Articles | Volume 14, issue 10
https://doi.org/10.5194/gmd-14-6135-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/gmd-14-6135-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence on the temperature estimation of the planetary boundary layer scheme with different minimum eddy diffusivity in WRF v3.9.1.1
Hongyi Ding
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Le Cao
CORRESPONDING AUTHOR
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Haimei Jiang
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Wenxing Jia
Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China
Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
Yong Chen
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Junling An
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Related authors
No articles found.
Wenjie Zhang, Hong Wang, Xiaoye Zhang, Yue Peng, Zhaodong Liu, Deying Wang, Da Zhang, Chen Han, Yang Zhao, Junting Zhong, Wenxing Jia, Huiqiong Ning, and Huizheng Che
Atmos. Chem. Phys., 25, 9005–9030, https://doi.org/10.5194/acp-25-9005-2025, https://doi.org/10.5194/acp-25-9005-2025, 2025
Short summary
Short summary
This study achieves quantifiable subgrid-scale aerosol–cloud interaction in an atmospheric chemistry system, with better performance in terms of meteorology prediction, and further finds that subgrid-scale actual aerosol can somewhat improve overestimated cumulative precipitation during a typical heavy rainfall event, which helps us better understand the impact of subgrid-scale aerosol–cloud interaction on weather forecasts.
Yongzhu Liu, Xiaoye Zhang, Wei Han, Chao Wang, Wenxing Jia, Deying Wang, Zhaorong Zhuang, and Xueshun Shen
Geosci. Model Dev., 18, 4855–4876, https://doi.org/10.5194/gmd-18-4855-2025, https://doi.org/10.5194/gmd-18-4855-2025, 2025
Short summary
Short summary
In order to investigate the feedbacks of chemical data assimilation on meteorological forecasts, we developed a strongly coupled aerosol–meteorology four-dimensional variational (4D-Var) assimilation system, CMA-GFS-AERO 4D-Var, based on the framework of the incremental analysis scheme of the China Meteorological Administration Global Forecasting System (CMA-GFS) operational global numerical weather model. The results show that assimilating BC (black carbon) observations can generate analysis increments not only for BC but also for atmospheric variables.
Xiaochun Zhu, Le Cao, Xin Yang, Simeng Li, Jiandong Wang, and Tianliang Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3873, https://doi.org/10.5194/egusphere-2024-3873, 2025
Short summary
Short summary
We applied various criteria to identify springtime ODEs at Utqiagvik, Arctic, and investigated the influences of using different criteria on conclusions regarding the characteristics of ODEs. We found criteria using a constant threshold and using thresholds based on the monthly averaged ozone more suitable for identifying ODEs than the others. Applying a threshold varying with the monthly average or stricter thresholds also signifies a more significant reduction in the ODE occurrences.
Kai Meng, Tianliang Zhao, Yongqing Bai, Ming Wu, Le Cao, Xuewei Hou, Yuehan Luo, and Yongcheng Jiang
Atmos. Chem. Phys., 24, 12623–12642, https://doi.org/10.5194/acp-24-12623-2024, https://doi.org/10.5194/acp-24-12623-2024, 2024
Short summary
Short summary
We studied the impact of stratospheric intrusions (SIs) on tropospheric and near-surface ozone in Central and Eastern China from a stratospheric source tracing perspective. SIs contribute the most in the eastern plains, with a contribution exceeding 15 %, and have a small contribution to the west and south. Western Siberia and Mongolia are the most critical source areas for indirect and direct SIs, with the Rossby wave and northeast cold vortex being important driving circulation systems.
Zhiqiang Zhang, Ying Li, Haiyan Ran, Junling An, Yu Qu, Wei Zhou, Weiqi Xu, Weiwei Hu, Hongbin Xie, Zifa Wang, Yele Sun, and Manabu Shiraiwa
Atmos. Chem. Phys., 24, 4809–4826, https://doi.org/10.5194/acp-24-4809-2024, https://doi.org/10.5194/acp-24-4809-2024, 2024
Short summary
Short summary
Secondary organic aerosols (SOAs) can exist in liquid, semi-solid, or amorphous solid states, which are rarely accounted for in current chemical transport models. We predict the phase state of SOA particles over China and find that in northwestern China SOA particles are mostly highly viscous or glassy solid. Our results indicate that the particle phase state should be considered in SOA formation in chemical transport models for more accurate prediction of SOA mass concentrations.
