R.,
Mallard, M. S., Kain, J. S., and Dudhia, J.: Introducing subgrid-scale cloud
feedbacks to radiation for regional meteorological and climate modeling,
Geophys. Res. Lett., 39, L24809, https://doi.org/10.1029/2012GL054031, 2012.
Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.: Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model, Atmos. Chem. Phys., 12, 1737–1758, https://doi.org/10.5194/acp-12-1737-2012, 2012.
Appel, K. W., Gilliland, A. B., Sarwar, G., and Gilliam, R. C.: Evaluation
of the Community Multiscale Air Quality (CMAQ) model version 4.5:
Sensitivities impacting model performance: Part I, Ozone, Atmos. Environ.,
41, 9603–9615, 2007.
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013.
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017.
Baklanov, A., Schlünzen, K., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., Carmichael, G., Douros, J., Flemming, J., Forkel, R., Galmarini, S., Gauss, M., Grell, G., Hirtl, M., Joffre, S., Jorba, O., Kaas, E., Kaasik, M., Kallos, G., Kong, X., Korsholm, U., Kurganskiy, A., Kushta, J., Lohmann, U., Mahura, A., Manders-Groot, A., Maurizi, A., Moussiopoulos, N., Rao, S. T., Savage, N., Seigneur, C., Sokhi, R. S., Solazzo, E., Solomos, S., Sørensen, B., Tsegas, G., Vignati, E., Vogel, B., and Zhang, Y.: Online coupled regional meteorology chemistry models in Europe: current status and prospects, Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, 2014.
Bennartz, R.: Global assessment of marine boundary layer cloud droplet
number concentration from satellite, J. Geophys. Res., 112, D02201,
https://doi.org/10.1029/2006JD007547, 2007.
Boersma, K. F., Eskes, H. J., and Brinksma, E. J.: Error analysis for
tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311,
https://doi.org/10.1029/2003JD003962, 2004.
Brunner, D., Savage, N., Jorba, O., Eder, B., Giordano, L., Badia, A.,
Balzarini, A., Baro, R., Bianconi, R., Chemel, C., Curci, G., Forkel, R.,
Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., Hozak, L., Im, U., Knote, C.,
Makar, P., Manders-Groot, A., van Meijgaard, E., Neal, L., Perez, J. L.,
Pirovano, G., San Jose, R., Schroder, W., Sokhi, R. S., Syrakov, D., Torian,
A., Tuccella, P., Werhahn, J., Wolke, R., Yahya, K., Zabkar, R., Zhang, Y.,
Hogrefe, C., and Galmarini, S.: Comparative analysis of meteorological
performance of coupled chemistry-meteorology models in the context of AQMEII
phase 2, Atmos. Environ., 115, 470–498, https://doi.org/10.1016/j.atmosenv.2014.12.032, 2015.
Byun, D. W. and Schere K. L.: Review equations, computational algorithms,
and other components of the Models-3 Community Multi-Scale Air Quality
(CMAQ) modeling system, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1115/1.2128636, 2006.
Choi, M. W., Lee, J. H., Woo, J. W., Kim, C. H., and Lee, S. H.: Comparison
of PM2.5 chemical components over East Asia simulated by the WRF-Chem
and WRF/CMAQ models: On the models' prediction inconsistency, Atmosphere, 10,
618, https://doi.org/10.3390/atmos10100618, 2019.
CMAS (Community Modeling and Analysis System):
https://www.cmascenter.org/download/data.cfm#obs, last access: 3 November 2021.
Cohen, A. E., Cavallo, S. M., Coniglio, M. C., and Brooks, H. E.: A review
of planetary boundary layer parameterization schemes and their sensitivity
in simulating southeastern U.S. cold season severe weather environments,
Weather Forecast., 30, 591–612, https://doi.org/10.1175/WAF-D-14-00105.1, 2015.
Dong, X., Fu, J. S., Huang, K., Tong, D., and Zhuang, G.: Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia, Atmos. Chem. Phys., 16, 8157–8180, https://doi.org/10.5194/acp-16-8157-2016, 2016.
Eder, B. and Yu, S.: A performance evaluation of the 2004 release of
Models-3 CMAQ, Atmos. Environ., 40, 4811–4824, 2006.
Emery, C., Liu, Z., Russell, A. G., Odman, M. T., Yarwood, G., and Kumar,
N.: Recommendations on statistics and benchmarks to assess photochemical
model performance, J. Air Waste Manage. Assoc., 67, 582–598,
https://doi.org/10.1080/10962247.2016.1265027, 2017.
Emmons, L. K., Edwards, D. P., Deeter, M. N., Gille, J. C., Campos, T., Nédélec, P., Novelli, P., and Sachse, G.: Measurements of Pollution In The Troposphere (MOPITT) validation through 2006, Atmos. Chem. Phys., 9, 1795–1803, https://doi.org/10.5194/acp-9-1795-2009, 2009.
