

Supplement of

A comparative study of two-way and offline coupled WRF v3.4 and CMAQ v5.0.2 over the contiguous US: performance evaluation and impacts of chemistry–meteorology feedbacks on air quality

Kai Wang et al.

Correspondence to: Yang Zhang (ya.zhang@northeastern.edu) and Shaocai Yu (shaocaiyu@zju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Attributes	Model Configurations						
Model	WRF v3.4-CMAQ v5.0.2						
Simulation period	2008-2012						
Domain	CONUS						
Horizontal grid spacing	36-km (148 × 112 grid cells)						
Vertical grid	34 layers from surface to 100 hPa						
Physical options							
Shortwave radiation	Rapid and accurate Radiative Transfer Model for GCM						
	(RRTMG)						
Longwave radiation	RRTMG						
PBL	ACM2						
Land surface	Pleim-Xiu						
Microphysics	Morrison two-moment						
Cumulus	Kain-Fritsch						
Aerosol activation	Abdul-Razzak and Ghan						
Chemical options							
Gas-phase chemistry	CB05 with updated chlorine chemistry						
Aerosol module	AERO6						
Photolysis	CMAQ inline						
Aqueous-phase	AQ chemistry module (AQCHEM)						
chemistry							
Meteorological and	Downscaled from the modified Community Earth System						
chemical IC and BC	Model/Community Atmosphere Model (CESM/CAM5) v1.2.2;						
	Meteorological ICs/BCs bias-corrected with National Center for						
	Environmental Protection's Final (FNL) Operational Global						
	Analysis data						
Anthropogenic emission	NEI 2008 updated to 2010, and NEI 2011						
Biogenic emission	BEIS3						
Dust emission	CMAQ inline						
Sea-salt emission	CMAQ inline						

Table S1. The model configurations of the two-way WRF-CMAQ simulation.

Table S2 summarizes the observational databases and the variables evaluated in this work. For evaluation of chemical concentrations and meteorological variables, the surface networks include the National Climatic Data Center (NCDC) Quality Controlled Local Climatological Data (QCLCD), Clean Air Status and Trends Network (CASTNET), the Aerometric Information Retrieval System (AIRS) – Air Quality System (AQS), the Interagency Monitoring of Protected Visual Environments (IMPROVE), the Chemical Speciation Network (CSN), the Southeastern Aerosol Research and Characterization (SEARCH), and the National Atmospheric Deposition Network (NADP). Several aerosol-cloud-radiation variables are also evaluated against satellite retrievals including the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS).

NCDC QCLCD data contains data over 700 U.S. locations from July 1996 to December 2004, and over 1600 locations from 2005 onwards (http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/quality-controlled-local-climatological-data-qclcd). CASTNET observations have been collected in a range of rural environments, from desert to agricultural locations, and from flat to complex terrains (http://java.epa.gov/castnet/epa_jsp/sites.jsp). It contains measurement data for meteorological variables and chemical concentrations. AIRS-AQS is the U.S. EPA's repository for ambient air quality data from over 5000 active monitors (http://www.epa.gov/ttn/airs/airsaqs/). While IMPROVE observations have been collected in protected visual environments, i.e., in National Parks and Wilderness Areas (http://vista.cira.colostate.edu/improve/), CSN sites are located in a range of locations from urban to rural areas (http://www.epa.gov/ttnamti1/specgen.html). Both networks contain data for PM_{2.5} species. NADP contains precipitation data from rain gauges.

The MODIS satellite retrievals for AOD (Remer et al., 2005), CF, COT, and CWP come from the level 3 MODIS gridded atmosphere monthly global joint product (MOD08_M3) collected from the Terra platform (http://modis-atmos.gsfc.nasa.gov/MOD08_M3/). The CDNC data used in this study are derived from MODIS by Bennartz (2007).

Gases and PM Species									
Observational	Variables evaluated	Sampling	Number of Sites						
database		Frequency							
CASTNET	Max 1-hr and 8-hr O ₃	Daily for O ₃	~90						
AIRS-AQS	O ₃	Hourly	~1150						
IMPROVE	$PM_{2.5}, SO_4^2, NO_3^-,$	24-hour data. Data	~160						
	$\rm NH_4^+, EC, OC$	availability once							
		every 3 days							
CSN	$PM_{2.5}, SO_4^{2-}, NO_3^{-},$	24-hour data. Data	~200						
	$\rm NH_4^+, EC, TC$	availability once							
		every 3 days							
Meteorology		· · · ·							
Observational	Variables evaluated	Temporal Resolution	Spatial Resolution						
Database									
NCDC QCLCD	T2, RH,	Hourly	~700 before 2005						
	WS10,WD10		~1600 after 2005						

Table S2. Observational datasets and variables evaluated in this study.