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6833–6856, https://doi.org/10.5194/gmd-16-6833-2023, https://doi.org/10.5194/gmd-16-6833-2023, 2023
Short summary
Short summary
In addition to the dominant role of the PBL scheme on the results of the meteorological field, many factors in the model are influenced by large uncertainties. This study focuses on the uncertainties that influence numerical simulation results (including horizontal resolution, vertical resolution, near-surface scheme, initial and boundary conditions, underlying surface update, and update of model version), hoping to provide a reference for scholars conducting research on the model.
Wenxing Jia, Xiaoye Zhang, Hong Wang, Yaqiang Wang, Deying Wang, Junting Zhong, Wenjie Zhang, Lei Zhang, Lifeng Guo, Yadong Lei, Jizhi Wang, Yuanqin Yang, and Yi Lin
Geosci. Model Dev., 16, 6635–6670, https://doi.org/10.5194/gmd-16-6635-2023, https://doi.org/10.5194/gmd-16-6635-2023, 2023
Short summary
Short summary
Most current studies on planetary boundary layer (PBL) parameterization schemes are relatively fragmented and lack systematic in-depth analysis and discussion. In this study, we comprehensively evaluate the performance capability of the PBL scheme in five typical regions of China in different seasons from the mechanism of the scheme and the effects of PBL schemes on the near-surface meteorological parameters, vertical structures of the PBL, PBL height, and turbulent diffusion.
Le Cao, Simeng Li, Yicheng Gu, and Yuhan Luo
Atmos. Chem. Phys., 23, 3363–3382, https://doi.org/10.5194/acp-23-3363-2023, https://doi.org/10.5194/acp-23-3363-2023, 2023
Short summary
Short summary
We performed a 3-D mesoscale model study on ozone depletion events (ODEs) occurring in the spring of 2019 at Barrow using an air quality model, CMAQ. Many ODEs observed at Barrow were captured by the model, and the contribution from each physical or chemical process to ozone and bromine species during ODEs was quantitatively evaluated. We found the ODEs at Barrow to be strongly influenced by horizontal transport. In contrast, over the sea, local chemistry significantly reduced the surface ozone.
Le Cao, Linjie Fan, Simeng Li, and Shuangyan Yang
Atmos. Chem. Phys., 22, 3875–3890, https://doi.org/10.5194/acp-22-3875-2022, https://doi.org/10.5194/acp-22-3875-2022, 2022
Short summary
Short summary
We analyzed the observational data and used models to discover the impact of the total ozone column (TOC) on the occurrence of tropospheric ozone depletion events (ODE) in the Antarctic. The results suggest that the decrease of TOC favors the occurrence of ODE. When TOC varies the rates of major ODE accelerating reactions are substantially altered but the rates of major ODE decelerating reactions remain unchanged. As a result, the occurrence of ODE negatively depends on the TOC.
Jingwei Zhang, Chaofan Lian, Weigang Wang, Maofa Ge, Yitian Guo, Haiyan Ran, Yusheng Zhang, Feixue Zheng, Xiaolong Fan, Chao Yan, Kaspar R. Daellenbach, Yongchun Liu, Markku Kulmala, and Junling An
Atmos. Chem. Phys., 22, 3275–3302, https://doi.org/10.5194/acp-22-3275-2022, https://doi.org/10.5194/acp-22-3275-2022, 2022
Short summary
Short summary
This study added six potential HONO sources to the WRF-Chem model, evaluated their impact on HONO and O3 concentrations, including surface and vertical concentrations. The simulations extend our knowledge on atmospheric HONO sources, especially for nitrate photolysis. The study also explains the HONO difference in O3 formation on clean and hazy days, and reveals key potential HONO sources to O3 enhancements in haze-aggravating processes with a co-occurrence of high PM2.5 and O3 concentrations.