Gan, C.-M., Pleim, J., Mathur, R., Hogrefe, C., Long, C. N., Xing, J., Wong, D., Gilliam, R., and Wei, C.: Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation “brightening” in the United States, Atmos. Chem. Phys., 15, 12193–12209, https://doi.org/10.5194/acp-15-12193-2015, 2015a.
Gan, C.-M., Binkowski, F., Pleim, J., Xing, J., Wong, D., Mathur, R., and
Gilliam, R.: Assessment of the aerosol optics component of the coupled
WRF–CMAQ model using CARES field campaign data and a single column model,
Atmos. Environ., 115, 670–682, 2015b.
Gantt, B., He, J., Zhang, X., Zhang, Y., and Nenes, A.: Incorporation of advanced aerosol activation treatments into CESM/CAM5: model evaluation and impacts on aerosol indirect effects, Atmos. Chem. Phys., 14, 7485–7497, https://doi.org/10.5194/acp-14-7485-2014, 2014.
Gantt, B., Sarwar, G., Xing, J., Simon, H., Schwede, D., Hutzell, W. T.,
Mathur, R., and Saiz-Lopez, A.: The impact of iodide-mediated ozone
deposition and halogen chemistry on surface ozone concentrations across the
continental United States, Environ. Sci. Technol., 51, 1458–1466, 2017.
Ghan, S. J., Laulainen, N. S., Easter, R. C., Wagener, R., Nemesure, S.,
Chapman, E. G., Zhang, Y., and Leung, L. R.: Evaluation of aerosol direct
radiative forcing in MIRAGE, J. Geophys. Res., 106, 5295–5316, 2001.
Glotfelty, T., He, J., and Zhang, Y.: Impact of future climate policy
scenarios on air quality and aerosol-cloud interactions using an advanced
version of CESM/CAM5: Part I. model evaluation for the current decadal
simulations, Atmos. Environ., 152, 222–239, 2017.
Grell, G. A. and Baklanov, A.: Integrated modelling for forecasting weather
and air quality: A call for fully coupled approaches, Atmos. Environ., 45,
38, 6845–6851, 2011.
Grell, G. A., Peckham, S. E., Schmitz, R., McKenn, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully Coupled “Online” chemistry within
the WRF Model, Atmos. Environ., 39, 6957–6975, 2005.
He, J. and Zhang, Y.: Improvement and further development in CESM/CAM5: gas-phase chemistry and inorganic aerosol treatments, Atmos. Chem. Phys., 14, 9171–9200, https://doi.org/10.5194/acp-14-9171-2014, 2014.
Heald, C. L., Jacob, D. J., Fiore, A. M., Emmons, L. K., Gille, J. C.,
Deeter, M. N., Warner, J., Edwards, D. P., Crawford, J. H., Hamlin, A. J.,
Sachse, G. W., Browell, E. V., Avery, M. A., Vay, S. A., Westberg, D. J.,
Blake, D. R., Singh, H. B., Sandholm, S. T., Talbot, R. W., and Fuelberg, H.
E.: Asian outflow and trans-Pacific transport of carbon monoxide and ozone
pollution: An integrated satellite, aircraft, and model perspective, J.
Geophys. Res., 108, 4804, https://doi.org/10.1029/2003JD003507, 2003.
Herwehe, J. A., Otte, T. L., Mathur, R., and Rao, S. T.: Diagnostic analysis
of ozone concentrations simulated by two regional-scale air quality models,
Atmos. Environ., 45, 5957–5969, 2011.
Hogrefe, C., Pouliot, G., Wong, D., Torian, A., Roselle, S., Pleim, J., and
Mathur, R.: Annual application and evaluation of the online coupled
WRF–CMAQ system over North America under AQMEII phase 2, Atmos. Environ.,
115, 683–694, 2015.
Hong, C., Zhang, Q., Zhang, Y., Tang, Y., Tong, D., and He, K.: Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects, Geosci. Model Dev., 10, 2447–2470, https://doi.org/10.5194/gmd-10-2447-2017, 2017.
Hong, C.-P., Zhang, Q., Zhang, Y., Davis, S. J., Zhang, X., Tong, D., Guan,
D., Liu, Z., and He, K.-B.: Weakened aerosol radiative effects may mitigate
the climate penalty on Chinese air quality, Nat. Clim. Change, 10, 845–850, https://doi.org/10.1038/s41558-020-0840-y, 2020.
Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S.
A., and Collins, W. D.: Radiative forcing by long-lived greenhouse gases:
Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, https://doi.org/10.1029/2008JD009944, 2008.
IPCC: Global warming of 1.5 ∘C, An IPCC Special Report on the
impacts of global warming of 1.5 ∘C above pre-industrial levels
and related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty, edited by:
Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J.,
Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R.,
Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy,
E., Maycock, T., Tignor, M., and Waterfield, T., World Meteorological Organization, Geneva, Switzerland, 32 pp., 2018.
Jacobson, M. Z.: GATOR-GCMM: A global- through urban-scale air pollution and
weather forecast model 1. Model design and treatment of subgrid soil,
vegetation, roads, rooftops, water, sea, ice, and snow, J. Geophys. Res.,
106, 5385–5401, 2001.
