Articles | Volume 14, issue 10
Geosci. Model Dev., 14, 6155–6175, 2021
https://doi.org/10.5194/gmd-14-6155-2021
Geosci. Model Dev., 14, 6155–6175, 2021
https://doi.org/10.5194/gmd-14-6155-2021
Model description paper
13 Oct 2021
Model description paper | 13 Oct 2021

Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China

Mingshuai Zhang et al.

Related authors

Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission
Qiuyan Du, Chun Zhao, Mingshuai Zhang, Xue Dong, Yu Chen, Zhen Liu, Zhiyuan Hu, Qiang Zhang, Yubin Li, Renmin Yuan, and Shiguang Miao
Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020,https://doi.org/10.5194/acp-20-2839-2020, 2020
Short summary

Related subject area

Atmospheric sciences
Description and evaluation of the community aerosol dynamics model MAFOR v2.0
Matthias Karl, Liisa Pirjola, Tiia Grönholm, Mona Kurppa, Srinivasan Anand, Xiaole Zhang, Andreas Held, Rolf Sander, Miikka Dal Maso, David Topping, Shuai Jiang, Leena Kangas, and Jaakko Kukkonen
Geosci. Model Dev., 15, 3969–4026, https://doi.org/10.5194/gmd-15-3969-2022,https://doi.org/10.5194/gmd-15-3969-2022, 2022
Short summary
Modeling the high-mercury wet deposition in the southeastern US with WRF-GC-Hg v1.0
Xiaotian Xu, Xu Feng, Haipeng Lin, Peng Zhang, Shaojian Huang, Zhengcheng Song, Yiming Peng, Tzung-May Fu, and Yanxu Zhang
Geosci. Model Dev., 15, 3845–3859, https://doi.org/10.5194/gmd-15-3845-2022,https://doi.org/10.5194/gmd-15-3845-2022, 2022
Short summary
Development of a deep neural network for predicting 6 h average PM2.5 concentrations up to 2 subsequent days using various training data
Jeong-Beom Lee, Jae-Bum Lee, Youn-Seo Koo, Hee-Yong Kwon, Min-Hyeok Choi, Hyun-Ju Park, and Dae-Gyun Lee
Geosci. Model Dev., 15, 3797–3813, https://doi.org/10.5194/gmd-15-3797-2022,https://doi.org/10.5194/gmd-15-3797-2022, 2022
Short summary
Chemistry Across Multiple Phases (CAMP) version 1.0: an integrated multiphase chemistry model
Matthew L. Dawson, Christian Guzman, Jeffrey H. Curtis, Mario Acosta, Shupeng Zhu, Donald Dabdub, Andrew Conley, Matthew West, Nicole Riemer, and Oriol Jorba
Geosci. Model Dev., 15, 3663–3689, https://doi.org/10.5194/gmd-15-3663-2022,https://doi.org/10.5194/gmd-15-3663-2022, 2022
Short summary
An aerosol vertical data assimilation system (NAQPMS-PDAF v1.0): development and application
Haibo Wang, Ting Yang, Zifa Wang, Jianjun Li, Wenxuan Chai, Guigang Tang, Lei Kong, and Xueshun Chen
Geosci. Model Dev., 15, 3555–3585, https://doi.org/10.5194/gmd-15-3555-2022,https://doi.org/10.5194/gmd-15-3555-2022, 2022
Short summary

Cited articles

Abdi-Oskouei, M., Pfister, G., Flocke, F., Sobhani, N., Saide, P., Fried, A., Richter, D., Weibring, P., Walega, J., and Carmichael, G.: Impacts of physical parameterization on prediction of ethane concentrations for oil and gas emissions in WRF-Chem, Atmos. Chem. Phys., 18, 16863–16883, https://doi.org/10.5194/acp-18-16863-2018, 2018. 
Arghavani, S., Malakooti, H., and Bidokhti, A. A.: Numerical evaluation of urban green space scenarios effects on gaseous air pollutants in Tehran Metropolis based on WRF-Chem model, Atmos. Environ., 214, 116832, https://doi.org/10.1016/j.atmosenv.2019.116832,​​​​​​​ 2019. 
Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, https://doi.org/10.5194/acp-7-31-2007, 2007. 
Bao, H., Shrestha, K. L., Kondo, A., Kaga, A., and Inoue, Y.: Modeling the influence of biogenic volatile organic compound emissions on ozone concentration during summer season in the Kinki region of Japan, Atmos. Environ., 44, 421–431, 2010. 
Bonan, G. B.: A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user’s guide, NCAR Tech. Note 4171STR, 150 pp., available at: http://opensky.ucar.edu/islandora/object/technotes:185 (last access: 25 May 2016), 1996. 
Download
Short summary
Biogenic volatile organic compounds (BVOCs) can influence atmospheric chemistry and secondary pollutant formation. This study examines the performance of different versions of the Model of Emissions of Gases and Aerosols from Nature (MEGAN) in modeling BVOCs and ozone and their sensitivities to vegetation distributions over eastern China. The results suggest more accurate vegetation distribution and measurements of BVOC emission fluxes are needed to reduce the uncertainties.