Wenxing Jia and Xiaoye Zhang
Atmos. Chem. Phys., 21, 16827–16841, https://doi.org/10.5194/acp-21-16827-2021, https://doi.org/10.5194/acp-21-16827-2021, 2021
Short summary
Short summary
Heavy aerosol pollution incidents have attracted much attention since 2013, but the temporal and spatial limitations of observations and the inaccuracy of simulation are a stumbling block to assessing pollution mechanisms. The correct simulation of boundary layer mixing process of pollutant is a challenge for mesoscale numerical models. We add the turbulent diffusion term of aerosol to the WRF-Chem model to prove the impact of turbulent diffusion on pollutant concentration.
Le Cao, Simeng Li, and Luhang Sun
Atmos. Chem. Phys., 21, 12687–12714, https://doi.org/10.5194/acp-21-12687-2021, https://doi.org/10.5194/acp-21-12687-2021, 2021
Short summary
Short summary
Gas-phase chemical reaction mechanisms, e.g., CB6 mechanism, are essential parts of the atmospheric transport model. In order to better understand the changes caused by the updates between different versions of the CB6 mechanism, in this study, the behavior of three different CB6 mechanisms in simulating ozone, nitrogen oxides and formaldehyde under two different emission conditions was analyzed using a concentration sensitivity analysis, and the reasons causing the deviations were figured out.
Xueshun Chen, Fangqun Yu, Wenyi Yang, Yele Sun, Huansheng Chen, Wei Du, Jian Zhao, Ying Wei, Lianfang Wei, Huiyun Du, Zhe Wang, Qizhong Wu, Jie Li, Junling An, and Zifa Wang
Atmos. Chem. Phys., 21, 9343–9366, https://doi.org/10.5194/acp-21-9343-2021, https://doi.org/10.5194/acp-21-9343-2021, 2021
Short summary
Short summary
Atmospheric aerosol particles have significant climate and health effects that depend on aerosol size, composition, and mixing state. A new global-regional nested aerosol model with an advanced particle microphysics module and a volatility basis set organic aerosol module was developed to simulate aerosol microphysical processes. Simulations strongly suggest the important role of anthropogenic organic species in particle formation over the areas influenced by anthropogenic sources.
Zhuozhi Shu, Yubao Liu, Tianliang Zhao, Junrong Xia, Chenggang Wang, Le Cao, Haoliang Wang, Lei Zhang, Yu Zheng, Lijuan Shen, Lei Luo, and Yueqing Li
Atmos. Chem. Phys., 21, 9253–9268, https://doi.org/10.5194/acp-21-9253-2021, https://doi.org/10.5194/acp-21-9253-2021, 2021
Short summary
Short summary
Focusing on a heavy haze pollution event in the Sichuan Basin (SCB), we investigated the elevated 3D structure of PM2.5 and trans-boundary transport with the WRF-Chem simulation. It is remarkable for vertical PM2.5 that the unique hollows were structured, which which occurred by the interaction of vortex circulations and topographic effects. The SCB was regarded as the major air pollutant source with the trans-boundary transport of PM2.5 affecting atmospheric environment changes.
Liuwei Kong, Miao Feng, Yafei Liu, Yingying Zhang, Chen Zhang, Chenlu Li, Yu Qu, Junling An, Xingang Liu, Qinwen Tan, Nianliang Cheng, Yijun Deng, Ruixiao Zhai, and Zheng Wang
Atmos. Chem. Phys., 20, 11181–11199, https://doi.org/10.5194/acp-20-11181-2020, https://doi.org/10.5194/acp-20-11181-2020, 2020
Short summary
Short summary
Secondary inorganic aerosols have an important contribution to PM2.5. Based on 3 years of atmospheric observation data, this study systematically analyzed the pollution levels and chemical conversion characteristics of nitrate, sulfate and ammonium in PM2.5 in Chengdu, southwest China, and analyzed the emission and regional transport characteristics of their gaseous precursors. This conclusion can provide an important reference for the current air pollution control.