Jacobson, M. Z., Lu, R., Turco, R. P., and Toon, O. B.: Development and
application of a new air pollution modeling system. Part I: Gas-phase
simulations, Atmos. Environ., 30B, 1939–1963, 1996.
Jung, J., Souri, A. H., Wong, D. C., Lee, S., Jeon, W., Kim, J., and Choi,
Y.: The impact of the direct effect of aerosols on meteorology and air
quality using aerosol optical depth assimilation during the KORUS-AQ campaign, J. Geophys. Res.-Atmos., 124, 8303–8319,
https://doi.org/10.1029/2019JD030641, 2019.
Kain, J. S.: The Kain-Fritsch convective parameterization: An update, J.
Appl. Meteorol., 43, 170–181,
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2, 2004.
Karydis, V. A., Tsimpidi, A. P., and Pandis, S. N.: Evaluation of a
three-dimensional chemical transport model (PMCAMx) in the eastern United
States for all four seasons, J. Geophys. Res., 112, D14211,
https://doi.org/10.1029/2006JD007890, 2007.
Kaufman, Y. J., Smirnov, A., Holben, B., and Dubovik, O.: Baseline maritime
aerosol methodology to derive the optical thickness and scattering
properties, Geophys. Res. Lett., 28, 3251, https://doi.org/10.1029/2001GL013312, 2001.
Kelly, J., Koplitz, S., Baker, K., Holder, A., Pye, H., Murphy, B., Bash,
J., Henderson, B., Possiel, N., Simon, H., Eyth, A., Jang, C., Phillips, S.,
and Timin, B.: Assessing PM2.5 model performance for the conterminous
U.S. with comparison to model performance statistics from 2007–2015, Atmos.
Environ., 214, 116872, https://doi.org/10.1016/j.atmosenv.2019.116872, 2019.
Kukkonen, J., Olsson, T., Schultz, D. M., Baklanov, A., Klein, T., Miranda, A. I., Monteiro, A., Hirtl, M., Tarvainen, V., Boy, M., Peuch, V.-H., Poupkou, A., Kioutsioukis, I., Finardi, S., Sofiev, M., Sokhi, R., Lehtinen, K. E. J., Karatzas, K., San José, R., Astitha, M., Kallos, G., Schaap, M., Reimer, E., Jakobs, H., and Eben, K.: A review of operational, regional-scale, chemical weather forecasting models in Europe, Atmos. Chem. Phys., 12, 1–87, https://doi.org/10.5194/acp-12-1-2012, 2012.
Li, P, Wang, L., Guo, P., Yu, S., Mehmood, K., Wang, S., Liu, W., Seinfeld,
J. H., Zhang, Y., Wong, D., Alapaty, K., Pleim, J., and Mathur, R.: High
reduction of ozone and particulate matter during the 2016 G-20 summit in
Hangzhou by forced emission controls of industry and traffic, Environ. Chem.
Lett., 15, 709–715, https://doi.org/10.1007/s10311-017-0642-2, 2017.
Lin, M., Holloway, T., Carmichael, G. R., and Fiore, A. M.: Quantifying pollution inflow and outflow over East Asia in spring with regional and global models, Atmos. Chem. Phys., 10, 4221–4239, https://doi.org/10.5194/acp-10-4221-2010, 2010.
Liu, X.-H., Zhang, Y., Xing, J., Zhang, Q., Wang, K., Streets, D. G., Jang,
C. J., Wang, W.-X., and Hao, J. M.: Understanding of regional air pollution
over China using CMAQ: Part II. Process analysis and ozone sensitivity to
precursor emissions, Atmos. Environ., 44, 3719–3727, 2010.
Lorente, A., Folkert Boersma, K., Yu, H., Dörner, S., Hilboll, A., Richter, A., Liu, M., Lamsal, L. N., Barkley, M., De Smedt, I., Van Roozendael, M., Wang, Y., Wagner, T., Beirle, S., Lin, J.-T., Krotkov, N., Stammes, P., Wang, P., Eskes, H. J., and Krol, M.: Structural uncertainty in air mass factor calculation for NO2 and HCHO satellite retrievals, Atmos. Meas. Tech., 10, 759–782, https://doi.org/10.5194/amt-10-759-2017, 2017.
Ma, P.-L., Rasch, P. J., Fast, J. D., Easter, R. C., Gustafson Jr., W. I., Liu, X., Ghan, S. J., and Singh, B.: Assessing the CAM5 physics suite in the WRF-Chem model: implementation, resolution sensitivity, and a first evaluation for a regional case study, Geosci. Model Dev., 7, 755–778, https://doi.org/10.5194/gmd-7-755-2014, 2014.
Makar, P. A., Gonga, W., Hogrefe, C., Zhang, Y., Curci, G., Žabkar, R.,
Milbrandt, J., Im, U., Balzarini, A., Baró, R., Bianconi, R., Cheung,
P., Forkel, R., Gravel, S., Hirtl, M., Honzak, L., Hou, A.,
Jiménez-Guerrero, P., Langer, M., Moran, M. B., Pabla, B., Pérez, J.