NADP	Precipitation	Weekly	255						
Radiation and other Aerosol/Cloud variables									
Observational	Variables evaluated	Temporal Resolution	Number of sites/						
Database/ Satellite			Spatial Resolution						
CERES	SWDOWN	Monthly	$1^{\circ} \times 1^{\circ}$						
MODIS	AOD, CF, COT,	Monthly	$1^{\circ} \times 1^{\circ}$						
	CWP, QVAPOR,								
	CCN								
MODIS derived	CDNC	Monthly	$1^{\circ} \times 1^{\circ}$						
based on Bennartz									
(2007)									

Variables	Datasets	Mean Obs	Two-way WRF-CMAQ					WRF-only				
			Mean Sim	R	MB	NMB (%)	RMSE	Mean Sim	R	MB	NMB (%)	RMSE
T2 (°C)		12.9	13.0	0.98	0.1	0.8	1.0	13.1	0.98	0.2	1.8	1.1
RH2 (%)	NCDC	69.1	71.3	0.88	2.2	3.2	5.3	71.0	0.88	1.8	2.6	5.2
WS10 (m s ⁻¹)	NCDC	3.74	4.18	0.52	0.44	11.7	1.15	4.20	0.52	0.46	12.4	1.16
WD10 (deg)		154.4	187.2	0.07	32.8	21.3	47.7	187.8	0.06	33.4	21.6	48.1
	NCDC	1.84	2.55	0.62	0.71	38.4	1.27	2.64	0.62	0.8	43.5	1.33
	NADP	2.66	2.81	0.84	0.15	5.8	0.7	2.9	0.84	0.24	9.3	0.73
Precipitation (mm day ⁻¹)	GPCP	2.15	2.43	0.79	0.28	13.0	0.9	2.45	0.80	0.30	14.1	0.9
(IIIII uay)	PRISM	2.16	2.30	0.91	0.14	6.8	0.55	2.36	0.91	0.20	9.5	0.56
	TMPA	2.28	2.50	0.86	0.22	9.9	0.81	2.52	0.86	0.24	10.7	0.82
SWDOWN (W m ⁻²)		185.6	209.8	0.97	24.2	13.0	25.7	222.6	0.96	37.0	19.9	38.3
GSW (W m ⁻²)		158.5	176.0	0.97	17.6	11.1	19.8	187.0	0.95	28.5	18.0	30.6
GLW (W m ⁻²)	CEDES	322.9	316.8	0.99	-6.1	-1.9	8.1	312.3	0.99	-10.6	-3.3	12.1
OLR (W m ⁻²)	CERES	241.2	243.2	0.99	2.0	0.8	3.5	244.0	0.99	2.8	1.2	4.2
SWCF (W m ⁻²)		-41.1	-30.4	0.74	-10.7	-26.0	13.7	-23.5	0.63	-17.6	-42.8	20.1
LWCF (W m ⁻²)		23.7	18.4	0.73	-5.3	-22.2	6.5	17.8	0.74	-5.9	-24.9	6.9
AOD		0.15	0.05	0.60	-0.1	-64.8	0.11	N/A	N/A	N/A	N/A	N/A
CF	MODIS	0.57	0.50	0.92	-0.07	-12.2	0.09	N/A	N/A	N/A	N/A	N/A
CDNC (cm ⁻³)		163.3	29.3	0.35	-134.0	-82.1	138.8	N/A	N/A	N/A	N/A	N/A
CWP (g m⁻²)		167.4	81.6	0.79	-85.8	-51.2	90.4	N/A	N/A	N/A	N/A	N/A
СОТ		15.3	3.0	0.84	-12.3	-80.1	12.6	N/A	N/A	N/A	N/A	N/A

Table S3. The 5-year (2008-2012) average performance statistics for meteorological variables between two-way WRF-CMAQ and WRF-only simulations.

*outputs of AOD, CF, CDNC, CWP, and COT are not available from WRF-only simulations