Cited articles
Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis,
A., Solomos, S., and Tzanis, C. G.: Sensitivity of boundary-layer variables
to PBL schemes in the WRF model based on surface meteorological observations,
lidar, and radiosondes during the HygrA-CD campaign, Atmos. Res.,
176, 185–201, 2016. a
Bougeault, P. and Lacarrere, P.: Parameterization of orography-induced
turbulence in a mesobeta–scale model, Mon. Weather Rev., 117,
1872–1890, 1989. a
Broxton, P. D., Zeng, X., Sulla-Menashe, D., and Troch, P. A.: A global land
cover climatology using MODIS data, J. Appl. Meteorol.
Clim., 53, 1593–1605, https://doi.org/10.1175/JAMC-D-13-0270.1, 2014. a
Byun, D. and Schere, K. L.: Review of the Governing Equations, Computational
Algorithms, and Other Components of the Models-3 Community Multiscale Air
Quality (CMAQ) Modeling System, Appl. Mech. Rev., 59, 51–77,
https://doi.org/10.1115/1.2128636, 2006. a, b, c
Chaouch, N., Temimi, M., Weston, M., and Ghedira, H.: Sensitivity of the
meteorological model WRF-ARW to planetary boundary layer schemes during fog
conditions in a coastal arid region, Atmos. Res., 187, 106–127,
2017. a
Chen, S.-H. and Sun, W.-Y.: A one-dimensional time dependent cloud model,
J. Meteorol. Soc. Jpn., 80, 99–118, 2002. a
Du, Q., Zhao, C., Zhang, M., Dong, X., Chen, Y., Liu, Z., Hu, Z., Zhang, Q., Li, Y., Yuan, R., and Miao, S.: Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: impacts from boundary-layer mixing and anthropogenic emission, Atmos. Chem. Phys., 20, 2839–2863, https://doi.org/10.5194/acp-20-2839-2020, 2020. a
Dudhia, J.: Numerical study of convection observed during the winter monsoon
experiment using a mesoscale two-dimensional model, Journal of the
Atmospheric Sciences, 46, 3077–3107, 1989. a
Grell, G. A. and Dévényi, D.: A generalized approach to parameterizing
convection combining ensemble and data assimilation techniques, Geophys.
Res. Lett., 29, 38-1–38-4, 2002. a
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock,
W. C., and Eder, B.: Fully coupled “online” chemistry within the WRF
model, Atmos. Environ., 39, 6957 – 6975,
https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. a
Gunwani, P. and Mohan, M.: Sensitivity of WRF model estimates to various PBL
parameterizations in different climatic zones over India, Atmos.
Res., 194, 43–65, 2017. a
Janjić, Z. I.: The step-mountain eta coordinate model: Further developments
of the convection, viscous sublayer, and turbulence closure schemes, Mon.
Weather Rev., 122, 927–945, 1994. a
Kusaka, H., Kondo, H., Kikegawa, Y., and Kimura, F.: A Simple Single-Layer
Urban Canopy Model For Atmospheric Models: Comparison With Multi-Layer And
Slab Models, Bound.-Lay. Meteorol., 101, 329–358, 2001. a
Li, D. and Bou-Zeid, E.: Quality and sensitivity of high-resolution numerical
simulation of urban heat islands, Environ. Res. Lett., 9, 055001, https://doi.org/10.1088/1748-9326/9/5/055001,
2014. a
Li, X. and Rappenglueck, B.: A study of model nighttime ozone bias in air
quality modeling, Atmos. Environ., 195, 210–228, 2018. a
Madala, S., Satyanarayana, A., and Rao, T. N.: Performance evaluation of PBL
and cumulus parameterization schemes of WRF ARW model in simulating severe
thunderstorm events over Gadanki MST radar facility – case study, Atmos.
Res., 139, 1–17, 2014. a
Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.:
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663–16682, 1997. a
Moeng, C.-H., Dudhia, J., Klemp, J., and Sullivan, P.: Examining Two-Way Grid
Nesting for Large Eddy Simulation of the PBL Using the WRF Model, Mon.