L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J.,
and Galmarini, S.: Feedbacks between air pollution and weather, Part 2:
Effects on chemistry, Atmos. Environ., 115, 499–526, 2015.
Mathur, R., Xiu, A., Coats, C., Alapaty, K., Shankar, U., and Hanna, A.:
Development of an air quality modeling system with integrated meteorology,
chemistry, and emissions, Proc. Measurement of Toxic and Related Air
Pollutants, AWMA, Cary, NC, 1–3 September 1998.
Mathur, R., Xing, J., Gilliam, R., Sarwar, G., Hogrefe, C., Pleim, J., Pouliot, G., Roselle, S., Spero, T. L., Wong, D. C., and Young, J.: Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: overview of process considerations and initial applications, Atmos. Chem. Phys., 17, 12449–12474, https://doi.org/10.5194/acp-17-12449-2017, 2017.
Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Kita,K., Miyazaki, Y., Hu,
M., Chang, S.-Y., Blake, D. R., Fast, J. D., Zaveri, R. A., Streets, D. G.,
Zhang, Q. and Zhu, T.: Spatial and temporal variations of aerosols around
Beijing in summer 2006: Model evaluation and source apportionment, J.
Geophys. Res., 114, D00G13, https://doi.org/10.1029/2008JD010906, 2009.
Mebust, M. R., Eder, B. K., Binkowski, F. S., and Roselle, S. J.: Models-3
Community Multiscale Air Quality (CMAQ) model aerosol component: 2. Model
evaluation, J. Geophys. Res., 108, 4184, https://doi.org/10.1029/2001JD001410, 2003.
Mehmood, K., Wu, Y., Wang, L., Yu, S., Li, P., Chen, X., Li, Z., Zhang, Y., Li, M., Liu, W., Wang, Y., Liu, Z., Zhu, Y., Rosenfeld, D., and Seinfeld, J. H.: Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions, Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, 2020.
Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics
on the development of trailing stratiform precipitation in a simulated
squall line: Comparison of one- and two-moment schemes, Mon. Weather Rev.,
137, 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
NASA CERES: CERES_EBAF_Ed4.1 Subsetting and Browsing, NASA [data set], available at: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF41Selection.jsp, last access: 3 November 2021.
NASA/LARC/SD/ASDC: MOPITT CO gridded monthly means (Near and Thermal Infrared Radiances) V009, NASA Langley Atmospheric Science Data Center DAAC [data set], https://doi.org/10.5067/TERRA/MOPITT/MOP03JM.009, last access: 3 November 2021.
NCAR (National Center for Atmospheric Research): WRFv3.4, NCAR [code], available at: https://www2.mmm.ucar.edu/wrf/src/WRFV3.4.TAR.gz (last access: 3 November 2021), 2012.
NCEI (National Centers for Environmental Information): GPCP data, available at: https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly, last access: 3 November 2021a.
NCEI (National Centers for Environmental Information): NCDC data, available at: https://www.ncei.noaa.gov/data/global-hourly/archive/csv, last access: 3 November 2021b.
Penrod, A., Zhang, Y., Wang, K., Wu, S.-Y., and Leung, R. L.: Impacts of
future climate and emission changes on US air quality, Atmos. Environ., 89,
533–547, https://doi.org/10.1016/j.atmosenv.2014.01.001, 2014.
Platnick, S., Hubanks, P., Meyer, K.. and King, M. D.: MODIS Atmosphere L3 Monthly Product (08_L3), NASA MODIS Adaptive Processing System, Goddard Space Flight Center [data set], https://doi.org/10.5067/MODIS/MOD08_M3.006 (Terra), 2015.
Pleim, J., Young, J., Wong, D., Gilliam, R., Otte, T., and Mathur, R.:
Two-way coupled meteorology and air quality modeling, in Air Pollution
Modeling and its Application, edited by: Borrego, C. and Miranda, A. I., XIX,
NATO Science for Peace and Security Series, Series C: Environmental
Security, Springer, Dordrecht, 2008.
Pleim, J. E.: A combined local and nonlocal closure model for the
atmospheric boundary layer. Part I: Model description and testing, J. Appl.
Meteorol. Clim., 46, 1383–1395, https://doi.org/10.1175/JAM2539.1, 2007.
Pleim, J. E. and Gilliam, R.: An indirect data assimilation scheme for deep
soil temperature in the Pleim–Xiu land surface model, J. Appl. Meteorol.
Clim., 48, 1362–1376, 2009.
Pye, H. O. T., Murphy, B. N., Xu, L., Ng, N. L., Carlton, A. G., Guo, H., Weber, R., Vasilakos, P., Appel, K. W., Budisulistiorini, S. H., Surratt, J. D., Nenes, A., Hu, W., Jimenez, J. L., Isaacman-VanWertz, G., Misztal, P. K., and Goldstein, A. H.: On the implications of aerosol liquid water and phase separation for organic aerosol mass, Atmos. Chem. Phys., 17, 343–369, https://doi.org/10.5194/acp-17-343-2017, 2017.
Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., and Zuend, A.: The acidity of atmospheric particles and clouds, Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, 2020.
Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A.,
Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., and Kleidman, R. G.: The
MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62,
947–973, 2005.
Roy, B., Pouliot, G. A., Gilliland, A., Pierce, T., Howard, S., Bhave, P.
V., and Benjey, W.: Refining fire emissions for air quality modeling with
remotely sensed fire counts: A wildfire case study, Atmos. Environ., 41,
655–665, https://doi.org/10.1016/j.atmosenv.2006.08.037, 2007.
San Joaquin Valley Air Pollution Control District: 2018 Plan for the 1997,
2006, and 2012 PM2.5 Standards, available at: https://www.valleyair.org/pmplans (last access: 3 November 2021), 15 November 2018.
Sarwar, G., Luecken, D., Yarwood, G., Whitten, G. Z., and Carter, W. P. L.:
Impact of an updated carbon bond mechanism on predictions from the CMAQ
modeling system: Preliminary assessment, J. Appl. Meteorol. Clim., 47, 3–14,
2008.
Sarwar, G., Gantt, B., Schwede, D., Foley, K., Mathur, R., and Saiz-Lopez,
A.: Impact of enhanced ozone deposition and halogen chemistry on
tropospheric ozone over the Northern Hemisphere, Environ. Sci. Technol., 49, 9203-9211, 2015.
Scheffe, R. D., Strum, M., Phillips, S. B., Thurman, J., Eyth, A., Fudge,
S., Morris, M., Palma, T., and Cook, R.: Hybrid modeling approach to
estimate exposures of hazardous air pollutants (HAPs) for the National Air
Toxics Assessment (NATA), Environ. Sci. Technol., 50,
12356–12364, https://doi.org/10.1021/acs.est.6b04752, 2016.
Schwede, D., Pouliot, G. A., and Pierce, T.: Changes to the biogenic
emissions inventory system version 3 (BEIS3), in: Proceedings of the 4th
CMAS Models-3 Users' Conference, Chapel Hill, NC, 26–28 September 2005.
Sekiguchi, A., Shimadera, H., and Kondo, A.: Impact of aerosol direct effect
on wintertime PM2.5 simulated by an online coupled meteorology-air
quality model over East Asia, Aerosol. Air Qual. Res., 18, 1068–1079, 2018.
Solazzo, E., Hogrefe, C., Colette, A., Garcia-Vivanco, M., and Galmarini, S.: Advanced error diagnostics of the CMAQ and Chimere modelling systems within the AQMEII3 model evaluation framework, Atmos. Chem. Phys., 17, 10435–10465, https://doi.org/10.5194/acp-17-10435-2017, 2017.
Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., and Guenther, A.: Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003–2006, Atmos. Chem. Phys., 9, 3663–3679, https://doi.org/10.5194/acp-9-3663-2009, 2009.
TEMIS (Tropospheric Emission Monitoring Internet Service): Tropospheric NO2 from satellites, available at: https://www.temis.nl/airpollution/no2.php, last access: 3 November 2021a.
TEMIS (Tropospheric Emission Monitoring Internet Service): Tropospheric ozone column, available at: https://www.temis.nl/protocols/tropo.php, last access: 3 November 2021b.
U.S. EPA: Our nation's air status and trends through 2010, EPA-454/R-12-001,
available at: https://www.epa.gov/sites/default/files/2017-11/documents/trends_brochure_2010.pdf (last access: 3 November 2021), 2012.
U.S. EPA: Policy assessment for the review of the National Ambient Air
Quality Standards for particulate matter, EPA-452/R-20-002, available at:
https://www.epa.gov/sites/production/files/2020-01/documents/final_policy_assessment_for_the_review_of_the_pm_naaqs_01-2020.pdf (last access: 3 November 2021), 2020.
U.S. EPA Office of Research and Development: CMAQv5.0.2, 5.0.2, Zenodo [code], https://doi.org/10.5281/zenodo.1079898, 2014.
Vasilakos, P., Russell, A., Weber, R., and Nenes, A.: Understanding nitrate formation in a world with less sulfate, Atmos. Chem. Phys., 18, 12765–12775, https://doi.org/10.5194/acp-18-12765-2018, 2018.
Wang, J., Wang, S., Jiang, J., Ding, A., Zheng, M., Zhao, B., Wong, C.-D.,
Zhou, W., Zheng, G., Wang, L., Pleim, J., and Hao, J.: Impact of
aerosol–meteorology interactions on fine particle pollution during China's
severe haze episode in January 2013, Environ. Res. Lett., 9, 094002,
https://doi.org/10.1088/1748-9326/9/9/094002, 2014.
Wang, K. and Zhang, Y.: Application, evaluation, and process analysis of
U.S. EPA's 2002 multiple-pollutant air quality modeling platform,
Atmospheric and Climate Sciences, 2, 254–289, 2012.