Variables	Datasets Mean Obs	Mean		vay WRF-0		Offline CMAQ						
		Obs	Mean Sim	R	MB	NMB (%)	NME (%)	Mean Sim	R	MB	NMB (%)	NME (%)
Max 8-hr O3	AQS	43.5	49.0	0.66	5.5	12.6	13.1	51.2	0.66	7.7	17.7	17.9
(ppb)	CASTNET	42.2	42.8	0.65	0.6	1.5	8.4	45.1	0.65	3.0	7.0	10.5
\mathbf{DM} (up m ⁻³)	CSN	10.7	9.9	0.50	-0.75	-7.0	21.9	10.3	0.46	-0.36	-3.4	21.7
PM2.5 (μg m°)	IMPROVE	4.78	4.13	0.88	-0.65	-13.7	26.6	4.51	0.87	-0.27	-5.7	23.2
PM ₁₀ (µg m ⁻³)	AQS	24.0	13.0	0.02	-11.0	-45.9	49.6	15.4	0.14	-8.6	-35.6	45.0
SO_{2}^{2} (up m ⁻³)	CSN	2.32	1.70	0.88	-0.62	-26.7	27.1	1.57	0.89	-0.75	-32.3	32.3
SO4 ² (μg m ⁻³)	IMPROVE	1.08	0.78	0.98	-0.29	-27.2	27.2	0.76	0.98	-0.32	-29.4	29.4
$NO = (ug m^{-3})$	CSN	1.29	1.51	0.85	0.22	16.6	32.8	1.73	0.85	0.43	33.5	44.9
$NO_3 (\mu g m^2)$	IMPROVE	0.41	0.47	0.85	0.06	14.6	42.9	0.57	0.87	0.16	39.0	51.7
NH4 ⁺ (μg m ⁻³)	CSN	1.03	0.88	0.86	-0.15	-14.3	18.6	0.87	0.85	-0.16	-15.7	18.7
$\mathbf{EC}(\mathbf{u} = \mathbf{m}^{-3})$	CSN	0.63	0.76	0.34	0.13	20.6	52.4	0.77	0.39	0.14	22.4	50.5
EC (µg m ²)	IMPROVE	0.18	0.23	0.80	0.05	29.4	50.8	0.25	0.79	0.07	37.7	55.6
OC (µg m ⁻³)	IMPROVE	0.97	0.69	0.59	-0.28	-28.9	44.8	0.74	0.58	-0.23	-23.8	43.4
$TC(ugm^{-3})$	CSN	2.87	2.60	0.10	-0.27	-9.4	29.7	2.71	0.07	-0.16	-5.7	28.8
i C (μg m [*])	IMPROVE	0.68	0.62	0.79	-0.06	-9.2	37.2	0.80	0.72	-0.08	-9.2	39.0
Col. CO (10 ¹⁸ mole. cm ⁻³)	MOPITT	1.96	1.44	0.89	-0.52	-26.6	26.7	1.45	0.89	-0.51	-26.2	26.2
TOR (DU)	OMI	30.3	30.8	0.83	0.47	1.6	4.7	31.1	0.82	0.77	2.5	5.1
Col. NO ₂ (10 ¹⁵ mole. cm ⁻³)	SCIAMACHY	1.27	1.09	0.91	-0.18	-14.5	27.1	1.08	0.91	-0.19	-14.9	27.3
Col. HCHO (10 ¹⁵ mole. cm ⁻³)	SCIAMACHY	5.13	4.21	0.83	-0.92	-18.0	20.6	4.28	0.83	-0.85	-16.6	19.8

Table S4. The 5-year (2008-2012) average performance statistics for chemical variables between two-way WRF-CMAQ and offline CMAQ simulations.

Figure S1. Spatial distributions of 5-year average MBs for a) 2-m temperature (T2), b) 2-m relative humidity (RH2), c) 10-m wind speed (WS10), and d) hourly precipitation from NCDC for two-way WRF-CMAQ in 2008-2012 and 5-year average of daily precipitation for e) GPCP, f) PRISM, g) two-way WRF-CMAQ, and h) WRF-only.

Figure S2. Spatial distribution of 5-year average major radiation variables (from top to bottom: SWDOWN, GSW, GLW, OLR, and AOD) between CERES observations (left panel) vs. two-way WRF-CMAQ (right panel) for 2008-2012.

Figure S3. Spatial distribution of 5-year average major cloud variables (from top to bottom: CDNC, CF, COT, and CWP) between MODIS observations (left panel) vs. two-way WRF-CMAQ (right panel) for 2008-2012.

panel) vs. two-way WRF-CMAQ (center panel) and WRF-only (right panel) for 2008-2012.

Figure S5. scatter plots of PM_{2.5} constituents SO₄²⁻, NH₄⁺, NO₃⁻, and TC between observations and simulations of two-way WRF-CMAQ (red color) and offline CMAQ (blue) for 2008-2012.

Figure S6. Spatial distributions of 5-year averaged daily PM₁₀ and PM_{2.5} constituents overlaid with observations.

Figure S7. Spatial distribution of 5-year average column abundances (from top to bottom: column CO, TOR, column NO₂, and column HCHO) between various satellite observations (left panel) vs. two-way WRF-CMAQ (right panel) for 2008-2012.