Weather Rev., 135, 2295–2311, https://doi.org/10.1175/MWR3406.1, 2007. a
Nakanishi, M. and Niino, H.: Development of an improved turbulence closure
model for the atmospheric boundary layer, J. Meteorol.
Soc. Jpn., 87, 895–912, 2009. a
National Centers for Environmental Prediction, National Weather Service, NOAA, U.S. Department of Commerce: NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO, USA, https://doi.org/10.5065/D6M043C6, 2000. a
Poulos, G., Blumen, W., Fritts, D., Lundquist, J., Sun, J., Burns, S., Nappo,
C., Banta, R., Newsom, R., Cuxart, J., Terradellas, E., and Balsley, B.:
CASES99: A Comprehensive Investigation of the Stable Nocturnal Boundary
Layer, Bulletin of The American Meteorological Society, B. Am. Meteorol.
Soc., 83, 555–582, https://doi.org/10.1175/1520-0477(2002)083<0555:CACIOT>2.3.CO;2, 2002. a
Shin, H. H. and Hong, S.-Y.: Intercomparison of planetary boundary-layer
parametrizations in the WRF model for a single day from CASES-99,
Boundary-Layer Meteorology, 139, 261–281, 2011. a
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., and
Powers, J.: A Description of the Advanced Research WRF Version 3, NCAR
Technical Note, Tech. Rep. NCAR/TN–475+STR, National Center for Atmospheric
Research, Boulder, CO, available at: http://www2.mmm.ucar.edu/wrf/users/download/ (last access: 2 November 2019), 2008. a, b, c
Steeneveld, G., Van de Wiel, B., and Holtslag, A.: Modelling the Arctic stable
boundary layer and its coupling to the surface, Bound.-Lay. Meteorol.,
118, 357–378, https://doi.org/10.1007/s10546-005-7771-z, 2006. a
Sukoriansky, S. and Galperin, B.: A Quasi-Normal Scale Elimination Theory of
Turbulent Flows With Stable Stratification, in: Volume 4: Fatigue and
Fracture; Fluids Engineering; Heat Transfer; Mechatronics; Micro and Nano
Technology; Optical Engineering; Robotics; Systems Engineering; Industrial
Applications, Engineering Systems Design and Analysis, 179–183,
https://doi.org/10.1115/ESDA2008-59149, 2008. a, b
Sukoriansky, S., Galperin, B., and Perov, V.: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows, Nonlin. Processes Geophys., 13, 9–22, https://doi.org/10.5194/npg-13-9-2006, 2006. a, b
Udina, M., Sun, J., Kosović, B., and Soler, M. R.: Exploring vertical
turbulence structure in neutrally and stably stratified flows using the
weather research and forecasting–large-eddy simulation (WRF–LES) model,
Bound.-Lay. Meteorol., 161, 355–374, 2016. a
Willmott, C. J.: Some comments on the evaluation of model performance, B.
Am. Meteorol. Soc., 63, 1309–1313, 1982. a
Xie, B., Fung, J. C., Chan, A., and Lau, A.: Evaluation of nonlocal and local
planetary boundary layer schemes in the WRF model, J. Geophys.
Res.-Atmos., 117, D12103, https://doi.org/10.1029/2011JD017080, 2012. a, b
Zhang, D. and Anthes, R. A.: A high-resolution model of the planetary boundary
layer – Sensitivity tests and comparisons with SESAME-79 data, J.
Appl. Meteorol., 21, 1594–1609, 1982. a
Short summary
We performed a WRF model study to figure out the mechanism of how the change in minimum eddy diffusivity (Kzmin) in the planetary boundary layer (PBL) closure scheme (ACM2) affects the simulated near-surface temperature in Beijing, China. Moreover, the influence of changing Kzmin on the temperature prediction in areas with different land-use categories was studied. The model performance using a functional-type Kzmin for capturing the temperature change in this area was also clarified.
We performed a WRF model study to figure out the mechanism of how the change in minimum eddy...