Wang, K. and Zhang, Y.: 3-D agricultural air quality modeling: Impacts of
gas-phase reactions and bi-directional exchange of
NH3, Atmos. Environ., 98, 554–570, https://doi.org/10.1016/j.atmosenv.2014.09.010, 2014.
Wang, K., Zhang, Y., Jang, C., Phillips, S., and Wang, B.: Modeling
intercontinental air pollution transport over the trans-Pacific region in
2001 using the Community Multiscale Air Quality modeling system, J. Geophys.
Res., 114, D04307, https://doi.org/10.1029/2008JD010807, 2009.
Wang, K., Zhang, Y., Nenes, A., and Fountoukis, C.: Implementation of dust
emission and chemistry into the Community Multiscale Air Quality modeling
system and initial application to an Asian dust storm episode, Atmos. Chem.
Phys., 12, 10209–10237, https://doi.org/10.5194/acp-12-10209-2012, 2012.
Wang, K., Zhang, Y., Yahya, K., Wu, S.-Y., and Grell, G.: Implementation and
initial application of new chemistry-aerosol options in WRF/Chem for
simulating secondary organic aerosols and aerosol indirect effects for
regional air quality, Atmos. Environ., 115, 716–732,
https://doi.org/10.1016/j.atmosenv.2014.12.007, 2015a.
Wang, K., Yahya, K., Zhang, Y., Hogrefe, C., Pouliot, G., Knote, C., Hodzic,
A., Jose, R. S., Perez, J. L., Jiménez-Guerrero, P., Baro, R., Makar,
P., and Bennartz, R.: A multi-model assessment for the 2006 and 2010
simulations under the Air Quality Model Evaluation International Initiative
(AQMEII) Phase 2 over North America: Part II. Evaluation of column variable
predictions using satellite data, Atmos. Environ., 115, 587–603, https://doi.org/10.1016/j.atmosenv.2014.07.044, 2015b.
Wang, K., Zhang, Y., and Yahya, K.: Decadal application of WRF/Chem over the
continental U.S.: Simulation design, sensitivity simulations, and
climatological model evaluation, Atmos. Environ., 253, 118331,
https://doi.org/10.1016/j.atmosenv.2021.118331, 2021.
West, J. J., Ansari, A. S., and Pandis, S. N.: Marginal PM2.5:
Nonlinear aerosol mass response to sulfate reductions in the Eastern United
States, J. Air Waste Manage. Assoc., 49, 1415–1424, https://doi.org/10.1080/10473289.1999.10463973, 1999.
Wiedinmyer, C., Quayle, B., Geron, C., Belote, A., McKenzie, D., Zhang, X.,
O'Neill, S., and Wynne, K. K.: Estimating emissions from fires in North
America for air quality modeling, Atmos. Environ., 40, 3419–3432,
https://doi.org/10.1016/j.atmosenv.2006.02.010, 2006.
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee III, R. B., Smith,
G. L., and Cooper, J. E.: Clouds and the Earth's Radiant Energy System
(CERES): An earth observing system experiment, B. Am. Meteorol. Soc., 77,
853–868, 1996.
Wilczak, J. M., Djalalova, I., McKeen, S., Bianco, L., Bao, J.-W., Grell,
G., Peckham, S., Mathur, R., McQueen, J., and Lee, P: Analysis of regional
meteorology and surface ozone during the TexAQS II field program and an
evaluation of the NMM-CMAQ and WRF-Chem air quality models, J. Geophys.
Res., 114, D00F14, https://doi.org/10.1029/2008JD011675, 2009.
Wong, D. C., Pleim, J., Mathur, R., Binkowski, F., Otte, T., Gilliam, R., Pouliot, G., Xiu, A., Young, J. O., and Kang, D.: WRF-CMAQ two-way coupled system with aerosol feedback: software development and preliminary results, Geosci. Model Dev., 5, 299–312, https://doi.org/10.5194/gmd-5-299-2012, 2012.
Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D. C., Wei,
C., and Wang, J.: Air pollution and climate response to aerosol direct
radiative effects: A modeling study of decadal trends across the northern
hemisphere, J. Geophys. Res.-Atmos., 120, 12221–12236,
https://doi.org/10.1002/2015JD023933, 2015a.
Xing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.-M., Wong, D. C., and Wei, C.: Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?, Atmos. Chem. Phys., 15, 9997–10018, https://doi.org/10.5194/acp-15-9997-2015, 2015b.
Xing, J., Wang, J., Mathur, R., Pleim, J., Wang, S., Hogrefe, C., Gan,
C.-M., Wong, D., and Hao, J.: Unexpected benefits of reducing aerosol
cooling effects, Environ. Sci. Technol., 50, 7527–7534, https://doi.org/10.1021/acs.est.6b00767, 2016.
Xing, J., Wang, J., Mathur, R., Wang, S., Sarwar, G., Pleim, J., Hogrefe, C., Zhang, Y., Jiang, J., Wong, D. C., and Hao, J.: Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates, Atmos. Chem. Phys., 17, 9869–9883, https://doi.org/10.5194/acp-17-9869-2017, 2017.
Xiu, A. and Pleim, J. E.: Development of a land surface model. Part I:
Application in a mesoscale meteorological model, J. Appl. Meteorol., 40,
192–209, https://doi.org/10.1175/1520-0450(2001)040<0192:DOALSM>2.0.CO;2, 2001.
Yahya, K., Wang, K., Gudoshava, M., Glotfelty, T., and Zhang, Y.:
Application of WRF/Chem over North America under the AQMEII Phase 2. Part I.
Comprehensive evaluation of 2006 simulation, Atmos. Environ., 115, 733–755,
https://doi.org/10.1016/j.atmosenv.2014.08.063, 2015a.
Yahya, K., Wang, K., Zhang, Y., and Kleindienst, T. E.: Application of WRF/Chem over North America under the AQMEII Phase 2 – Part 2: Evaluation of 2010 application and responses of air quality and meteorology–chemistry interactions to changes in emissions and meteorology from 2006 to 2010, Geosci. Model Dev., 8, 2095–2117, https://doi.org/10.5194/gmd-8-2095-2015, 2015b.
Yahya, K., Wang, K., Campbell, P., Glotfelty, T., He, J., and Zhang, Y.: Decadal evaluation of regional climate, air quality, and their interactions over the continental US and their interactions using WRF/Chem version 3.6.1, Geosci. Model Dev., 9, 671–695, https://doi.org/10.5194/gmd-9-671-2016, 2016.
Yarwood, G., Rao, S., Yocke, M., and Whitten, G. Z.: Final Report–Updates
to the Carbon Bond Chemical Mechanism: CB05, Rep. RT-04-00675, Yocke and Co.,
Novato, Calif., 246 pp., 2005.
Yoo, J.-W., Jeon, W., Park, S.-Y., Park, C., Jung, J., Lee, S.-H., and Lee,
H. W.: Investigating the regional difference of aerosol feedback effects
over South Korea using the WRF-CMAQ two-way coupled modeling system, Atmos.
Environ., 218, 116968, https://doi.org/10.1016/j.atmosenv.2019.116968, 2019.
Yu, S., Eder, B., Dennis, R., Chu, S., and Schwartz, S.: New unbiased
symmetric metrics for evaluation of air quality models, Atmos. Sci. Lett.,
7, 26–34, 2006.
Yu, S., Mathur, R., Pleim, J., Wong, D., Gilliam, R., Alapaty, K., Zhao, C., and Liu, X.: Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis, Atmos. Chem. Phys., 14, 11247–11285, https://doi.org/10.5194/acp-14-11247-2014, 2014 (data available at: https://person.zju.edu.cn/shaocaiyu#674502, last access: 3 November 2021).
Yu, S., Li, P., Wang, L., Wu, Y., Wang, S., Liu, W., Zhu, T., Zhang, Y., Hu,
M., Alapaty, K., Wong, D., Pleim, J., Mathur, R., Rosenfeld, D., and
Seinfeld, J.: Mitigation of severe urban haze pollution by a precision air
pollution control approach, Scientific Reports, 8, 8151,
https://doi.org/10.1038/s41598-018-26344-1, 2018.
Yu, S. C., Mathur, R., Schere, K., Kang, D., Pleim, J., and Otte, T. L.: A
detailed evaluation of the Eta-CMAQ forecast model performance for O3, its related precursors, and meteorological parameters during the 2004 ICARTT Study, J. Geophys. Res, 112, D12S14, https://doi.org/10.1029/2006JD007715, 2007.
Yu, S. C., Mathur, R., Pleim, J., Wong, D., Carlton, A. G., Roselle, S., and
Rao, S. T.: Simulation of the indirect radiative forcing of climate due to
aerosols by the two-way coupled WRF-CMAQ over the eastern United States, in
Air Pollution Modeling and its Applications, edited by: Steyn, D. G. and Castelli, S. T., XXI, Springer Netherlands, Netherlands, C(96), 579–583, 2011.
Yu, X.-Y., Lee, T., Ayres, B., Kreidenweis, S. M., Malm, W., and Collett, J.
L.: Loss of fine particle ammonium from denuded nylon filters, Atmos.
Environ., 40, 4797–4807, 2006.
Zender, C. S., Bian, H., and Newman, D.: Mineral Dust Entrainment and
Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys.
Res., 108, 4416, https://doi.org/10.1029/2002JD002775, 2003.
Zhang, Y.: Online-coupled meteorology and chemistry models: history, current status, and outlook, Atmos. Chem. Phys., 8, 2895–2932, https://doi.org/10.5194/acp-8-2895-2008, 2008.
Zhang, Y. and Wang, Y.: Climate-driven ground-level ozone extreme in the
fall over the Southeast United States, P. Natl. Acad. Sci. USA, 113,
10025–10030, https://doi.org/10.1073/pnas.1602563113, 2016.
Zhang, Y. and Wang, K.: Project 3 – Air quality and climate modeling:
Multi-model application, evaluation, intercomparison, and ensemble over the
U.S., poster presentation at the Air Climate Energy (ACE) Centers Meeting,
Pittsburgh, PA, 18–19 June 2019.
Zhang, K. M., Knipping, E. M., Wexler, A. S., Bhave, P. V., and Tonnesen, G.
S.: Size distribution of sea-salt emissions as a function of relative humidity, Atmos. Environ., 39, 3373–3379, 2005.
Zhang, Y., Liu, P., Pun, B., and Seigneur, C.: A comprehensive performance
evaluation of MM5-CMAQ for the summer 1999 Southern Oxidants Study episode,
Part-I. Evaluation protocols, databases and meteorological predictions,
Atmos. Environ., 40, 4825–4838, https://doi.org/10.1016/j.atmosenv.2005.12.043, 2006.
Zhang, Y., Vijayaraghavan, K., Wen, X.-Y., Snell, H. E., and Jacobson, M.
Z.: Probing into regional ozone and particulate matter pollution in the
United States: 1. A 1-year CMAQ simulation and evaluation using surface and
satellite data, J. Geophys. Res., 114, D22304, https://doi.org/10.1029/2009JD011898,
2009a.
Zhang, Y., Wen, X.-Y., Wang, K., Vijayaraghavan, K., and Jacobson, M. Z.:
Probing into regional ozone and particulate matter pollution in the United
States: 2. An examination of formation mechanisms through a process analysis
technique and sensitivity study, J. Geophys. Res., 114, D22305,
https://doi.org/10.1029/2009JD011900, 2009b.
Zhang, Y., Wen, X.-Y., and Jang, C. J.: Simulating
chemistry-aerosol-cloud-radiation-climate feedbacks over the continental US
using the online-coupled Weather Research Forecasting Model with chemistry
(WRF/Chem), Atmos. Environ., 44, 3568–3582,
https://doi.org/10.1016/j.atmosenv.2010.05.056, 2010.
Zhang, Y., Sartelet, K., Zhu, S., Wang, W., Wu, S.-Y., Zhang, X., Wang, K., Tran, P., Seigneur, C., and Wang, Z.-F.: Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe – Part 2: Evaluation of chemical concentrations and sensitivity simulations, Atmos. Chem. Phys., 13, 6845–6875, https://doi.org/10.5194/acp-13-6845-2013, 2013.
Zhang, Y., Chen, Y., Fan, J., and Leung, L. R.: Application of an
online-coupled regional climate model, WRF-CAM5, over East Asia for
examination of ice nucleation schemes: Part II. Sensitivity to ice
nucleation parameterizations and dust emissions, Climate, 3, 753–774,
https://doi.org/10.3390/cli3030753, 2015a.
Zhang, Y., Zhang, X., Wang, K., He, J., Leung, L. R., Fan, J.-W., and Nenes,
A.: Incorporating an advanced aerosol activation parameterization into
WRF-CAM5: Model evaluation and parameterization intercomparison, J. Geophys.
Res.-Atmos., 120, 6952–6979, https://doi.org/10.1002/2014JD023051, 2015b.
Zhang, Y., Zhang, X., Wang, L., Zhang, Q., Duan, F., and He, K.: Application
of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison
with MM5/CMAQ, Atmos. Environ., 124, 285–300, 2016a.
Zhang, Y., Hong, C.-P., Yahya, K., Li, Q., Zhang, Q., and He, K.-B.:
Comprehensive evaluation of multi-year real-time air quality forecasting
using an online-coupled meteorology-chemistry model over southeastern United
States, Atmos. Environ., 138, 162–182, https://doi.org/10.1016/j.atmosenv.2016.05.006,
2016b.
Zhang, Y., Wang, K., and He, J.: Multi-year application of WRF-CAM5 over East
Asia-Part II: Interannual variability, trend analysis, and aerosol indirect
effects, Atmos. Environ., 165, 222–239, 2017.
Zhang, Y., Jena, C., Wang, K., Paton-Walsh, C., Guérette, E.-A.,
Utembe, S., Silver, J. D., and Keywood, M.: Multiscale applications of two
online-coupled meteorology-chemistry models during recent field campaigns in
Australia, Part I: Model description and WRF/Chem-ROMS evaluation using
surface and satellite data and sensitivity to spatial grid resolutions,
Atmosphere, 10, 189, https://doi.org/10.3390/atmos10040189, 2019.
Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.: Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031–2049, https://doi.org/10.5194/acp-15-2031-2015, 2015.
Short summary
The two-way coupled WRF-CMAQ model accounting for complex chemistry–meteorology feedbacks has been applied to the long-term predictions of regional meteorology and air quality over the US. The model results show superior performance and importance of chemistry–meteorology feedbacks when compared to the offline coupled WRF and CMAQ simulations, which suggests that feedbacks should be considered along with other factors in developing future model applications to inform policy making.
The two-way coupled WRF-CMAQ model accounting for complex chemistry–meteorology feedbacks has...